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Abstract—Recently, accelerator/network co-search has shown
great promise in reducing the complexity of co-design and achiev-
ing higher model accuracy. Unlike the manual design methodol-
ogy, it automatically learns the optimal network architecture and
corresponding accelerator under the given constraints. However,
prior works do not consider the direct feedback of searched
accelerators on the network search in each step, which leads
to low converge speed and sub-optimal solutions. To address
this issue, we propose DAN, a reinforcement learning-based
framework for fast and accurate accelerator/network co-search.
The fundamental idea is to model the co-search as interleaved
network-aware accelerator search (AS) and accelerator-aware
network search (NS) using separate RL agents, which improves
the performance of AS and NS, and encourages a tight interaction
between AS and NS. Experimental results show that our proposed
method consistently outperforms single-agent based method in
terms of converge speed and performance.

Index Terms—Accelerator/Network Co-Search, Reinforcement
Learning, Performance Estimation, Multi-objective Optimization.

I. INTRODUCTION

In recent years, deep neural networks (DNNs) have made re-
markable progress in many artificial intelligence fields [1], [2].
Since most DNNs are computationally intensive, the general-
purpose CPUs and GPUs usually can not meet the require-
ments of different applications in terms of latency and energy
consumption, especially for resource-constraint applications.
To improve inference efficiency, a spectrum of lightweight
models [3], [4] and dedicated hardware accelerators [5], [6]
have been proposed. However, a separate methodology that
solely optimizes the network architecture or accelerator will
degrade the overall performance [7].

Recently, network/accelerator co-search [8]–[11] has been
proposed to automatically explore the best architecture of both
network and accelerator. Most of the existing co-search frame-
works follow the same paradigm, where network architectures
and accelerators are sampled from the network and accelerator
space respectively and measured with specific metrics periodi-
cally, as shown in Algorithm 1. More specifically, the network
architecture is first determined according to accuracy-related
metrics, then evaluated on a couple of accelerator samples to
collect candidates that meet the energy/area/latency require-
ments. In other words, the co-search process in this paradigm
can be viewed as temporal network-aware accelerator search,
where the adjustment of the accelerator is explicitly subjected
to the network architecture, but the opposite is not. Since
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Algorithm 1 Joint Search Method
Input: Joint search space J , Search algorithm f , Constraint
C, Maximum search steps K
Output: Best Solution S

1: S = {None, None}
2: for i = 1, 2, ..., K do
3: Sample A and N from J with f
4: Evaluate A and N to get scores
5: Update f and S with scores
6: end for
7: return S

Algorithm 2 Proposed Search Method
Input: Joint search space J , Search algorithm fN , fA,
Constraint C, Maximum search steps T,KN ,KA

Output: Best Solution S

1: S = {A, None}
2: for t = 1, 2, ..., T do
3: // Accelerator-aware network architecture search
4: Define subspace JN by fixing the accelerator
5: Search N in JN with fN for KN steps
6: // Network-aware accelerator architecture search
7: Define subspace JA by fixing the network
8: Search A in JA with fA for KA steps
9: end for

10: return S

immediate hardware feedback is not explicitly involved in
network search in each search step, the above method is prone
to cause an unstable and slow converge.

Recall that in the manual co-design, the network architec-
ture and accelerator are essentially refined in an interleaved
manner, rather than designing from scratch in every step. For
example, if the accelerator tailored for a specific network does
not meet the performance requirement, a slight adjustment can
be performed by adding more MACs to the compute core.
And once the accelerator meets the design goal, it can be
used as the target hardware, in turn, to refine the network
to achieve higher accuracy. Motivated by this methodology,
in this paper, we propose a new co-search method, as il-
lustrated in Algorithm 2. We divides the original problem
into two sub-problems: accelerator-aware network search (NS)
and network-aware accelerator search (AS), and solve the
two sub-problems alternately. This method has two merits.
First, the search space of each sub-problem is a subspace of
the joint search space. Since the subspace is much smaller
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than the joint space, the search complexity is significantly
reduced. Second, it can make better use of the search results of
intermediate steps, because the search algorithm tries to obtain
better solutions by only adjusting the accelerator or network
of previously searched.

