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ABSTRACT
In practical applications of cross-modal retrieval, test queries of
the retrieval system may vary greatly and come from unknown
category. Meanwhile, due to the cost and difficulty of data collection
as well as other issues, the available data for cross-modal retrieval
are often imbalanced over different modalities. In this paper, we
address two important issues to increase the robustness of cross-
modal retrieval system for real-world applications: handling test
queries from unknown category and modality-imbalanced training
data. The first issue has not been addressed by existing methods and
the second issue was not well addressed in the related research. To
tackle the above issues, we take the advantage of prototype learning,
and propose a prototype-based adaptive network (PAN) for robust
cross-modal retrieval. Our method leverages a unified prototype
to represent each semantic category across modalities, which pro-
vides discriminative information of different categories and takes
unified prototypes as anchors to learn cross-modal representations
adaptively. Moreover, we propose a novel prototype propagation
strategy to reconstruct balanced representations which preserves
the semantic consistency and modality heterogeneity. Experimental
results on the benchmark datasets demonstrate the effectiveness of
our method compared to the SOTA methods, and further robust-
ness tests show the superiority of our method in solving the above
issues.
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• Information systems → Multimedia and multimodal re-
trieval.
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1 INTRODUCTION
With the rapid growth of multi-modal data in social media, cross-
modal retrieval (e.g. image and text retrieval), which aims to take
one type of data as the query to retrieve relevant data of another
type [48], is in great demand. It has become a core multi-modal
research area and had a number of applications in domains such
as image retrieval [42], image caption [33], video recommendation
[37], automatic story generation [19] and so forth.

Since features of different modalities usually have inconsistent
distributions and representations, the key challenge of cross-modal
retrieval is to bridge the gap of modality heterogeneity, that is,
developing computational means to assess the semantic similar-
ity of samples across modalities. A typical approach to bridge the
heterogeneity gap is representation learning, which projects cross-
modal data into a common representation space to directly compute
their similarity. Early work mainly uses statistical correlation anal-
ysis to convert cross-modal data to the common representation
[8, 11, 36], while recent work leverages the representation capabili-
ties of deep neural networks (DNN) to learn the complex nonlinear
cross-modal associations [1, 6]. To gain more effective common
representation, recent research further exploits label information
and adversarial learning to preserve intra-modality discrimination
and inter-modality invariance for the retrieval task, and achieves
superior performances [25, 26, 34, 38, 48].

Despite the success of DNN based methods, two main drawbacks
in the existing methods hinder the practical applications of cross-
modal retrieval. First, in practice, the content of a query image/text
may vary greatly, and the retrieval system often needs to handle
queries with unknown class labels [20]. However, existing methods
cannot correctly identify test queries from unknown category, as
they require the queries in the retrieval system fall into some pre-
defined categories. This is due to the fact that most existingmethods
[25–27, 34, 38] utilize classification layer activated by softmax to
learn semantically discriminative representations. It essentially
learns a partition of the whole representation space, and thus the
samples from unknown category are still predicted to some known
categories with high confidence [45]. Recently, several zero-shot
cross-modal retrieval methods have been proposed to tackle the
inconsistency between training and test categories [2, 3, 21], in
which the semantic categories of the test set are unseen in the
training set. Since these methods take the word embeddings of class
categories as external knowledge to enhance knowledge transfer,
they actually assume the (unseen) categories of the test set are
known. Therefore, to increase the robustness of the retrieval system
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for practical applications, a vital research issue is to handle test
queries from unknown category, which has not been addressed in
previous research on cross-modal retrieval.

Second, the mainstream cross-modal retrieval methods rely on
the balanced multi-modal data, that is, under the assumption where
there is a sample in one modality, there is a corresponding sample
in the other modality with the same label [14]. However, this as-
sumption of modality-balanced data cannot always be satisfied in
real-world applications, due to the discrepancies caused by different
modalities in the difficulty and cost of data collection and other
issues such as content preference or privacy. In reality, the available
data between text, image and audio, for example, are all consider-
ably modality-imbalanced. As the imbalanced data is incomplete
and insufficient to learn the invariant representations for different
modalities, the heterogeneity gap cannot be well bridged in this situ-
ation. Recently, several hashing based methods have been proposed
to address the imbalanced data for cross-modal retrieval [10, 40],
which mainly utilize the semantic consistency between similar sam-
ples (i.e., belonging to the same category) from different modalities
to reconstruct equivalent numbers of samples. More recent work
[14] investigates the imbalanced problem in the framework of deep
generative models, but is still based on the semantic consistency to
reconstruct incomplete samples. Unfortunately, while addressing
the imbalanced problem in cross-modal retrieval, these methods fail
to consider themodality heterogeneity in the reconstruction process,
and thus cannot supply informative sample pairs to overcome the
modality heterogeneity gap. Therefore, to increase the robustness
of the retrieval system for practical applications, another important
research issue is to effectively handle modality-imbalanced training
data, which has not been well addressed in previous research.

