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   Dear Editor,

This letter focuses on the problem of remaining useful life (RUL)
prediction of equipment. Existing graph neural network (GCN)-based
approaches  merely  provide  the  point  estimation  of  RUL.  However,
the estimated RUL often varies widely due to the model parameters
and the noise in data. It is important to know the uncertainty in pre-
dictions for  reliable  risk analysis  and maintenance decision making.
To map the relationship between noisy condition monitoring data and
RUL  with  uncertainty,  we  propose  a  recurrent  graph  convolutional
network  with  uncertainty  estimation  (RGCNU)  for  RUL prediction.
In our approach, the correlation exploiting module captures the spa-
tial-temporal  correlations  based on the  learned graph structure.  Fur-
thermore, the fusion module associates the RUL prediction and data
uncertainty to improve the robustness of the model to noisy data.

In  the  long-term  operation  process,  the  reliability  of  mechanical
equipment  will  gradually  decline  [1].  RUL  prediction  plays  an
increasingly  important  role  in  improving  equipment  operation  relia-
bility.  RUL prediction  methods  are  usually  composed  of  two  major
types: model-based methods and data-driven methods [2]. The main
idea of model-based methods is to use physical mechanisms or statis-
tical  knowledge  to  describe  the  degradation  process.  They  can
include  exponential  model,  Paris-Erdogan  model,  and  Gamma  pro-
cess model. In practice, however, even if the same system under the
same  operating  state  may  be  a  significant  difference  in  degradation
process.  Also,  additional  prior  knowledge  and  experience  are  often
required for specific situations. Therefore, these limitations make the
model-based method unsuitable for a large-scale application.

Data-driven methods attract more attention from scholars. Without
requiring  expert  knowledge,  machine  learning-based  algorithms  can
construct a mapping relationship between the monitoring data and the
equipment degradation process to determine the working condition of
equipment. Neural networks [3] have been widely used in equipment
health monitoring and achieve good results in the past several years.
For example, convolution neural network (CNN) can extract the tem-
poral  features  from  multi-sensors  [4].  As  another  neural  network
structure,  recurrent  neural  network  (RNN)  can  capture  long-term
dependency on the degradation process and model sequential data.

Recently, GCN has gradually attracted researcher’s attention due to
its  powerful  node  representation  ability  [5].  GCN-based  approaches
have also been used in RUL prediction. For example, Wang et al. [6]
proposed a fixed GCN model for RUL prediction, in which CNN and
RNN learn the spatial  and sequence relations,  respectively.  Li et  al.

[7]  presented  a  hierarchical  GCN  to  fuse  the  representations  from
condition monitoring data for engine RUL prediction.

However,  there are two drawbacks in existing GCN-based studies
for  RUL  prediction.  One  is  that  these  studies  decouple  the  spatial-
temporal correlations of condition monitoring data, leading to loss of
some implicit  information. The other is that these studies ignore the
uncertainty  modeling  for  noisy  data,  which  can  improve  the  model
robustness and provide additional decision information.

To  this  end,  a  recurrent  graph  convolutional  network  with  uncer-
tainty estimation is proposed for RUL prediction in this letter. To our
best knowledge, this letter is the first to apply GCN and uncertainty
estimation  simultaneously  in  RUL  prediction.  To  discover  the  hid-
den correlation among sensors,  a  graph learning module  first  builds
the  adjacency  matrix,  which  is  input  into  correlations  exploiting
module.  Then,  the  correlations  exploiting  module  captures  spatial-
temporal  dependencies  in  condition  monitoring  data.  According  to
the learned representation, the fusion module associates the RUL pre-
diction and the data uncertainty to improve the robustness of the net-
work to  noisy data.  Besides,  Monte  Carlo  dropout  (MCDO) is  used
to estimate the model uncertainty of the network. Finally, the above
two types of  uncertainty are  combined for  uncertainty estimation of
RUL prediction.

Our contributions are described as follows: 1) We propose a corre-
lation exploiting module to capture the spatial-temporal  correlations
in the condition monitoring data;  2)  We design a fusion module for
associating  the  RUL prediction  and  the  data  uncertainty  to  improve
the robustness of network to noisy data; 3) Extensive experiments on
C-MAPSS show the effectiveness of the proposed RGCNU.

