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   Dear Editor,
This letter considers the finite-time stability (FTS) problem of gen-

eralized impulsive stochastic nonlinear systems (ISNS). By employ-
ing  the  stochastic  Lyapunov  and  impulsive  control  approach,  some
novel criteria on FTS are presented, where both situations of stabiliz-
ing  and  destabilizing  impulses  are  considered.  Furthermore,  new
impulse-dependent  estimation  strategies  of  stochastic  settling  time
(SST)  are  proposed.  These  estimation  strategies  establish  quantita-
tive  relationships  between  the  impulsive  effects  and  the  mathemati-
cal  expectation  of  SST,  which  can  directly  assess  the  influence  of
impulses on the system performance. Finally, an example is given to
validate the effectiveness of the presented results.

Introduction: Impulsive systems are a special class of hybrid sys-
tems involving continuous-time dynamics  and discrete-time dynam-
ics.  It  has  been intensively researched and well  used in  many fields
such  as  electronic  circuit  systems,  aircraft,  etc.,  [1]  and  [2].  In  the
actual  world,  many  man-made  and  physical  systems  could  be  mod-
eled  as  stochastic  nonlinear  systems  due  to  the  inevitable  effects  of
uncertain  factors  and  white  noise  [3]–[5].  As  more  generalized
dynamical  systems,  the  ISNS has  wider  theoretical  and  applied  sig-
nificance and has been studied [6]–[8].

However, the existing results of ISNS mainly focus on the infinite-
time asymptotic stability. Due to security reasons or improving pro-
ductivity, a large number of practical applications require strict lim-
its on response time. That is why, FTS has been extensively investi-
gated  for  controlled  systems  [9].  For  deterministic  systems,  Lya-
punov  criteria  of  FTS  were  presented  in  [10],  and  then  some
improved and extended results were given in [11] and [12]. However,
these  theorems  cannot  be  directly  applied  to  ISNS.  A  fundamental
technical  hurdle  is  that  stochastic  disturbances  bring  both  the  inte-
gral term and the Hessian in the stochastic Lyapunov analysis. On the
other hand, for stochastic systems, the definition and Lyapunov crite-
ria  of  FTS  were  presented  in  [13],  and  then  some  improved  and
extended  results  were  given  in  [14]–[16].Due  to  the  existence  of
impulsive  effects  which  will  lead  to  discontinuities  in  the  system,
these existing theorems for stochastic systems also cannot be directly
applied to ISNS. Therefore, establishing the FTS criterion of general-
ized ISNS is a fundamental and yet to be solved problem in this field.

Motivated by the above discussion, this letter aims to establish the

FTS  criterion  of  generalized  ISNS.  The  main  contributions  of  this
work are that: by employing the stochastic Lyapunov and impulsive
control approach, some novel criteria on FTS are proved under both
situations  of  stabilizing  and  destabilizing  impulses.  What  is  more,
new  impulse-dependent  estimation  strategies  of  SST  are  proposed.
These  estimation  strategies  establish  quantitative  relationships
between the impulses and the mathematical expectation of SST. It is
shown that stabilizing impulse can improve the convergence rate, and
correspondingly  decrease  the  SST.  On  the  contrary,  destabilizing
impulses may reduce the convergence rate, and increase the SST.

:Problem formulation: Consider the following ISNS
 {

dz(t) = f (t,z)dt+g(t,z)dB(t), t < P
z(t) = h(z(t−)), t ∈ P (1)

z(t) ∈ Z ⊆ Rn B(t) ∈ Rm

(Ω,F , {Ft}t>t0 ,P) f : R+t0 ×Z→ R
n g : R+t0 ×Z→

Rn×m t, z f (·,0) = 0, g(·,0) =
0 h : Z→Z z

h(0) = 0 P = {tk, k ∈ Z+}
(t0,∞)

where  is  the  system state  vector,  represents
Brownian  motion  defined  on  a  complete  probability  space

.  The functions  and 
 are continuous with respect to  and satisfy 

;  The function  is  continuous with respect  to  and sat-
isfy .  Impulsive  time  sequence  is  strictly
increasing on .