To tackle the above issues and increase the robustness of cross-
modal retrieval for real-world applications, in this paper, we propose
a novel Prototype-based Adaptive Network (PAN) for cross-modal
retrieval. As prototypes can be viewed as the representatives of
each discriminative category in the common representation space,
it provides valuable clues to discriminate category information
and bridge cross-modal associations. Thus the central idea of our
method is the leverage of a unified prototype to represent each
semantic category across modalities, which provides both the dis-
criminative information to differentiate unknown category from
known ones and the commonalities of multi-modal samples belong-
ing to the same category to imply the semantic consistency. To this
end, we develop a prototype-based representation learning method
to interactively learn the common representations across modalities
and the unified prototypes for each category. We take prototypes
as anchors to adaptively learn invariance loss and discrimination
loss, and the learned prototypes can provide inference clues for
differentiating test queries of unknown category. Furthermore, to
tackle the modality-imbalanced problem, we propose a prototype
propagation strategy to fuse semantically consistent prototype and
the nearest neighbors of the another modality for heterogeneity.

The main contributions of our work are as follows:

• We identify two important issues to increase the robustness
of cross-modal retrieval system in real-world applications
and propose a prototype-based adaptive network PAN for
robust cross-modal retrieval.

• Wedevelop a prototype-based representation learningmethod
to jointly learn the common representations across modali-
ties and the unified prototypes for differentiating test queries
of unknown category.

• We propose a prototype propagation strategy to reconstruct
balanced representations for each modality, which can pre-
serve modality heterogeneity and semantic consistency si-
multaneously.

• We conduct extensive experiments on several benchmark
datasets and the results demonstrate the effectiveness of our
method compared to the SOTA methods. Further robust-
ness tests show the superiority of our method in handling
unknown category and modality-imbalanced data.

2 RELATEDWORK
2.1 Cross-modal Retrieval
The key challenge of cross-modal retrieval is to bridge the modality
gap and learn a common representation space in which the semantic
similarity of items across modalities can be compared. The typical
methods can be divided into two main groups, shallow learning
methods and deep learning methods. Shallow learning methods
use statistical correlation analysis to transform multi-modal data
to the common representation by maximizing pairwise correla-
tions, in which the representative methods are CCA [11] and its
extensions [8, 36]. Deep learning methods take advantage of the
powerful representation capabilities of deep neural networks to
learn the common representation for multi-modal data, and opti-
mize pairwise constraints at different levels to preserve the semantic
associations [6, 23].

To gain amore effective representation space, recent research fur-
ther exploits label information to capture the underlying semantic
structure of multi-modal samples [18, 25, 34, 38, 48], including intra-
modality discrimination and inter-modality invariance. Inspired
by the great success of adversarial learning [9], several adversarial
cross-modal retrieval methods have been proposed with the uti-
lization of a modality classifier to further learn modality-invariant
representations [26, 34, 38], achieving promising performance on
cross-modal retrieval task.

2.2 Cross-modal Retrieval with Unseen
Category Queries

Conventional cross-modal retrieval methods are based on the as-
sumption that test categories remain the same with training cat-
egories, which means the queries of a retrieval system fall into
some pre-defined categories. In practice, the content of a query
image/text may vary extensively and come from unknown cate-
gory [20], which bring about a great challenge to the practical
applications of cross-modal retrieval. Because of the discrepancy
between real-world applications and the above assumption, some
zero-shot cross-modal retrieval methods have been proposed to
tackle this challenge, which attempt to construct a test set that does
not have overlapping categories with the training set to perform
zero-shot learning[16]. Chi et al. [2] propose the first zero-shot
cross-modal retrieval method, which exploits the word embeddings
of both seen and unseen categories to enhance knowledge transfer
to unseen categories. Xu et al. [43] leverage the word embedding
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Figure 1: Overall architecture of the proposedmodel PAN. It first utilizes a number of fully-connected layers to project the orig-
inal image and text features into a common representation space separately, and then leverages a unified prototype to preserve
the modality invariance and semantic discrimination. We further present a prototype propagation stategy to reconstruct text
samples from excessive images, or reconstruct image samples from excessive texts, so as to obtain modality-balanced training
data. The prototypes are jointly trained and can provide inference clues to differentiate unknown category.

labels as guidance to supervise the semantic feature learning and
enhance knowledge transfer to unseen categories. Similar approach
has been followed in other work [3, 44]. However, similar to most
zero-shot learning methods [17, 41], they are actually based on the
assumption that the (unseen) categories of the test set are known,
which still can not satisfy the requirement in real-world applica-
tions. Our proposed model is among the first to handle test queried
from unknown category for robust cross-model retrieval in real-
world applications. It take the advantage of prototypes to provide
inference clus that differentiating test queries of unknown category,
thus it is robust to open world queries.

2.3 Imbalanced Cross-modal Retrieval
Most existing cross-modal retrieval methods focus on dealing with
the balanced multi-modal data, that is, for a sample in one modality,
there is a corresponding sample in the other modality with the
same label. However, the assumption of modality-balanced data
cannot always be satisfied in real-world applications. In reality,
the available data for training cross-modal retrieval system are
all considerably modality-imbalanced. A straight forward strat-
egy to tackle the modality-imbalanced problem is removing the
samples only with incomplete modalities, yet the model trained
will clearly lose information and introduce extra noises [46]. Sev-
eral cross-modal hashing methods have been proposed to process
modality-imbalanced data, whichmainly utilize the semantic consis-
tency to reconstruct equivalent numbers of samples for each modal-
ity [10, 40]. Wu et al. [40] employs adversarial training scheme
to learn a couple of hash functions enabling translation between
modalities, and regenerate the missing modality sample from the
available modality one. Guo et al. [10] propose a collective affinity