Preliminaries: Given  the  historical  condition  monitoring  data
recorded  by  sensors  on  the  equipment,  we  focus  on  predicting  the
RUL and uncertainty of the new condition monitoring data.
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We consider an undirected graph  where  is  a finite
set of  nodes,  is a set of edges and fully connects different
nodes,  and  is  the  adjacency  matrix  of  the  whole  graph.
From  a  graph-based  perspective,  all  the  sensors  are  considered  as
nodes  in  the  graph,  and  the  relationships  between  sensors  are
described using the adjacency matrix . Let  is the measured
values of all sensors at the time , where  is the measured value of
-th  sensor.  is  the -th  sequence  of 

time steps of condition monitoring data,  is the corresponding RUL
label.  With the dataset ,  the  task of  this
letter is to learn a mapping graph model  from dataset  to accu-
rately predict the RUL and estimate the corresponding uncertainty.

Method: RGCNU  is  proposed  to  address  the  problem  of  spatial-
temporal  correlations  exploiting  and  uncertainty  estimation  in  RUL
prediction. As shown in Fig. 1, the proposed framework mainly con-
sists  of  three  modules:  the  graph  learning  module,  correlations
exploiting module, and fusion module. To discover the hidden corre-
lation among sensors,  a graph learning module builds the adjacency
matrix, which is input into the next module. The correlations exploit-
ing module  aims to  capture  spatial-temporal  dependencies  in  condi-
tion  monitoring  data.  The  fusion  module  performs  the  RUL predic-
tion and data uncertainty estimation based on the learned representa-
tion. The framework is described in detail as follows.

Graph  learning  module:  The  graph  learning  module  adaptively
builds an adjacency matrix to discover the hidden correlation among
sensors.  To  build  up  the  graph,  the  learning  process  is  described  as
follows.

X ∈ RN×F A1, A2For the feature matrix , the intermediate variables 
can be expressed as
 

A1 = tanh(αXΘ1) (1)
 

A2 = tanh(αXΘ2) (2)
Θ1, Θ2 ∈ RF×N tanh

α
where  represent  learnable  parameters,  is  the
activation function, and  is the hyper-parameter.
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AThe adjacency matrix  is computed as
 

A = ReLU
(
tanh
(
α
(
A1AT

2 −A2AT
1

)))
(3)

where ReLU is the activation function.
Correlation  exploiting  module:  The  correlation  exploiting  module

aims to  capture  the spatial-temporal  correlation and consists  of  spa-
tial  correlation  learning  (SCL)  and  temporal  dependency  learning
(TDL).

GCN
To  fully  benefit  from  high-order  neighbors’ information,  a  two-

layer fully-connected  is employed to combine the features from
itself  and  different  orders  of  neighbors  for  learning  spatial  correla-
tion. Specifically, the spatial features of the sensors network at each
time slice are captured.

The  condition  monitoring  data  is  regarded  as  the  multi-sensors
time-series data. In the SCL, GCN represents the mutual spatial cor-
relations  among  all  sensors,  and  the  dropout  layer  is  followed.  In
TDL, one-dimensional convolution is  first  appended to combine the
internal feature of each sensor, and then LSTM is adopted in the time
dimension for temporal dependency.

X

1×1

Fusion module: The fusion module integrates the residual informa-
tion  from  and  the  representation  obtained  from  TDL,  aiming  to
expedite the model training and mitigate the model overfitting prob-
lem.  Besides,  a  CNN  with  kernel  size  is  used  for  the  prepro-
cessed input X to guarantee that the residual information has the same
dimensions  as  the  representation  obtained  from  TDL.  To  associate
the  predicted  RUL  and  the  estimated  data  uncertainty,  a  CNN  and
fully connected layers are then adopted to obtain the RUL and vari-
ance, respectively. The expression of the fusion module is expressed
as
 

Mid = Φ2 ∗ (ReLU(Φ1 ∗X+H)) (4)
 

ŷ = FC1(Flat(Mid)) (5)
 

σ̂ = FC2(Flat(Mid)) (6)
H Φ1

Φ2 Flat
FC1 FC2

ŷ σ̂

where  denotes the output of correlation exploiting module,  and
 denote the convolution kernel’s parameters,  is Flatten opera-

tor,  and  mean  the  fully  connected  layers  with  different
weights,  and  are the predicted RUL and variance, respectively.

Loss function: The cost function is reformulated as
 

L(θ) = (1−λ)×
 1

M

M∑
i=1

1
2

exp(−si)∥yi − ŷi∥2 +
1
2
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+λ×

 M∑
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 (7)

si := log σ̂2
i λ ∈ (0,1)where  is the log variance,  is a tuning parameter.