P

0 < ε < 1 r > 0
δ = δ(ε,r) > 0 P{|z(t)| < r,∀t > t0} ≥ 1−ε |x0| < δ

Tz0 (P) = in f {t > t0 : z(t) = 0} P{Tz0 (P) <∞} = 1
z0

Definition 1 [13]: For an impulsive time sequence , the ISNS (1)
is said to be FTS in probability,  if  it  is  stable and finite-time attrac-
tive in probability, that is, if for any  and , there exists a

 such that , whenever ,
and the SST  satisfies 
for any initial value .

C2,1 V : R+t0 ×Z→ R
+

L
Definition 2 [4]:  For  any  function ,  the dif-

ferential operator  associated with the ISNS (1) is defined by
 

LV(t,z) =
∂V(t,z)
∂t

+
∂V(t,z)
∂z

f (t,z)+
1
2

gT (t,z)
∂2V(t,z)
∂z2

g(t,z).

ôBased on It ’s formula, it turns out that
 

dV(t,z) =LV(t,z)dt+
∂V(t,z)
∂z

g(t,z)dB(t).

Main results: In this section, we will propose novel criteria of FTS
for the generalized ISNS (1),  where two different  types of  impulses
will be considered, including stabilizing and destabilizing impulses.

K∞ ψ1, ψ2
V : R+t0 ×Z→ R

+

β, γ 0 < ε, θ < 1 z(t;z0)

Theorem 1: If there are two  class functions , a positive-
definite  continuous  function  and  some  positive
constants  , , such that for any solution 
 

ψ1(|z(t)|) ≤ V(t,z) ≤ ψ2(|z(t)|) (2)
 

V(t,h(z(t))) ≤ θ 1
1−ε V(t−,z(t−)) (3)

 

LV(t,z) ≤ −βV(t,z)−γVε(t,z), t < P (4)
P

P = {ti, i = 1,2, . . . , p}
then, the ISNS (1) is FTS for any impulse sequences . Furthermore,
if the impulse sequence  satisfies
 

tp ≤ t0 +
ln
[
ηp−1 η−θ

1−θ (1+
β
γV1−ε

0 )
]

β(1−ε) (5)

θ < η < 1 Tz0 (P)for , then the SST  is estimated as
 

E[Tz0 (P)] ≤ T1 = t0 +
ln
[
ηp(1+ βγV1−ε

0 )
]

β(1−ε) . (6)

r > 0 ε ∈ (0,1) σr = in f {t ≥ t0 : |z(t;
z0)| > r} ô

Proof:  For  any  and ,  define 
. From It ’s formula, it is easily derived that

 

V(t,z(σr ∧ t)) = V(ti,z(ti))+
w σr∧t

ti
LV(s,z(s))ds

+
w σr∧t

ti

∂V(s,z(s))
∂z

g(s,z(s))dB(s), t ∈ [ti, ti+1). (7)

Taking  the  expectation  of  (7),  together  with  the  condition  (4),
yields
 

EV(t,z(σr ∧ t)) ≤ V(ti,z(ti)), t ∈ [ti, ti+1). (8)
0 < θ < 1Since , it can be seen from (8) and the condition (3) that

 

EV(t,z(σr ∧ t)) ≤ V(t0,z0), ∀t ≥ t0. (9)
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|x(σr ∧ t)| = |x(σr)| = r σr ≤ tIt is noteworthy that  if . Hence, it fol-
lows from (2) that:
 

P(σr ≤ t)ψ1(r) ≤ E[I{σr≤t}V(σr,z(σr))]
≤ EV(σr,z(σr)) ≤ V(t0,z0) ≤ ψ2(|z0|). (10)

δ = ψ−1
2 (ψ1(r)ε) P(σr ≤ t) ≤ ε

|z0| ≤ δ t→∞ P(σr ≤∞) ≤ ε
P
{
supt≥t0 |z(t)| ≤ r

} ≥ 1−ε.

Let , it can be deduced that  whenever
.  Then,  let ,  it  turns  out  that ,  which

implies that  Therefore, the ISNS (1) is sta-
ble in probability.

