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Abstract— Magnetic particle imaging (MPI) is a medical
imaging technology with high resolution and high sensitivity,
which tracks the distribution of superparamagnetic iron oxide
nanoparticles (SPIONs) in the nonlinear response to dynamic
excitation at a field-free region. However, various noises distort
the signals resulting in a decline in imaging quality. Traditional
threshold-based methods cannot remove dynamic noise in
MPI signals. Therefore, a self-supervised denoising method is
proposed to denoise MPI signals in this study. The approach
adopted U-net as the backbone and modified the network
for MPI signals. The network is trained using two periods
of noisy signals and the shape prior knowledge of the MPI
signals is introduced for promoting the convergence of the self-
supervised net. The experiments show that the learning-based
method can still denoising the MPI signal without labeling
data and eventually improve image quality, and our approach
can achieve the best performance compared with other self-
supervised methods in MPI signal denoising.

I. INTRODUCTION

Magnetic particle imaging (MPI) is a tracer-based imaging
method. By receiving the nonlinear magnetization response
signal of magnetic nanoparticles (MNPs) in the dynamic
magnetic field, the spatial distribution of MNPs is determined
[1], [2]. The principle promises MPI the potential of achiev-
ing high spatiotemporal resolution and no radioactive. The
method has already shown its performance for various med-
ical applications such as cancer detection [3], cell tracking
[4], and plaque detection [5].

In the process of MPI signal generation, there is a field-
free region (FFR) in a static gradient magnetic field. Then
FFR moves in the field-of-view (FOV) by applying a time-
varying excitation field. The nonlinear magnetization re-
sponse of MNPs in the FFR generates a high-frequency
harmonic signal. The voltage signal is received by the receive
coil. In this process, various factors raise the detection limit
[6]. There is noise in the receive chains following a Gaussian
statistic. Besides, non-linear electronic components in the
scanner system generate harmonic interference which is often
superimposed into the particle signal. Conventionally, MPI
signal noise is reduced by background subtraction [7]. The
particle signal is obtained by measuring the noise with
an empty scanner and subtracting the noise from particle
measurements. This method cannot handle dynamic changes
in the background signal from a measurement.
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Recently, with the development of deep learning, learning-
based methods have shown superior performance than tradi-
tional methods and it is also gradually applied in the field
of MPI [8], [9], [10]. Relevant methods for improving MPI
resolution require massive noisy-clean data pairs. However,
there is no large-scale open MPI signal dataset and it is
difficult to obtain a large amount of high-quality MPI signal
data. The size of the dataset is usually extended through
data enhancement methods such as data rotation, clipping,
and partial data exchange. Due to the similar features be-
tween MPI signals, the data enhancement is not significantly
improved.

In this study, we introduce a self-supervised MPI signal
denoising model to extract features from the noisy signal di-
rectly and alleviate dependence on clean data while reducing
MPI signal noise. Experiments show that our self-supervised
method outperforms other self-supervised methods for MPI
signal denoising.

II. METHODS
A. MPI signal datasets

For MPI system simulation, the MNPs distribution is ob-
tained by upsampling the image in the MNIST dataset. When
static gradient magnetic field G and two-way excitation field

f» and f, are applied [11], the MNPs response signal 5(t)
was generated as [12]:
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where B is the sensitivity of receive coil, m = % is

the magnetic moment of a spherical, single domain magnetic
nanoparticle, d and M, are the diameter and the saturated
magnetic moment of MNPs, respectively. p(-) is the MNPs
density, xs(t) and z4(t) are the position and the velocity of
field free point at time ¢, h(+) is the point spread function. the
magnetic saturation field Hy,y = kg:‘fl is given by Boltzmann
constant kp, vacuum permeability 1, and temperature 7.
s’ is the two-dimensional convolutional operation.

Two kinds of noises were added to distort the signals §(t),
including Gaussian noise and harmonic interference. The
intensity of added Gaussian noise is following the signal-
to-noise (SNR):

SNR = 20log,, 5() 2)
o

where o is the standard deviation of added Gaussian noise.
In the simulation, harmonic interference is added following
the signal-interference-ratio (SIR) [6]:

Sn(f)

SIR = 20log
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where S,,(f) is the n*" harmonic band. ¥ means the uniform
distribution that similar to the o in SNR.

B. Self-supervised learning denoiser

Training a self-supervised neural network regressor using
a set of input-target pairs (s;, s;) is to find § which has the
smallest average deviation from the measurements.

argeminEsi,streg(f@(si)aSj) (4)

Based on the principle, the overview of the designed self-
supervised denoising framework for MPI signal denoising
is shown in Fig. 1. Two periodical noisy signals s were
collected, one cycle s; is for training, and the other s
is used as the corresponding target. s; and ss have the
same MPI response signal amplitude and the noises with the
same distribution but different values. When s; is processed
by the self-supervised denoising network fy(-), a predicted
signal fy(s1) is generated. Mean absolute error is used which
calculates the pointwise distance between the output and the
label defined as followed.