learning method and derive a probabilistic model to collectively
reconstruct the affinities of the missing modality sample via the
available modality one. However, hashing based methods address
the modality-imbalanced problem on the Hamming space, which
focus on retrieval efficiency rather than accuracy. More recently,
Jing et al. [14] investigates the modality-imbalanced problem in the
framework of deep generative models in the real-valued space. They
propose to reconstruct incomplete multi-modal samples by dual-
aligned variational autoencoders. Unfortunately, these methods fail
to consider the modality heterogeneity in the reconstruction pro-
cess, and thus cannot supply informative sample pairs to overcome
the modality heterogeneity gap. Our method propose a prototype
propagation strategy to fuse semantically consistent prototype and
the nearest neighbors of the another modality for heterogeneity,
thus it is more robust to modality-imbalanced data.

Next, we shall first give the problem formulation of cross-modal
retrieval, and then elaborate on our proposed prototype-based adap-
tive network for robust cross-modal retrieval in detail.

3 PROBLEM FORMULATION
Without losing generality, we focus on cross-modal retrieval for
image and text. For conventional cross-modal retrieval, the datasets
are collections of n instances of image-text pairs, denoted as ΨP =
{(xvk , x

t
k )}

n
k=1, where x

v
k is the input image sample and xtk is the

input text sample. Each pair (xvk , x
t
k ) is assigned a semantic label

yk ∈ {1, 2, ...,C}, where C is the number of semantic categories.
Considering the modality-imbalanced training data, we assume that
there is a collection of n1 instances of image samples ΨV = {xvi }

n1
i=1,

which can be devided into {Ψ1
V ,Ψ

2
V , ...,Ψ

C
V }, where Ψr

V represents
the subset of images belonging to the r -th category, and nr1 denotes
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the length of Ψr
V . Similarly, the text collection of n2 instances ΨT

= {xtj }
n2
j=1, which can be devided into {Ψ1

T ,Ψ
2
T , ...,Ψ

C
T }, where Ψr

T
represents the subset of text belonging to the r -th category, and nr2
denotes the length of Ψr

T .
The imbalance of image modality and text modality on the

r -th category can be defined as nr1 , nr2 . Without losing gen-
erality, we assume nr1 > nr2 , thus we can define an excess set
Ωr = {vr1 ,v

r
2 , ...,v

r
δ r }, where δ

r = nr1 − nr2 . As the samples be-
longing to the same category are related to each other, the excess
set Ωr is randomly selected from Ψr

V . The straight forward strategy
to avoid the modality-imbalanced problem is to discard the excess
set, but it will further lose information and introduce extra noise.
Therefore, our goal is to reconstruct a text set of the same size from
the excess set, denoted as Ψ̃r

T .

4 PROPOSED METHOD
Figure 1 illustrates the overall architecture of our proposed model
PAN. First, we learn some modality-specific transformation func-
tions to project original image and text features into a common
representation space. Then, we leverage a unified prototype for
each category as anchor to jointly calculate the invariance loss and
discrimination loss, so that the modality invariance and semantic
discrimination can be preserved in the common space. Finally, we
present a prototype propagation strategy to reconstruct modality-
balanced data with the semantic consistency and modality hetero-
geneity when the input training data are modality-imbalanced. In
the testing phase, we utilize the learned prototypes of known cate-
gories to provide inference clues for differentiating test queries of
unknown category.

4.1 Prototype-based Representation Learning
Since features of different modalities usually have heterogeneous
representations, the semantic similarity of items across different
modalities cannot be directly computed. Therefore, we utilize two
sub-networks to learn modality-specific transformation functions
to project image and text features into a common representation
space, which can be formulated as:

vi = fV (CNN (xvi );θV ), xvi ∈ ΨV (1)

tj = fT (GRU (xtj );θT ), xtj ∈ ΨT (2)

where fV (·) and fT (·) are modality-specific transformation func-
tions for image and text, θV and θT are the trainable parameters of
the two functions, vi ∈ Rd and tj ∈ Rd are the projected features
in the common representation space, and d is the feature dimension
of the common representations.

To effectively perform cross-modal retrieval, we further preserve
the modality invariance and semantic discrimination so that the
items belonging to the same category across different modalities
are closest in the common representation space. Thus, we propose
a novel prototype-based representation learning method to jointly
learn modality-invariant and semantic-discriminative representa-
tions. Since items from different modalities share the same semantic
content [35, 39], the unified prototypes for both image and text
modality can be denoted as:

M = {mc |c = 1, 2, ...,C} (3)

where c denotes the index of the categories. Note that we randomly
generate a set of prototypes in the initialization phase, and then
jointly learn prototypes and common representations during the
training phase.