τk = in f
{
t ≥ t0 : |z(t)| < ( 1k ,k)}, k ∈ N+

1
k < |z0| < k

Then,  define  in  which  and
satisfied . By Definition 2, it follows that:
 

L [eβ(1−ε)tV1−ε(t,z)
]

= β(1−ε)eβ(1−ε)tV1−ε(t,z)+ (1−ε)eβ(1−ε)tV−ε(t,z)

×LV(t,z)− 1
2
ε(1−ε)eβ(1−ε)tV−ε−1(t,z)

×
[
∂V(t,z)
∂z

g(t,z)
]T [∂V(t,z)

∂z
g(t,z)

]
≤ β(1−ε)eβ(1−ε)tV1−ε(t,z)
+ (1−ε)eβ(1−ε)tV−ε(t,z)LV(t,z).

ôFrom It ’s formula, one has
 

eβ(1−ε)(τk∧t)V1−ε(τk ∧ t,z(τk ∧ t)) = eβ(1−ε)ti V1−ε(ti,z(ti))

+
w τk∧t

ti
β(1−ε)eβ(1−ε)sV1−ε(s,z(s))ds

+
w τk∧t

ti
(1−ε)eβ(1−ε)sV−ε(s,z(s))LV(s,z(s))ds

+
w τk∧t

ti
(1−ε)eβ(1−ε)tV−ε(t,z)∂V(s,z(s))

∂z
×g(s,z(s))dB(s), t ∈ [ti, ti+1). (11)

Taking  the  expectation  of  (11),  together  with  the  condition  (4),
yields
 

EV1−ε(τk ∧ t,z(τk ∧ t)) ≤ eβ(1−ε)(ti−τk∧t)E
[
V1−ε(ti,z(ti))+

γ

β

− γ
β

eβ(1−ε)(τk∧t−ti)], t ∈ [ti, ti+1). (12)

0 < θ < 1Since , it can be seen from (12) and the condition (3) that
 

EV1−ε(τk ∧ t,z(τk ∧ t)) ≤ eβ(1−ε)(t0−τk∧t)E
[
V1−ε

0 +
γ

β

− γ
β

eβ(1−ε)(τk∧t−t0)], t ≥ t0. (13)

τk
k, t→∞ τk ∧ t→ Tz0 (P).
E[Tz0 (P)] ≤ T0 P{Tz0 (P) <∞} = 1

P

It  is  evident  that  is  increasing  stopping  time  sequence.  Let
,  one obtains  Thus,  we have from (13) that

. It indicates that , that is, the ISNS
(1)  is  finite-time  attractiveness  in  probability.  Therefore,  it  is  con-
cluded that the ISNS (1) is FTS for any .

Tz0 (P)
P = {ti, i = 1,2, . . . , p}

θ < η < 1

Next, we turn our attention to proving the SST  can be esti-
mated as (6) if the impulse time sequence  satis-
fies (5). Due to , it follows from (5) that:
 

ti ≤ tp ≤ t0 +
ln
[
ηp−1 η−θ

1−θ (1+
β
γV1−ε

0 )
]

β(1−ε)

≤ t0 +
ln
[
ηi−1 η−θ

1−θ (1+
β
γV1−ε

0 )
]

β(1−ε) .

Hence, one obtains
 

θηi−1 +
(1− θ)eβ(1−ε)(ti−t0)

1+ βγV1−ε
0

≤ ηi. (14)

t ∈ [t0, t1)Based on (12), it is easily seen that for 
 

EV1−ε(τk ∧ t,z(τk ∧ t))

≤ eβ(1−ε)(t0−τk∧t)E
[
V1−ε

0 +
γ

β
− γ
β

eβ(1−ε)(τk∧t−t0)] (15)

t ∈ [t1, t2)which, together with (3) and (14), obtains that for 
 

EV1−ε (τk ∧ t,z(τk ∧ t))

≤ eβ(1−ε)(t1−τk∧t)E
[
V1−ε(t1,z(t1))+

γ

β
− γ
β

eβ(1−ε)(τk∧t−t1)]
≤ eβ(1−ε)(t0−τk∧t)E


θ+ (1− θ) γβ eβ(1−ε)(t1−t0)

V1−ε
0 +

γ
β


×(V1−ε

0 +
γ

β

)− γ
β

eβ(1−ε)(τk∧t−t0)
}

≤ eβ(1−ε)(t0−τk∧t)E

[
η
(
V1−ε

0 +
γ

β

)− γ
β

eβ(1−ε)(τk∧t−t0)
]
. (16)