To demonstrate the effectiveness of the proposed method,
we design a RL-based co-search method named DAN. It
consists of Dual agents (RL controller), where the A-agent
is responsible for optimizing the network architecture for a
given accelerator, and the N-agent optimizes the accelerator to
reduce latency, energy consumption, area, and other metrics.
Unlike the single-agent method, the two agents in DAN are
designed for different optimization objectives using different
reward functions, which has the potential to improve the
representation ability.

Experiments show that our approach converges faster and
can obtain significantly better search results than the single-
agent RL-based method. On the ImageNet, compared with
the baseline method, the searched solution of our approach
achieves up to 1.8% higher accuracy together with similar or
lower EDAP (Energy-Delay-Area-Product). Our method also
achieves nearly 2× real speed up.

II. RELATED WORK

Neural architecture search (NAS) [12], [13] aims to au-
tomatically design models to achieve competitive accuracy.
Apart from the accuracy, the deployment of a model also
needs to meet the constraints of latency or power consumption.
Hardware-aware NAS methods [3], [4] are proposed, which
aim to search a network architecture for a target device to
achieve a trade-off between accuracy and hardware perfor-
mance. Though hardware-aware NAS considers the relation
between the hardware and model, it does not explore the hard-
ware design space, which can not achieve optimal inference
efficiency. Therefore, accelerator/network co-search [8], [10]
has been proposed and has shown appealing results. NHAS
[14] jointly searches the quantized network architecture and
design parameters of a given accelerator. NASAIC [10] is an
RL-based method that can simultaneously identify multiple
ASIC accelerator designs for one network, which is similar to
our method. However, they do not search multiple networks for
one accelerator, and their method still uses one reward function
and can not be updated independently. In other fields, there are
also some works [15], [16] using two agents, but the nature
of the problems solved by these works is different from that
of co-search, and most of them do not exist interdependence
between subproblems.

III. PROPOSED METHOD

A. Overview

Generally, the optimization problem of accelerator/network
co-search can be formulated as:

max
(A,N)∈J

P (A,N) (1)

s.t. MeetConstrains(A,N) = True (2)
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Fig. 1. An overview of our proposed co-search framework. As the A-agent
and N-agent will be solved alternately, we use gray to indicate that the N-
agent is not currently running. The target accelerator for the A-agent is Abuf

provided by the greedy buffer, and the A-agent outputs a candidate network
Ni. The accuracy and hardware cost are measured by evaluators.

where A represents accelerator and N represents network.The
joint search space is denoted as J . P is the objective func-
tion, such as maximizing accuracy and minimizing latency.
MeetConstrains(A,N) = True ensures that the pair of A
and N meets the design constraints, such as accelerator area
and energy consumption. To solve this problem, most existing
works design search algorithms that directly operate on the
joint search space. In each search step, the search algorithm
first samples design points from the joint space. Then the
sampled networks and accelerators are evaluated according to
specific measurements to get the accuracy, latency, area and
energy consumption. Finally, the search algorithm updates its
parameters and continues to perform the following search.

Motivated by the manual co-design methodology, in this
paper, we model the accelerator/network co-search as a com-
binational search process, where the accelerator and network
search are conducted in an interleaved style. Specifically,
we divide the co-search problem into two sub-problems:
hardware-aware network search and network-aware accelerator
search. Based on the greedy strategy, the current best solution
of one sub-problem serves as the prior of the other sub-
problem in the next step. Accordingly, we design a dual-agent
RL-based accelerator/network co-search framework, as shown
in Figure 1. It consists of two RL agents. The A-agent is used
to search networks for a given accelerator, and the N-agent is
used to search accelerators for a given network.