Inspired by [45], given the feature representationvi (or tj ) in the
common space, we classify it to the category whose prototype is
closest tovi in all prototypes. Specifically, we calculate the distance
between vi andmc to measure the probability of vi belonging to
the prototypemc , which can be formulated as:

p(vi ∈mc ) ∝ −d(vi ,mc ) (4)

where d(·) denotes the Euclidean distance function. To satisfy the
non-negative and sum-to-one properties of the probability, we fur-
ther define the probability p(vi ∈mc ) as:

p(vi ∈mc ) =
e−γd (vi ,mc )∑C
k=1 e

−γd (vi ,mk )
(5)

where γ is a hyper-parameter to control the hardness of probability
assignment. To preserve the semantic discrimination in the common
representation space, we define the distance based cross entropy
(CE) loss as:

l(vi ,M) =

C∑
c=1

1{yi = c}loд(p(vi ∈mc )) (6)

Similarly, the distance based cross-entropy loss for text item can
be formulated as:

l(tj ,M) =

C∑
c=1

1{yj = c}loд(p(tj ∈mc )) (7)

To preserve the modality invariance, we utilize a prototype-
based invariant loss to bridge cross-modal similarity relationships,
by pulling the image and text representations closer to their corre-
sponding prototypes, which is formulated as:

pl(vi ,M) = ∥vi −mi
y ∥

2
2

pl(tj ,M) = ∥tj −m
j
y ∥

2
2

(8)

wheremi
y andmj

y are the corresponding prototypes of yi and yj .
Prototype-based invariance loss is suitable for cross-modal retrieval,
because: (1) themodality invariance can be preserved by collectively
approaching to the corresponding prototype, which can effectively
reduce storage space and computation compared pairwise con-
straints commonly utilized of previous work [34, 38, 48]; (2) the
invariant loss can further improve the intra-class compactness and
inter-class separability, which is beneficial for learning semantically
discriminative representations.

4.2 Prototype Propagation for Imbalanced Data
Alignment

We define the modality-imbalanced problem by introducing an
excess set Ωr = {vr1 ,v

r
2 , ...,v

r
δ r }, here we assume nr1 > nr2 . A

straight forward strategy to avoid the imbalanced problem is to
discard the excess set Ωr , but it will further lose information and
introduce extra noise. Hence our goal is to reconstruct a text set
Ψ̃r
T = {t̃r1 , t̃

r
2 , ...t̃

r
δ r } of the same size from Ωr , which can preserve

the semantic consistency and modality heterogeneity for imbal-
anced cross-modal retrieval.
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To preserve themodality heterogeneity between the reconstructed
representation t̃ri and vri , we first design Nk (v

r
i ) as the list of k-

nearest neighbors in the text modality, by usingvri as query to rank
their distance.

Nk (v
r
i ) = [t1, t2, ..., tk ] (9)

where k is a hyper-parameter. It is worth noting that when k = 0, it
is equivalent to not performing imbalanced data alignment. We will
analyze the effect of k in detail in Section 5.5. Since the prototypes
are jointly trained with the discrimination loss and invariant loss,
the learned prototypes imply the semantic consistence of samples
belonging to the same category between different modalities. There-
fore, the reconstructed text representation t̃ri can calculated by the
corresponding prototypemr and Nk (v

r
i ):

t̃ri = ψ (mr ,Nk (v
r
i )) (10)

Here ψ denotes the modified gated recurrent unit [31] to propa-
gate the prototype information to the nearest text representations
dynamically:

oz = tanh(Wo [hz−1, tz ] + bo )

дz = σ (Wд[hz−1, tz ] + bд)

hz = дz ∗ hz−1 + (1 − дz ) ∗ oz
(11)

where z = 1, 2, ...,k , hz denotes the hidden state, h0 =mr denotes
the corresponding prototype, hk = t̃ri represents the reconstructed
text representation, σ denotes the sigmoid function,Wo ,Wд , bo , bд
are to-be-learned parameters. oz is a fused feature which enhances
the interaction between hz−1 and tz , and дz performs as a gate to
select the most shared information between hz−1 and tz .

Note that this gatingmechanism is timing sensitive, whichmeans
that more similar neighbors in the representation space can play a
more important role. This is consistent with our intuition, because
the closer neighbors should play a greater role. Although the above
method could reconstruct the imbalanced data that capture the
semantic consistency and modality heterogeneity, there still remain
two obvious drawbacks:

• It is well-known that the calculated k-nearest neighbors in
the representation space usually deviate from optimal cases,
i.e., the k-nearest neighbors may include false items from
another category [7, 49]. These false items contain confusing
distribution information and propagate errors during the
reconstruction process.

• The reconstructed information only retains the similarity
relationship from image to text in one direction, while ig-
noring the similarity relationship from text to image. In fact,
there are two opposite directions in image-text similarity
calculation due to the modality heterogeneity gap, which
have totally different distribution characteristics [24].

To overcome these drawbacks, inspired by [49], we define the
k-reciprocal nearest neighbors ofvri from the text modality to make
the reconstructed representation fully retain the similar relationship
between different modalities:

Rk (v
r
i ) = [ti |(ti ∈ Nk (v

r
i )) ∧ (vri ∈ Nk (ti ))] (12)

where Nk (ti ) is the k-nearest neighbors in the image modality
by using ti as query to rank their distance, and ∧ is the logical
operator ’conjunction’. We can see that an image and a text are

called k-reciprocal nearest neighbors, they are both ranked top-k
when one of them is taken as the query.

