
Self-Adaptive Task Allocation for Decentralized
Deep Learning in Heterogeneous Environments

1st Yongyue Chao
Institute of Automation, Chinese Academy of Sciences

Beijing, China
chaoyongyue2020@ia.ac.cn

2nd Mingxue Liao
Institute of Automation, Chinese Academy of Sciences

Beijing, China
mingxue.liao@ia.ac.cn

3rd Jiaxin Gao
Institute of Automation, Chinese Academy of Sciences

Beijing, China
jiaxin.gao@ia.ac.cn

4th Guangyao Li
Institute of Automation, Chinese Academy of Sciences

Beijing, China
liguangyao2020@ia.ac.cn

Abstract—The demand for large-scale deep learning is increas-
ing, and distributed training is the current mainstream solution.
Decentralized algorithms are widely used in distributed training.
However, in a heterogeneous environment, each worker computes
the same amount of training data resulting in a lot of wasted
time for waiting the straggler. In this paper, we proposed a self-
adaptive task allocation algorithm (SATA) which allows that each
worker acquires the amount of training data adaptively based on
the performance of workers in the heterogeneous environment.
In order to show the applicability of SATA in heterogeneous
clusters better, we set up the heterogeneous cluster composed
of two or three different types of GPUs. Besides, we conduct
a series of experiments to show the performance of SATA. The
experimental results illustrate several advantages of SATA. SATA
can accelerate distributed training about 3.3X that of All-Reduce
as well as about 1.9X-3.8X that of AD-PSGD algorithm. And the
total training time of SATA is reduced from 20 to 40 percentage
compared to All-Reduce.

Index Terms—distributed training, task allocation, All-Reduce,
heterogeneity

I. INTRODUCTION

As the state-of-the-art artificial intelligent approach, Deep
Neural Networks (DNNs) play an important role in various
applications, such as natural language process and computer
vision. The increasing number of large-scale DNN model
parameters provide high accuracy for complicated problems.
However, training large-scale DNNs takes a long time and
requires a large amount of memory, which is hard to train
by single machines. Therefore, distributed training is the most
popular method to alleviate the problem.

In distributed training, the model is trained by multiple
workers running on a GPU cluster. The most common idea
is data parallelism [1] in distributed training. All training
data are assigned to workers for computing gradients and
then workers aggregate gradients among others. Centralized
and decentralized training with stochastic gradient descent
(SGD) are the main approaches of data parallelism. One of
the centralized approaches, Parameter Server (PS) [2], uses
several nodes as servers, which collect the gradients from
workers as well as update the model. However, this leads to

inevitable communication bottleneck problems. Decentralized
approaches resolve these difficulties based on All-Reduce [3].
Each worker only communicates with its neighbors to obtain
the average model.

Although these approaches achieve wonderful results in
homogeneous environments, the straggler problem still appear
in heterogeneous environments. During the process of model
training, each worker holds the same amount of training
data and needs to wait for others aggregating gradients or
parameters, so the whole training speed depends on the slowest
worker in heterogeneous environments which contain different
types of GPUs and different network bandwidths in distributed
training. These heterogeneous environments result in slowing
down the training speed of clusters with the straggler. In order
to eliminate the effect of the straggler, many studies update the
model based on asynchronous SGD instead of synchronous
SGD. However, asynchronous SGD has lower accuracy and
lower usage in distributed training. Another way is assigning
tasks to each worker reasonably. The most common method
for assigning tasks is to adjust mini-batch size of each worker
and reassign dataset at every epoch. Some papers study the
algorithms in self-adaptive task allocation. However, most
of them are contributed to centralized training rather than
decentralization based on the rough empirical speculations.

In this paper, we proposed a self-adaptive task allocation
algorithm (SATA) for decentralized training. We implement
our algorithm based on Ring All-Reduce. On the basis of al-
gorithm, the amount of mini-batch data is balanced adaptively
only by training information. We establish a mathematical
model to describe the ratio of mini-batch size to global batch
size in the current epoch for task allocation. To show the
algorithm, we implement SATA based on the Ring All-Reduce
algorithm in experiments. We set a series of experiments to
show the improvement of training speed. Besides, we train
a simple convolutional neural network model on MNIST
dataset as well as some complex models including ResNet
and VGG on CIFAR10 dataset. Experimental results show
that self-adaptive task allocation algorithm can reduce 20

DOI reference number: 10.18293/SEKE2022-071

to 40 pecentage of training time compared to All-Reduce.
And SATA can accelerate distributed training about 3.3X
that of All-Reduce. Besides, SATA make progress in speedup
compared to other algorithms.