B. RL Agent

The RL agent is responsible for finding the optimal solution
from the search space. The N-agent and the A-agent has the
same architecture. Each agent consists of an actor network
and a critic network, both of which are composed of two
fully connected layers and one LSTM layer with a hidden
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Fig. 2. (a) The architecture of the predictors; (b) MSE for latency prediction
is 3.6e-2; (c) MSE for energy prediction is 8.1e-2; (d) MSE for area prediction
is 1.4e-4.

size of 64. The actor network generates the configuration of
the accelerator or network, and the critic network predicts the
expected reward to help the training of the actor network.

C. Reward Function

For each searched solution, the reward function translates its
performance metrics (e.g., accuracy, latency) to a reward value,
which guides the optimization of the RL agent. The N-agent
aims to reduce latency, energy consumption, and chip area by
optimizing the accelerator configuration, while the A-agent
optimizes the network architecture to maximize the model
accuracy and minimize the latency and energy consumption.
Note that the N-agent can not influence the model accuracy,
and the A-agent can not influence the chip area. As the
optimization objective is different, we should design different
reward functions for each agent:

R = Acc ·
(
Latency

Tlatency

)w0
(
Energy

Tenergy

)w1
(
Area

Tarea

)w2

(3)

wi =

{
p, meets the constraint
q, otherwise (4)

where w0, w1, w2 are three hyperparameters that can be tuned
to control the trade-off between different metrics, and RN (for
N-agent) and RA (for A-agent) have their own wi. The effect
of different p and q are discussed in [17].

D. Performance Estimation

The most accurate method for obtaining the accuracy is
training the network from scratch. However, it is impractical
for co-search that generally needs to evaluate thousands of net-
works. In this work, we use the weight-sharing based method
[18] to get the accuracy of each network quickly. Specifically,
we train a supernet first. Then the derived network will directly
inherit the parameters of the supernet and be evaluated on the
validating dataset to get the prediction accuracy. In order to
avoid the influence of the gap between the prediction accuracy
and the actual accuracy on the experimental analysis, we report
the prediction accuracy in all experiments.

TABLE I
THE SEARCHED DESIGN FACTORS OF EYERISS.

Parameter Name Potential Values
PE x 6, 8, 10, 12, 14, 16, 18, 20, 24
PE y 6, 8, 10, 12, 14, 16, 18, 20, 24

Ifmap spad 5, 8, 12, 16, 20, 24, 28, 32, 36
Weight spad 16, 32, 64, 96, 128, 160, 192, 224, 256
Psum spad 2, 4, 8, 12, 16, 20, 24, 28, 32

For hardware performance, TimeLoop [19] and Accelergy
[20] are commonly used state-of-the-art evaluators. They can
model different accelerators and evaluate the performance of
different workloads. However, the simulation process often
takes a long time. We design and train multi-layer perceptron
(MLP) based predictors to speed up the estimation. The net-
work architecture is shown in Figure 2(a). f(A) is the design
factors of the accelerator, and f(N) is the feature vectors of
the network architecture, which consists of the size of the
input feature map, the kernel size, and other features. Because
the latency and energy of different layers running on different
accelerators are very different, the training of predictors that
directly predict the latency and energy is extremely unstable.
Considering that the FLOPs (floating point operations) of the
target layer and the number of computing units of the target
accelerator are known, we predict the energy consumption
per FLOP and the utilization of computing units and then
convert them into the actual latency and energy consumption.
We experimentally use MAPE (Mean Absolute Percentage
Error) loss for training evaluator networks. Compared with
TimeLoop+Accelergy, MLP-based predictors achieve nearly
4,000× speed improvement ( 0.05s vs. 207s).

IV. EXPERIMENTS

A. Evaluation Environment

a) Search Space.: For co-search, the search space is a
combination of network space and accelerator space. Follows
[11], we adopt the search space of FBNet as this space is
more hardware friendly [4].The network has 22 layers, and
each layer has seven candidate blocks: k3 e1, k3 e3, k3 e6,
k5 e1, k5 e3, k5 e6, and skip. We drop two candidate blocks
(k3 e1 g2 and k5 e1 g2) from the original search space
because these blocks contain the channel shuffle operation,
which is hardware inefficiency. For accelerator architecture
search, we choose the Eyeriss [5] as the template. The searched
design factors of the accelerator are shown in Table I.

b) Settings for Evaluators: For the training of the
supernet, we follow the method in [18] that uniformly samples
a child network from the supernet and trains it in each step.
We train the supernet for 300 epochs with an SGD optimizer
and a cosine learning rate scheduler. The batch size is 128,
and the initial learning rate is 0.1. We use a weight decay of
0.00004 and a momentum of 0.9.