Lyeg = Li(fo(s1),52) = ||s1 — s2||1 )

If fo(s1) is clean, the L,., converges to the minimum.
But the denoising task is solved as an inverse problem and
the ill-position results in a non-unique solution. Therefore,
the prior knowledge of the MPI response signal is introduced
to narrow the range of the solution. The MPI response signal
of each cycle presents symmetrical distribution.
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Accordingly, gradient difference (GD) loss is designed which
calculates the gradient of the first half cycle and the second
half cycle of the signal, respectively, and uses their difference
as part of the loss.

Lep= Y. s, —sr (7)
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Besides, since the noise is randomly distributed, the Lgp
is prone to oscillate, and the total variation (TV) loss [13] is
used to smooth the edge set.

Lrv = Y |sir1 — sl ®)

tE[OvT)
Therefore, the total loss function is designed as followed:
L= Lreg + aLGD + BLTV (9)

where the hype parameters «,  are used to control the
strength of the regularization term in the training scheme.
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Fig. 1. Overview of our proposed self-supervised framework. Acquiring
MPI signal s which includes two periods, one for training named w1 and
another used as a label called sa. Then the denoising network fp(-) takes
s1 as input and produce the denoised result fo(s1). The revised 10ss Lyey
maintains the symmetrical characteristic of the MPI signal.

C. Denoising network architecture

U-Net was adopted as the backbone and the structure has
been modified as shown in Fig. 2. In the Encoder part, given
an input s(t) with the size 1 x Ny, the first three layers map
the signal to an C' x N feature map, which is then processed
by the following four encoder’s blocks (EcBs). Each of
the EcBs sequentially connects a down-sampling layer, a
dropout layer, a parametric rectified linear unit (PReLU), and
3 ResBlocks [14]. Each ResBlock can be described by the
following equation

F(X) =W, (PReLUW; * X))+ X  (10)

where X is the input feature, *+’ means the convolutional
operation and the function of PReLU is

f(x) (1)

Besides, dropout layers are added before the PReLU layers.
In the dropout layer, each weight value is set to zero with
a probability p. Down-sampling operation is realized using
1 x 1 convolutional (Conv) layer with a stride of 3.

The decoder contains four decoder’s blocks (DcBs) and an
upsampling layer. Each of the DcBs sequentially connects an
upsampling layer with a scaling factor of 3, two Conv, and
a PReLU. The Concatenation operation in a DcB stacks the
feature map from the ResBlock in the corresponding EcB
and the one output of the up-sampling layer.

= maz(0, ) + Amin(0, )

III. EXPERIMENTS & RESULTS
A. Implementation details

For MPI system simulation, cartesian scanning is adopted,
and the specific setting parameters of the simulation are
shown in Table I.
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Fig. 2. Architecture of designed denoising network model.

TABLE I
PARAMETERS FOR THE MPI PARTICLE SIGNAL SIMULATION

TABLE I
QUANTITATIVE COMPARISON OF DIFFERENT METHODS FOR GAUSSIAN
NOISE AND HARMONIC INTERFERENCE.

Symbol Parameters Value Unit
d Nanoparticle diameter 20 nm
Msat Saturation magnetization 4.77 x 1075 Am~1

o Vacuum permeability 47 x 1077 NA—?
kpy Boltzmann’s constant 1.38x 10728  JK-1

T Temperature 300 K
G Selective field gradient 0.4 T/m
fz Excitation frequency in x direction 2.5 x 103 Hz
fy Excitation frequency in y direction 500 Hz

In experiments, 10000 images from the MNIST test were
used as the source of the particle distribution. The images
are up-sampled to 101 x 101 pixels. After the MPI system
simulation, we got 10000 pieces of MPI response signal data
with dimension R'*999° We randomly divided them into
training, verification, and test sets, which contain 8000, 1000,
and 1000 signals, respectively. We consider the following five
types of synthetic noise distributions: (1) SNR = 15dB, (2)
SNR = 10dB, (3) SNR = 5dB, (4) SNR = 15dB, SIR = 15dB,
(5) SNR = 15dB, SIR = 5dB.

In training, epochs are set to 100 and AdamW is used as
our optimizer. The batch size is set to 2 and the learning
rate is 0.0001. The number of features C' is set to 48. The
dropout rate p is 0.2. 3 is set to 0.01, and « is set to 0.03,
0.08, and 0.5 for types (1-3), (4), and (5), respectively.