Considering the similarity relationship between items belonging
to the same category, we can rewrite this definition as:

Rk (v
r
i ) = [ti |(ti ∈ Nk (v

r
i )) ∧ (Λ(ti ) ≥

2
3
k)] (13)

where Λ(ti ) denotes the number of items in Nk (ti ) that belonging
to the same category with vri . Obviously, the k-reciprocal nearest
neighbors are more related tovri than k-nearest neighbors, through
stricter similarity constraints including image to text direction and
text to image direction. Therefore, the reconstructed representation
t̃ri can be obtained as follows:

t̃ri = ψ (mr ,Rk (v
r
i )) (14)

4.3 Training Objective
Our training objective is to preserve the semantic discrimination
and modality invariance in the common representation space for
cross-modal retrieval. Based on Equations (6) and (7), the discrimi-
nation loss can be defined as:

Ldl = l(v,M) + l(t,M)

s .t . v ∈ (ΨV ∪ Ψ̃V ), t ∈ (ΨT ∪ Ψ̃T )
(15)

where Ψ̃V and Ψ̃T denote the reconstructed representations for
imbalanced data. Based on Equations (8), the invariance loss can be
defined as:

Lil = pl(v,M) + pl(t,M)

s .t . v ∈ (ΨV ∪ Ψ̃V ), t ∈ (ΨT ∪ Ψ̃T )
(16)

The final objective function can be defined as:

L = Ldl + λLil (17)

where λ is a hyper-parameter to control the contribution of different
components. We will discuss the effect of λ in Section 5.5.

4.4 Inference
In the testing phase, the learned prototypes for known categories
can provide inference clues to differentiate unknown category. We
implement such inference by setting a threshold ϵv for imagemodal-
ity and ϵt for text modality. Given a query instanceq from the image
modality (or text modality), we project it into the common repre-
sentation space and find the best matching prototype by comparing
their similarities. Here we use Euclidean distance for similarity
calculation. If the similarity sq between the query and the best
matching prototype is smaller than ϵv , the query will be identified
as an outlier from unknown category. Obviously, there is a tradeoff
in choosing ϵv . The detailed analysis of ϵv and ϵt can be seen in
Section 5.4.

Supported by the outlier analysis, we use the mean of the outliers
as the new prototype of the unknown category (denoted asmu ), and
then pull each outlier to the new prototype, just like the training
process. The inferred representation of the query can be calculated
as:

qinf =

{
α f (q) + (1 − α)mu , if sq < ϵv
f (q), otherwise (18)
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Table 1: Performance comparison in terms of mAP on three widely-used benchmark datasets for conventional cross-modal
retrieval.

Method
Pascal-Sentence NUS-WIDE-10K XMediaNet

Image→Text Text→Image Average Image→Text Text→Image Average Image→Text Text→Image Average
CCA [12] 0.203 0.208 0.206 0.167 0.181 0.174 0.212 0.217 0.215
KCCA [11] 0.488 0.446 0.467 0.351 0.356 0.354 0.252 0.27 0.261
JRL [47] 0.563 0.505 0.534 0.466 0.499 0.483 0.488 0.405 0.447

Corr-AE [6] 0.532 0.521 0.527 0.441 0.494 0.468 0.469 0.507 0.488
CMDN [25] 0.544 0.526 0.535 0.492 0.542 0.517 0.485 0.516 0.501
MCSM [27] 0.598 0.598 0.598 0.522 0.546 0.534 0.540 0.550 0.545
ACMR [34] 0.538 0.544 0.541 0.519 0.542 0.531 0.536 0.519 0.528

CM-GANS [26] 0.603 0.604 0.604 0.536 0.551 0.543 0.567 0.551 0.559
DSCMR [48] 0.668 0.673 0.670 0.555 0.585 0.570 0.641 0.654 0.647
MS2GAN [38] 0.677 0.670 0.673 0.568 0.574 0.572 0.647 0.656 0.651

PAN 0.686 0.689 0.688 0.590 0.571 0.581 0.669 0.660 0.665

where α is a weight to balance the original representation and the
prototype representation, and f is the learned modality-specific
transformation function fV (·) or fT (·). When the outlier is closer
to the prototype of the known categories, a greater penalty should
be placed to pull it towards the unknown prototype. Therefore, we
define α as:

α =
e−sq∑

p∈ΨO e−sp
(19)

where ΨO denotes the set of outliers from both image and text
modality. We use qinf as the final representation to perform cross-
modal retrieval.

5 EXPERIMENTS
In the experiments, we first compare our proposed model PAN with
ten baseline methods for conventional cross-modal retrieval. We
then conduct experiment on robust cross-modal retrieval and test
the model performances for handling modality-imbalanced data
and queries from unknown category. Finally, we conduct a detailed
parameter analysis on the hyper-parameters of PAN.

5.1 Experimental Setup
5.1.1 Datasets. To verify the effectiveness of our proposed method,
we conduct experiments on four widely-used benchmark datasets,
namely Wikipedia [30], Pascal-Sentence, [29], NUS-WIDE-10K [4]
and XMediaNet [27]. The statistics of the four datasets are summa-
rized in Table 2.

5.1.2 Evaluation Metrics. The evaluation results of all the experi-
ments are presented in terms of the mean average precision (mAP),
which is a standard performance evaluation criterion in cross-modal
retrieval research [13, 34, 48]. Specifically, we compute the mAP
scores on the ranked lists of the retrieved results for two different
cross-modal retrieval tasks: retrieving text samples using image
queries (Image→Text) and retrieving image samples using text
queries (Text→Image). The cosine distance is adopted to measure
the similarity of features. To calculate mAP, we first evaluate the

Table 2: General statistics of the four datasets used in our ex-
periments, where ’/’ in the second column denotes the num-
ber of train/valid/test set, dv and dt are the dimensions of
image and text features obtained by VGGNet and Bi-GRU,
respectively.