To train the MLP-based predictors, a dataset of 100k
samples is built by using TimeLoop and Accelergy. CACTI7
[21] and Aladdin [22] at 45nm technology are used as energy
estimation plug-ins. We train the predictors using an Adam
optimizer with a learning rate of 0.001 for 600 epochs, and
the batch size is 256.
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(a) Latency-constrained (b) Energy-constrained (c) Balance-constrained

< 3 ms: 68.4% 
< 4 mJ: 22.2%
< 3 mm2: 84.4%

< 3 ms: 19.8% 
< 4 mJ: 62.3%
< 3 mm2: 94.6%

< 3 ms: 22.2% 
< 4 mJ: 9.8%
< 3 mm2: 88.9%

Fig. 3. Sample points of DAN and the baseline method under different constraints. Samples that do not meet the constraints are removed.

Fig. 4. Search convergence of DAN and baseline method.

c) Settings for RL: We use PPO [23] as the reinforce-
ment algorithm. All agents are trained by an Adam optimizer,
and the initial learning rate is 0.0003 for the actor network
and 0.001 for the critic network. For DAN, the search process
consists of 40 loops, and the A-agent and N-agent will search
30 samples and 20 samples in each loop, respectively. The total
number of search steps is 2000. Similar to the settings in [7],
we set different constraints to search different solutions: (3ms,
9mJ, 3mm2) for latency-constrained, (10ms, 4mJ, 3mm2)
for energy-constrained, and (5ms, 6mJ, 3mm2) for balance-
constrained. All experiments run on a server with an Intel
Xeon GOLD 5220 CPU and one RTX2080Ti GPU.

d) Baseline Method: The baseline method is also an RL-
based co-search framework. However, it only has one agent,
which directly predict the network and accelerator in each step.
The architecture of the agent is the same as DAN’s. It also
only has one reward function, and we use p = 0 and q = −1.

B. Results on CIFAR-10

a) Search Convergence: To demonstrate that DAN can
converge, we plot the curve of the reward of the baseline
method and our proposed method in Figure 4. Due to the
instability of RL training, training runs may have large per-
formance differences, so we run each experiment 5 times with
different seeds and report the average result. In order to ensure
the fairness of the comparison with the baseline method, we
also use p = 0 and q = −1 for RN and RA. We see that both
methods gradually find solutions with higher reward scores.
DAN converges faster than the baseline method, and the final
reward score is higher. Since the time required to obtain the
accuracy is much longer than that to obtain the hardware
performance, the DAN’s time cost is about half of the baseline
method’s, because the number of models that DAN needs to

Fig. 5. Effect of w. The constraint is latency-constrained.

TABLE II
EFFECT OF INTERLEAVING HYPER-PARAMETERS: THE NUMBER OF LOOPS

(#L), A-AGENT’S STEPS (#A), AND N-AGENT’S STEPS (#N).

#L,#A,#N Acc. Lat. Ene. Area EDAP
(%) (ms) (mJ) (mm2) (ms·mJ·mm2)

1,1200,800
86.5 3.0 2.6 2.0 15.7
87.8 4.5 3.8 1.8 29.8
88.2 2.8 5.1 2.8 40.2
87.8 2.8 5.0 2.6 35.9

100,10,10 87.7 4.4 4.0 2.1 36.7
88.5 3.3 5.5 2.6 46.2
88.1 2.9 5.3 2.5 39.5

40,30,20 87.9 3.0 3.8 1.8 20.8
88.7 4.2 4.9 1.9 39.0

evaluate is less than that of the baseline method (1200 vs.
2000).