By calculation, it is easy to derive that
 

EV1−ε(τk ∧ t,z(τk ∧ t)) ≤ eβ(1−ε)(t0−τk∧t)E

[
ηi(V1−ε

0 +
γ

β

)
−γ
β

eβ(1−ε)(τk∧t−t0)
]
, t ∈ [ti, ti+1) (17)

tp+1 T0

[tp, tp+1] E[Tz0 (P)] ≤ T1
P = {ti, i = 1,2, . . . , p}

in which  is defined by . Therefore, it is not hard to verify from
(17)  that  the  estimation  of  the  SST  can  be  deduced  in  the  interval

,  and .  That  is,  if  the  impulse  time  sequence
 satisfies  (5),  then the ISNS (1)  is  FTS and the

corresponding SST is estimated as (6). ■
0 < θ < 1

θ > 1

Note that  the impulse studied in Theorem 1 is  stabilizing impulse
. Next, we will propose another FTS result under destabiliz-

ing impulse .
K∞ ψ1, ψ2
V : R+t0 ×Z→ R

+

β, γ 0 < ε < 1 θ > 1 z(t;z0)
P

Theorem 2: If there are two  class functions , a positive-
definite  continuous  function  and  some  positive
constants , , , such that for any solution , the
conditions (2)−(4) hold, and the impulse sequences  satisfies
 

min

k ∈ Z+ : tk ≥ t0 +
ln
[
θk−1(1+ βγV1−ε

0 )
]

β(1−ε)

 = Pm < +∞ (18)

Tz0 (P)then the ISNS (1) is FTS, and the SST  is estimated as
 

E[Tz0 (P)] ≤ T2 = t0 +
ln
[
θPm−1(1+ βγV1−ε

0 )
]

β(1−ε) . (19)

Proof: With a similar method as the proof in Theorem 1, it is eas-
ily proved that the ISNS (1) is stable in probability. To avoid repeat-
ing similar proofs, the detailed proof process is omitted.

Tz0 (P) P
t ∈ [t0, t1)

Next,  we will  prove that  the ISNS (1)  is  finite-time attractiveness
in probability, and the SST  can be estimated as (19) if  satis-
fies (18). By (12), it is founded that for 
 

EV1−ε(τk ∧ t,z(τk ∧ t)) ≤ eβ(1−ε)(t0−τk∧t)E

[
V1−ε

0 +
γ

β

−γ
β

eβ(1−ε)(τk∧t−t0)
]
. (20)

t1 ≥ T0 Pm = 1
t1 < T0 Pm ≥ 2 θ ≥ 1

t ∈ [t1, t2)

When , it follows that  and the ISNS (1) is finite-time
attractiveness in probability. When , then . Since ,
it is easy to derive that for 
 

EV1−ε(τk ∧ t,z(τk ∧ t))

≤ eβ(1−ε)(t1−τk∧t)E

[
V1−ε(t1,z(t1))+

γ

β
− γ
β

eβ(1−ε)(τk∧t−t1)
]

≤ eβ(1−ε)(t1−τk∧t)E

{
θeβ(1−ε)(t0−t1)

[
V1−ε

0 +
γ

β

−γ
β

eβ(1−ε)(t1−t0)
]
+
γ

β
− γ
β

eβ(1−ε)(τk∧t−t1)
}

≤ eβ(1−ε)(t0−τk∧t)E

[
θ
(
V1−ε

0 +
γ

β

)− γ
β

eβ(1−ε)(τk∧t−t0)
]
. (21)

By calculation, it is easy to derive that
 

EV1−ε(τk ∧ t,z(τk ∧ t)) ≤ eβ(1−ε)(t0−τk∧t)E

[
θPm−1(V1−ε

0 +
γ

β

)
−γ
β

eβ(1−ε)(τk∧t−t0)
]
, t ∈ [tPm−1, tPm ). (22)
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Therefore,  it  is  not  hard  to  verify  from  (22)  that  the  ISNS  (1)  is
finite-time  attractiveness  in  probability.  That  is,  if  the  impulse  time
sequence  satisfies  (18),  then  the  ISNS  (1)  is  FTS  and  the  corre-
sponding SST is estimated as (19). ■

Numerical  example: In  this  section,  an example is  given to vali-
date  the  effectiveness  of  the  presented  FTS  results.  Consider  the
mass-spring system [6] with linear viscous damping and a hardening
spring, which can be modeled by the Duffing’s equation as follows:
 