Uncertainty estimation of  RUL: To obtain the uncertainty estima-
tion  of  RUL,  the  model  uncertainty  of  RUL  also  needs  to  be  esti-
mated.  Through  using  dropout  at  the  test  stage  to  sample  from  the
approximate posterior [8], the predicted RUL and the corresponding
uncertainty of a test sample can be expressed as
 

Mean(y) ≈ 1
L

L∑
l=1

ŷl (8)
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L
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+
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{
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2
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}L
l=1 Lwhere  is  a  set  of  sampled  outputs  after  stochastic  for-

ward passes.
Experiments:
Datasets: A series of experiments are conducted on C-MAPSS [9]

to evaluate the effectiveness of the proposed approach.
Evaluation metrics:  Two metrics,  root  mean square error  (RMSE)

and score function, are used to evaluate the performance of the pro-
posed approach.

Result  analysis: Fig. 2 shows  the  predicted  RUL,  the  correspond-
ing  uncertainty,  and  the  true  RUL  of  four  units  in  four  datasets.
When the  engine units  are  in  the  degradation stage,  it  can be found
that the uncertainty and the error between the true RUL and the pre-
dicted  RUL  will  decrease.  The  reason  is  that  degradation  informa-
tion is enhanced while the engine unit is near failure. That shows our
approach can capture the information for better prediction and uncer-
tainty estimation.
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Fig. 2. Four examples of test units in different datasets.
 

Performance  comparison:  To  verify  the  effectiveness,  the  pro-
posed approach is compared with other approaches without and with
uncertainty  estimation. Table 1 summarizes  the  RMSE and score  of
different approaches with the same settings on four subsets. It can be
found  that  the  two  metrics  results  on  FD001  and  FD004  are  the
smallest and largest among the four subsets, respectively. The reason
is  that  FD001  has  the  fewest  operating  settings  and  fault  modes.
Among  the  existing  approaches,  the  GCN  approaches  have  shown
their  advantage  in  RUL  prediction.  These  approaches  can  achieve
better  performance  and  lower  error,  the  reason  is  that  these
approaches have a strong ability to learn the spatial correlation from
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Fig. 1. The framework of proposed approach.
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imp = re−rp
re

re rp

the  raw data.  The improvements  ( )  are  calculated,  where
 is the best result of compared approaches and  is our result. The

performances are improved on four subsets except for the RMSE of
FD003.  Those  results  indicate  the  proposed  approach  can  achieve
better  prediction  performance  compared  with  other  approaches.  For
example,  two  metrics  of  the  proposed  approach  are  reduced  by
12.27% and 23% compared with existing results  on FD002,  respec-
tively.

Ablation study:  The influence of  TDL and fusion module is  stud-
ied  by  conducting  several  experiments  on  four  subsets.  To  achieve
this goal, the part of uncertainty output is removed to build a model,
denoted  by  RGCN.  Similarly,  the  TDL  in  RGCN  is  replaced  with
CNN to build another model, denoted by GCNN. Table 2 shows the
performances  on  four  subsets.  It  can  be  noted  that  RGCN  achieves
better performance than GCNN in all of the two metrics. This shows
that the correlations exploiting module can better capture the spatial-
temporal  correlations.  As  for  RGCN  and  RGCNU,  RGCNU  also
achieves  better  performance  overall.  These  results  indicate  that  the
introduced uncertainty estimation can improve the robustness of  the
model and make the model more reliable in RUL prediction.
 

Table 2.  The Performance of Different Ablation Studies
Approaches FD001 FD002 FD003 FD004

RMSE Score RMSE Score RMSE Score RMSE Score

GCNN 12.88 244.57 18.00 1775.51 12.98 389.06 21.98 3579.88

RGCN 11.93 205.19 17.05 1186.10 12.51 288.04 19.87 2225.99

RGCNU 11.18 173.59 16.22 1148.16 11.52 225.03 19.11 2215.9
 
 

Conclusion: This  letter  proposes  a  recurrent  graph  convolutional
network  with  uncertainty  estimation  for  RUL  prediction.  In  our
approach, a graph learning module firstly builds the adjacency matrix
to discover the hidden correlation among sensors. Then, the correla-
tion  exploiting  module  captures  the  spatial-temporal  correlations
based  on  the  learned  graph  structure.  Furthermore,  the  fusion  mod-
ule  associates  the  RUL  prediction  and  the  data  uncertainty  to
improve the robustness of the model to noisy data. Besides, MCDO
estimates  the  model  uncertainty  of  the  network.  Finally,  the  above
two types of  uncertainty are  combined for  uncertainty estimation of
RUL  prediction.  Sufficient  experimental  results  on  the  C-MAPSS
indicate that the proposed approach achieves satisfying results com-
pared  to  the  existing  approaches.  Besides,  ablation  studies  are  con-
ducted to show the effectiveness of several schemes.
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