B. Comparisons with state-of-art methods

To evaluate the denoising performance of the proposed
framework, it compared with two self-supervised denoisers:
Noise2Noise (N2N) [15] and Recorrupted-to-Recorrupted
(R2R) [16]. We evaluate the methods from the results of the
denoised signal and reconstructed image. SNR and RMSE
were used as evaluation criteria in denoised signals. SSIM
and PSNR are used in reconstructed images.

The quantitative results are shown in Table II and the
comparison example of the denoised signal and the recon-
structed image using the x-space algorithm [12] is shown
in Fig. 3. It shows that our method performs more adapted
to MPI signal denoising tasks than other self-supervised
methods. Moreover, with the noise distribution becoming
more complex and the signal-related harmonic interference
increasing gradually, the performance of R2R drops rapidly,
and noise can be better suppressed by GD regularization.

C. Comparisons on OpenMPldata

In this section, we constructed the dataset based on
the instrument parameters in OpenMPIdata [17], using the

Noise type Methods ~ SNR  RMSE ggiv pgnR
(x107°)

Noisy 15.00 40.56 0.74 30.03

Gaussian N2N[15] 22.78 16.87 0.95 34.48

SNR = 15 dB R2R[16] 21.82 19.00 0.96 35.18

Ours 26.10 11.39 0.98 37.68

Noisy 10.00  72.13 0.56 25.41

Gaussian N2N[15] 19.97  23.00 0.92 31.60

SNR = 10 dB R2R[16] 16.82 3352 091 29.81

Ours 23.83 14.79 0.97 34.72

Noisy 5.00 12827  0.39 21.13

Gaussian N2N[15] 16.53 34.17 0.87 28.30

SNR =5 dB R2R[16] 11.68  60.50 0.69 24.90

Ours 2097 2095 0.95 31.66

Gaussian Noisy 12.66  53.72 0.68 27.96

SNR = 15 dB N2N[15] 20.94 20.91 0.94 32.67

Interference R2R[16] 18.18 29.16 0.88 30.65

SIR = 15 dB Ours 2513  12.61 0.96 34.07

Gaussian Noisy 6.20 11633 047 22.58

SNR = 15 dB N2N[15] 17.48 3092 0.89 29.06

Interference R2R[16] 8.83 88.04 0.55 23.23

SIR =5 dB Ours 2272 16.59 0.94 31.46

Noisy
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Fig. 3. The comparison of denoised signal and the corresponding
reconstructed image using the x-space algorithm.

MNIST test set to make the dataset with a training set size
of 8000, a validation set size of 1000, and a testing set
size of 1000. The noises added are Gaussian noise with
SNR = 15 dB and harmonic interference with SIR = 5 dB.
The quantification results are shown in Table III, and the
comparison results of the simulated data and OpenMPIdata
signals are shown in Fig. 4. The left two columns show
the predicted signal results and corresponding reconstructed
images of each method on simulated signal data, while the
third column shows the denoising results of each method on
the concentration phantom signal in OpenMPI data.

D. Ablation study

Here, we conduct ablation studies to analyze the influence
of the regularization terms. All the ablation experiments are
completed on the dataset of Gaussian noise with SNR = 5



TABLE III
QUANTITATIVE COMPARISON OF DIFFERENT METHODS FOLLOWING THE
PARAMETERS IN OPENMPIDATA.

Noise type Methods ~ SNR (Rllvésﬁ) SSIM  PSNR
Gaussian Noisy 4.86 54.41 0.74 19.89
SNR = 15 dB N2N[15] 18.88 9.58 0.93 25.32
Interference R2R[16] 15.04 15.34 0.81 21.60
SIR =5 dB Ours 24.09 5.28 0.95 26.20
Signal Image OpenMPIdata Signal
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Fig. 4. Comparison of prediction results using different methods. The three
columns represent the signals predicted by each method, the reconstructed
images corresponding to the signals using the x-space algorithm, and the
prediction results of OpenMPIdata signals.

dB. Table IV shows that the GD term increases the SNR
but decreases the RMSE. because the GD function focuses
on the local areas with large gradients and it reduces the
focus on the whole set. When the TV term is introduced, the
local influence is weakened, and the network performance is
improved more comprehensively.

TABLE IV
THE ABLATION RESULTS OF DIFFERENT REGULARIZATION TERMS

SNR  RMSE(x10-3) SSIM _ PSNR

I1 1897 2572 095 3153

Li+aLap 19.49 24.19 0.94  30.20

L1+ BLrv 18.89 25.92 094 2935

Li+aLlap + BLry || 20.79 20.95 095  31.66

IV. CONCLUSIONS

In this study, we proposed a self-supervised MPI signal
denoising method trained on noisy signals only. The ap-
proach utilizes the features of the noisy signal, realizing the
removal of multiple noises. The shape prior knowledge of
signal is introduced to improve the denoising performance.
The experimental results show that the approach can improve
signal quality and the reconstructed image. In the future, the
model will be further optimized to improve the extraction of
global information features.
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