ρẍ(t)+ ξ ẋ(t)+δx(t)+δα2x3(t) = ϕ(t) (23)
ξ ẋ(t) ϕ(t)

δx(t)+δα2x3(t)

tk

z(t) = [z1,z2(t)]T = [x(t), ẋ(t)]T ϕ(t) = φ(t)+σ(t)Ḃ(t) Ḃ(t)

in  which ,  are  the  resistive  force  and  the  external  force,
respectively, and  represents hardening spring. As we
know, for experiments performed in air or other viscous media, there
are  external  forces  that  keep  the  mass-spring  in  motion  at  some
instants .  The kinetic energy transfer between the mass-spring and
the  external  forces  can  be  described  by  impulsive  effects.  Let

 and ,  where 
is  a  2-dimensional  independent  white  noise,  then the  system (23)  is
equivalently rewritten as the ISNS model of the form (1)
 [

dz1(t)
dz2(t)

]
=

[
z2(t)
G(t)

]
dt+
[ 0
σ(t)/ρ

]
dB(t), t < P[

z1(t)
z2(t)

]
=

[
λ1z1(t−)

λ2z2(t−)+ y(t−)

]
, t ∈ P (24)

G(t) = − 1
ρ (ξz2(t)+δz1(t)+δα2z31(t)−φ(t)) P
y(t−)

t 1 ≤ λ1, λ2 ≤ 2.

where ,  is  the  impulses
time sequence,  is the change in velocity as a result of the addi-
tional force at time , and 

ξ = 1.5ρ, δ = 2ρ α = 1√
2
λ1 = 1.5 λ2 = 1 φ(t) = −0.1ρ×

sgn(2z1(t)+4z2(t)), σ(t) = 1√
2
ρz21(t) y(t) = 0.2z2(t) P = {1,

2, . . . ,10} V(t,z(t)) = zT (t)Qz(t)+

z41(t) Q =
[
3 1
1 2

]
LV(t,z(t)) ≤

−V(t,z(t))−0.1
√

V(t,z(t)) t < P V(t,z(t)) ≤2.252V(t−,z(t−))
t ∈ P

z(0) = [1,−1]T

Let  , , , ,  and 
 , ,  and 

.  Choose  the  Lyapunov  function 

, where , then it is not hard to derive that 

 for ,  and 
for . Hence, based on Theorem 2, it follows that the mass-spring
system with destabilizing impulses (24) is FTS. For the initial value

, its state trajectories are presented in Fig. 1.
 

t
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0 2 4 6 8 10 12 14 16 18 20

 
Fig. 1. The state trajectories of the mass-spring system with destabilizing
impulses.
 

Tx0 (P) E[Tz0 (P)] ≤ 1.6219(P+
3.7544) tk, k = 1,2, . . . ,P tk <
2ln
(
2.25k−1 ×21) tk+1 P = 0

P = 10 P = {1,2, . . . ,10}

z(0) = [1,−1]T

Furthermore, the  can be estimated as 
,  if  the  impulsive  points  satisfies 

,  and  does  not  satisfy.  When  (without
impulse)  and  with ,  the  state  trajectories  of
the mass-spring system with destabilizing impulses (24) and the SST
are  presented  in Fig. 2,  in  which  the  initial  value .  It
can be seen from this that the destabilizing impulses may reduce the
convergence  rate  of  the  mass-spring  system  (24),  and  correspond-
ingly increase the SST.

Conclusion: In  this  letter,  novel  criteria  on  FTS  for  ISNS  have
been presented by employing the stochastic Lyapunov and impulsive
control  approach.  Furthermore,  new  impulse-dependent  estimation
strategies  of  SST  were  proposed.  These  estimation  strategies  estab-
lished  quantitative  relationships  between  the  impulsive  effects  and
the  mathematical  expectation  of  SST,  which  can  directly  assess  the
influence  of  impulses  on  the  system  performance.  It  is  shown  that
stabilizing  impulse  can  improve  the  convergence  rate,  and  corre-

spondingly decrease the SST. On the contrary, destabilizing impulses
reduce the convergence rate, and correspondingly increase SST.
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Fig. 2. The  state  trajectories  of  the  mass-spring  system  with  and  without
destabilizing impulses.
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