b) Pareto Frontier: Figure 3 shows the distribution of
searched samples. Points located towards the bottom right are
Pareto-optimal. We see that both methods gradually converge
to the region with a better trade-off between accuracy and
EDAP. The optimization objective is to find the solution with
the highest accuracy while meeting given constraints, and
DAN is able to find many points with higher accuracy than
the baseline. What’s more, some searched points of DAN form
several vertical lines, which corresponds to the optimization
of the N-agent that only optimizes accelerator architecture
and does not affect the network accuracy. This optimization
process helps the framework avoid missing potential solutions.

c) Effect of w: Figure 5 shows the effect of w in the
reward function. When p = 0 and q = −1, the RL agents
will focus on improving the accuracy if the solution has met
the performance constraints. On the contrary, when p = q =
−0.07, the RL agents will still try to improve the hardware
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TABLE III
COMPARISON OF EXISTING CO-EXPLORATION ALGORITHMS.

Alg. Method Space Acc. EDAP GPU

[7] Gradient 4.8e10
93.23% 7.4e6

3h94.00% 6.2e6
93.73% 8.3e6

ours RL 2.3e23
93.96% 7.9e6

2.5h93.46% 4.2e6
94.21% 7.8e6

TABLE IV
COMPARISON OF DIFFERENT SEARCH METHODS ON THE IMAGENET.

Search Acc. Lat. Ene. Area EDAP
Approach (%) (ms) (mJ) (mm2) (ms·mJ·mm2)
BaselineL 53.9 9.0 16.6 2.9 430.2

DANL 55.7 9.8 17.3 2.9 497.6
BaselineE 54.2 13.2 12.8 2.0 343.5

DANE 54.5 8.5 12.1 2.2 224.4
BaselineB 55.2 9.6 14.1 2.5 336.0

DANB 55.6 8.5 15.0 2.4 300.8

performance after meeting the constraints because it is still
possible to increase the reward, even if it may result in an
accuracy drop. As a result, the former has higher accuracy,
while the latter has a lower EDAP.

d) Effect of interleaving hyper-parameters: The in-
terleaving hyper-parameters include the number of loops,
the A-agent’s search steps, and the N-agent’s search steps.
Table II shows the results with different hyper-parameters.
The performance of (1,1200,800) is worst because it only
searches one loop and cannot search the network for different
accelerators. The accuracy of (100,10,10) is similar to that
of (40,30,20). However, the hardware performance of the
former is relatively poor. The main reason is that the searched
accelerator architecture is more likely suboptimal due to the
limitation of search steps, but the accelerator architecture
significantly impacts hardware performance.

e) Compared with SOTA: Compared with DANCE [7],
which is a differential-based method and also uses Eyeriss as
the template accelerator, our method achieves similar or better
performance under different constraints. In terms of search
efficiency, our approach costs 2.5 hours, which is slightly less
than that of DANCE. However, our method’s search space is
much larger than DANCE’s. The larger the search space, the
more difficult it is to find the best solution.

C. Results on ImageNet

Finally, we provide the experimental results on the Im-
ageNet in Table IV. Our method still discovers better so-
lutions than the baseline method, proving that DAN is
suitable for different datasets. Compared with the base-
line method, our method consistently achieves higher ac-
curacy. Apart from latency-constrained, DAN achieves both
higher accuracy and lower EDAP under energy-constrained or
balanced-constrained. For latency-constrained, the EDAP of
our method’s solution is higher than the baseline, but it also
improves accuracy by 1.8%.

V. CONCLUSION

Most previous works follow the same paradigm that directly
samples a pair of accelerator and network from a pre-defined
joint search space in each step. However, this paradigm suffers
from the problem of low converge speed because it does not
consider the direct feedback of searched accelerators on the
network search in each step. In this work, we model the co-
search as interleaved network-aware accelerator search and
accelerator-aware network search. We propose a dual-agent
RL-based co-search method to demonstrate the efficiency of
the proposed method. Compared to the single-agent method,
our method achieves better results under the same search steps.
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