Dataset Instances Labels dv dt

Wikipedia 2173/231/462 10 4096 300
Pascal-Sentence 800/100/100 20 4096 300
NUS-WIDE-10K 8000/1000/1000 10 4096 300
XMediaNet 32000/4000/4000 200 4096 300

average precision (AP) of a set of R retrieved items by:

AP =
1
T

R∑
r=1

Pr × δ (r ) (20)

where T is the number of relevant items in the retrieved set, P(r )
represents the precision of the top r retrieved items, and δ (r ) is
an indicator function, whose value is 1 if the r -th retrieved item is
relevant. The mAP can be calculated by averaging the AP values
over all queries.

5.1.3 Implementation Details. For image, we utilize pretrained
VGG-19 [32] to extract a 4096-dimensional feature vector from
the fc7 layer as the original image feature. For text, we embed each
token into 300-dimensional word embedding by GloVe [28] pre-
trained on the CommonCrawl dataset, and then use a single-layer
bidirectional GRU [5] with 512-dimensional hidden states to get the
original text feature. To learn a common representation space for
image and text modalities, we employ two fully-connected layers
with the Rectified Linear Unit (ReLU) [22] active function for each
modality. The numbers of the hidden units for the two layers are
2048 and 1024, respectively. The initial prototypes are randomly
initialized with the dimension of 1024, and then jointly trained with
the common representations. The entire network is optimized by
Adam update rule [15] with learning rate 10−4 and mini-batch 200.
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Table 3: Average mAP scores (mean ± standard deviation) with imbalanced training data on two benchmark datasets.

percentage
Wikipedia Pascal-Sentence

MS2GAN DAVAE PANknn PANkrp MS2GAN DAVAE PANknn PANkrp

30%M, 70%I, 0%T 0.425±0.021 0.453±0.016 0.470±0.009 0.477±0.006 0.466±0.025 0.583±0.022 0.655±0.017 0.671±0.014
30%M, 35%I, 35%T 0.439±0.015 0.455±0.009 0.473±0.011 0.481±0.004 0.521±0.017 0.613±0.019 0.647±0.014 0.673±0.015
30%M, 0%I, 70%T 0.417±0.019 0.448±0.018 0.462±0.010 0.473±0.007 0.495±0.024 0.606±0.021 0.642±0.012 0.660±0.013
50%M, 50%I, 0%T 0.452±0.013 0.462±0.011 0.475±0.007 0.480±0.005 0.522±0.016 0.629±0.017 0.659±0.015 0.672±0.013
50%M, 25%I, 25%T 0.461±0.009 0.473±0.010 0.480±0.005 0.491±0.003 0.576±0.020 0.644±0.015 0.661±0.013 0.683±0.009
50%M, 0%T, 50%T 0.433±0.016 0.465±0.021 0.471±0.006 0.475±0.004 0.548±0.019 0.618±0.014 0.652±0.008 0.667±0.016

full data 0.482±0.003 0.485±0.006 0.489±0.002 0.489±0.002 0.664±0.007 0.673±0.010 0.688±0.005 0.688±0.005

Table 4: AveragemAP (mean ± standard deviation) scores by
directly removing the excessive data on Wikipedia dataset.

percentage DAVAE PAN
30%M 0.442± 0.018 0.451± 0.013
50%M 0.455± 0.012 0.461± 0.007
full data 0.485± 0.006 0.489± 0.002

Table 5: Average mAP (mean ± standard deviation) scores
by directly removing the excessive data on Pascal-Sentence
dataset.

percentage DAEVE PAN
30%M 0.562± 0.017 0.589± 0.009
50%M 0.587± 0.011 0.621± 0.008
full data 0.673± 0.010 0.688± 0.005

5.2 Experiments on Conventional Cross-modal
Retrieval

5.2.1 Comparison with Representative Methods. To verify the ef-
fectiveness of our proposed method for conventional cross-modal
retrieval, we conduct experiments on three widely-used benchmark
datasets. We compare PAN with ten representative baseline meth-
ods, including three shallow learning methods, namely CCA [12],
KCCA [11] and JRL [47], and seven deep learning methods, namely
Corr-AE [6], CMDN [25], MCSM [27], ACMR [34], CM-GANs [26],
DSCMR [48] and MS2GAN [38]. Table 1 reports the mAP scores of
our PAN model and the comparative methods.

From the results, we can see that deep learning methods per-
forms obviously better than shallow learning methods, showing the
powerful ability of deep neural networks to learn non-linear cross-
modal correlations. On the basis of deep neural networks, some
methods introduce adversarial learning to generate cross-modal
indistinguishable representations, and have achieved the SOTA re-
sults currently (i.e., MS2GAN). Compared with these methods, PAN
adaptively learns the unified prototypes to explore the cross-modal
semantic associations of multi-modal data, achieving the best re-
sults on all of the three datasets. Specifically, our PAN outperforms

the previous best model, i.e., MS2GAN [38],with improvements 2.4%,
0.9% and 1.4% in terms of average mAP scores on Pascal-Sentence,
NUS-WIDE-10K and XMediaNet datasets, respectively.

5.3 Experiments on Imbalanced Training Data
In this section, we conduct the robustness experiment to test the
performance of PAN in handling modality-imbalanced training data.
We first introduce a dataset split scheme to construct modality-
imbalanced training data. Then, we compare our proposed PAN
with several baselines.

5.3.1 Dataset Split Scheme. To perform cross-modal retrieval with
modality-imbalanced training data, we first introduce a dataset
split scheme of the training set. Specifically, we randomly select
a certain proportion of the paired multi-modal features from the
training set, and then select single-modal features in the remaining
set. For example, there are 50% training samples with both image
features and text features, 25% samples with only image features
and the rest of 25% samples with only text features, we denote this
setting by (50%M,25%I,25%T). .

5.3.2 Comparison with Baselines. Since most existing methods can
be directly trained on imbalanced data, we first select the existing
SOTA cross-modal retrieval method (i.e., MS2GAN [38] ) as a base-
line method to evaluate the impact of imbalanced data. Then, we
compare the proposed PAN with DAVAE [14], which utilizes a vari-
ational autoencoder to reconstruct balanced representations with
semantic consistency to tackle the imbalanced problem. Note that
k = 0 is equivalent to not performing imbalanced data alignment,
and the effect of k will be analyzed in Figure 3. We repeat each
experiment five times, and report the results in Table 3.

From the results, we can see that the existing SOTA method has
a significant performance decline in the face of imbalanced data.
Moreover, when the proportion of imbalanced data increases, the
performance decreasesmore obviously.We can also see that DAEVE
and PAN achieve significant performance improvements by recon-
structing balanced representations. Compared with DAEVE, the
superiority of our PAN demonstrates the importance of preserving
modality heterogeneity during the reconstruction process. In par-
ticular, compare the two variants of PAN, i.e., PANknn and PANkrn ,
we can find that the result of using k-reciprocal neighbors for imbal-
anced data alignment is always better than k-nearest neighbors by
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Table 6: Performance comparison on test queries from both known (Wikipedia) and unknown categories (XmediaNet).

new class
MS2GAN PAN

Image→Text Text→Image Average Image→Text Text→Image Average
class1 0.449 0.431 0.440 0.507 0.467 0.487
class2 0.452 0.419 0.435 0.516 0.482 0.499
class3 0.455 0.424 0.439 0.508 0.469 0.488
class4 0.442 0.429 0.436 0.502 0.460 0.481
class5 0.457 0.433 0.445 0.515 0.480 0.497

without new class 0.502 0.462 0.482 0.510 0.468 0.489

Table 7: Performance comparison on test queries from both known (NUS-WIDE) and unknown categories (XmediaNet).

new class
MS2GAN PAN

Image→Text Text→Image Average Image→Text Text→Image Average
class1 0.511 0.530 0.520 0.596 0.574 0.585
class2 0.501 0.527 0.514 0.603 0.582 0.592
class3 0.509 0.526 0.517 0.588 0.571 0.580
class4 0.506 0.525 0.515 0.591 0.574 0.582
class5 0.507 0.531 0.519 0.593 0.576 0.584

without new class 0.568 0.574 0.572 0.590 0.571 0.581

Table 8: The tradeoff between acceptance rate AR (%) and
rejection rate RR(%) for image modality and text modality
with different method. Different rows represent different
thresholds.

Image Modality Text Modality

ϵv

MS2GAN PAN
ϵt

MS2GAN PAN
AR RR AR RR AR RR AR RR

0.10 100.0 7.5 100.0 100.0 0.10 100.0 0.0 100.0 4.3
0.15 99.7 23.4 98.2 100.0 0.15 93.0 1.8 97.3 17.9
0.20 99.6 39.0 94.3 100.0 0.20 79.5 5.3 94.6 24.8
0.25 99.2 64.7 84.8 100.0 0.25 70.0 13.2 81.3 76.8
0.30 98.7 73.6 74.5 100.0 0.30 69.3 14.0 70.6 79.1
0.35 98.3 84.0 53.4 100.0 0.35 64.7 21.0 66.7 83.2
0.40 97.1 94.3 32.6 100.0 0.40 42.8 26.4 48.2 88.4
0.45 92.5 97.4 11.5 100.0 0.45 11.9 32.7 37.9 89.7
0.50 87.3 100.0 0.4 100.0 0.50 0.0 75.0 13.8 100.0

imposing stricter constraints on the nearest neighbor. Furthermore,
PAN not only achieves much higher mAP scores but also shows
more stable results with smaller variances. This again demonstrates
the robustness of PAN in dealing with hybrid-modality training
data.

In addition, we further compared the performance of PAN and
DAEVE without the usage of excessive data. We report the average
mAP scores in Table 4 and Table 5. By comparing Table 3 with Table
4 and Table 5, we can see that the performance of PAN and DAEVE
without the usage of excessive data drop significantly in all the
evaluations. This shows that exploring imbalanced training data is

of great importance to improve the performance in the situation
that the imbalanced data is more easier to collect.

5.4 Experiments on Test Queries from
Unknown Category

We further conduct experiment to test the robustness of PAN in
handling test queries from unknown category. Assume we have
trained a cross-modal retrieval system on dataset A, then we use
two test sets (test sets of both dataset A and dataset B) to evaluate
this retrieval system. The category of test samples in dataset B is
not in the category of dataset A and thus can be viewed as unknown
category. To prove the robustness of PAN, we design experiments
from two perspectives. First, we carry out outlier analysis experi-
ment to evaluate whether the model can recognize the test queries
from unknown category. Then, we conduct class-incremental ex-
periment to test the retrieval performance under the situation of
partial test data coming from unknown category.

5.4.1 Outlier Analysis. The test samples of dataset B are from un-
known category, they should be viewed as outliers and then be
rejected by this network. The rejected samples should be inferred
to obtain amore reasonable representation for cross-modal retrieval.
Meanwhile, the test samples of dataset A should be accepted since
they are from the same categories as the training data. We use
two measurements, acceptance rate (AR) and rejection rate (RR),
to evaluate the performance. AR denotes the percentage of the ac-
cepted samples in dataset A, which means how many test samples
of dataset A have been accepted. RR denotes the percentage of the
rejected samples in dataset B, which means how many test samples
of dataset B have been rejected. We adopt the most frequently used
threshold-based rejection strategy [45], i.e., if the minimum distance
from a sample to all the prototypes is larger than the pre-defined
threshold (ϵv for image modality and ϵt for text modality), it will
be accepted, otherwise it will be rejected. Actually, the rejection
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Figure 2: Parameter analysis of λ on conventation cross-
modal retrieval

and acceptance performances are closely coupled, we can only get
a tradeoff between them. For comparison, we also test the outlier
analysis performance of MS2GAN, in which the rejection strategies
are based on the probabilities produced by the softmax layer. We
conduct experiment on NUS-WIDE-10K (dataset A) and XmediaNet
(dataset B), and the results are shown in Table 8. Note these results
are obtained using different thresholds to give the AR-RR tradeoffs
for both image and text modalities.

From the results, we can see that the outlier analysis on the
image modality is obviously better than that of the text modality,
as the images from known categories have a greater probability of
being accepted, while those from unknown category images have
a greater probability of being rejected. We can also see that the
softmax-based MS2GAN is confused by the XMediaNet test sam-
ples, high AR and high RR can not coexist. This indicates that the
softmax-based model is not robust in outlier detection. Contrastly,
our PAN model can achieve better rejection performance and si-
multaneously keep satisfactory acceptance rate. For example, while
100% image samples and 83.2% text samples from the XMediaNet
dataset being rejected, we can still keep 100% image samples and
66.7% text samples from the NUS-WIDE-10K dataset being accepted.
This is a significant advantage compared with softmax-based ap-
proach, showing the robustness of our proposed network.

5.4.2 Class-incremental Cross-modal Retrieval. We conduct exper-
iment on Wikipedia, NUS-WIDE-10K and XMediaNet dataset to
demonstrate the superiority of PAN for class-incremental learning.
We treat test samples from Wikipedia, NUS-WIDE-10K dataset as
the known categories data, and choose one category from XMedi-
aNet as the unknown category. We train PAN on the Wikipedia
and NUS-WIDE-10K separately, then we feed the test data from
both known and unknown categories (which should be learned
incrementally) to the trained PAN and obtain their representations
in the common space. Based on the outlier analysis experiment, we
use the inferred representation based on Equation (18) as the final
representation for outliers.

Table 6 and Table 7 show the class-incremental retrieval results
compared with softmax-based MS2GAN . From the results, we
can see that PAN still keeps high performance when extended
to the unknown category, while MS2GAN encounters significant
performance decline. In this class-incremental learning process, we
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Figure 3: Parameter analysis of k on cross-modal retrieval
with hybrid-modality training data.

did not re-train any part of the network. This further demonstrates
the robustness of PAN to test queries from unknown category.

5.5 Parameter Analysis
The parameters are analyzed in this section. We evaluate the influ-
ence of λ on conventional cross-modal retrieval, and evaluate k on
imbalanced cross-modal retrieval. Figure 2 shows the impact of λ
on Pascal-Sentence and NUS-WIDE-10K dataset. It can be seen that
the mAP first increase with the growth of λ, and then begins a slow
decline after λ surpasses a threshold. The best parameter setting of λ
are 10 and 1 on the two datasets. The impacts of the size of k-nearest
neighbors and k-reciprocal neighbors are shown in Figure 3. When
k is equal to 0, the imbalanced data alignment is not considered, the
model has the worst results on all datasets. This confirms that im-
balanced training data does impair the performance of cross-modal
retrieval. It turns out that if we impose stricter constraints on the
nearest neighbor, using k-reciprocal neighbors for imbalanced data
alignment is always better than k-nearest neighbors. The results
also show that if the value of k is set too large, it will increase the
probability of false neighbors belonging to different categories and
cause the performance degradation.

6 CONCLUSION
In this paper, we propose a prototype-based adaptive network (PAN)
to handle modality-imbalanced training data and test queries from
unknown category. We develop a prototype-based representation
learning method to jointly learn the common representations across
different modalities and the unified prototypes for each category by
designing invariance loss and discrimination loss with prototypes as
anchors. Furthermore, we propose a prototype propagation strategy
to reconstruct imbalancedmulti-modal samples, which can preserve
the semantic consistency and modality heterogeneity. Experimental
results demonstrate the effectiveness of our proposed method in
conventional cross-modal retrieval, and further robustness tests
show the superiority of our method.
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