II. RELATED WORK

The straggler problem is very common in heterogeneous
environments. It occurs due to the performance difference
among workers and the discrepancy of communication speed
and bandwidth. Existing efforts on the straggler problem
can be classified into two types: algorithms based on task
allocation and algorithms based on model averaging.

For algorithms based on adaptive task allocation, Yang et al.
[4] proposed a batch orchestration algorithm, which balances
the amount of mini-batch data according to the speed of
workers. It makes a linear regression on training time and
mini-batch size so that allocates tasks for workers based on
slope changing. The weakness is that it introduces redundant
training information to balance tasks. FlexRR [5] addresses the
straggler problem by integrating flexible consistency bounds
with temporary peer-to-peer work reassignment. FlexRR in-
creases the cost of training due to extra communication in
worker computing. The current studies are mostly apply for
PS and based on empirical speculations.

For algorithms based on model averaging, countermeasures
for synchronization are utilized, including asynchronous ex-
ecution, bounded staleness, backup workers, adjusting the
learning rate of stale gradients and so on. AD-PSGD [6],
Partial All-Reduce [7] and gossip SGP [8] improve global
synchronization with partial random synchronization. Chen et
al. [9] proposed to set backup workers in the cluster, which
allow gradient aggregations without all workers participation.
DYNSGD [10] can dynamically adjust the local learning rate
of worker according to the delay of the worker. Zhang et
al. [11]has a similar idea, it adjusts the learning rate by the
state of gradient. However, These approaches use the same
amount of training data on every worker. They still waste the
waiting time and resources of workers while synchronizing
due to unreasonable training data distribution. Therefore, self-
adaptive task allocation algorithm is urgently needed.

III. METHOD

In order to accelerate, we proposed a self-adaptive task
allocation algorithm (SATA) by balancing the number of tasks
among workers automatically. In SATA, we reassign training
data as n subsets to n workers based on training time and the
amount of subsets from the previous epoch. First, we establish
a mathematical model coordinating with information of the
previous epoch and the current epoch to allocate tasks. Then
we integrate the All-Reduce algorithm to build our adaptive
distributed training process.

A. task allocation model

In this subsection, we construct a function describing the
amount of tasks which is only related to how long each worker
takes to process and how much training data each worker

holds at the last epoch. The detailed induction procedures are
described below.

1) preliminaries: In order to describe the model better, we
make the following premises and notations based on the real
situations.

First, due to synchronization operations before aggregating
local gradients, it is approximately though that all workers
start and end at the same time in the process of each gradient
aggregation with All-Reduce. Therefore, the gradient aggrega-
tion time of all workers tic is equal. We set:

t1c = t2c = · · · = tnc (1)

Second, in synchronous SGD algorithms, total training
procedure includes three steps: computation, synchronization
and update. All workers execute the same preprocessing steps
as well as they are blocked at barrier finally. Therefore, it can
be approximately thought that total training time of all workers
Ti will be equal. We set:

T1 = T2 = · · · = Tn (2)

Third, we set the ratio of local mini-batch size to global
batch size in the previous epoch wk−1

i and in the current
epoch wk

i . To avoid modifying learning rate along with the
global batch size, we assume that global batch size keeps as
a constant. Therefore, the sum of the ratio w and the changed
ratio ui will be set as:

wk
1 + wk

2 + · · ·+ wk
n = 1 (3)

u1 + u2 + · · ·+ un = 0 (4)

Finally, to ensure the convergence of DNN model, the data
subset Di on worker i should be the uniform distribution
over the assigned data samples. We distribute training data
by sequential assignment on a sample-by-sample basis.

Besides, there are some parameters of the task allocation
model to illustrate: gradient computing time tis, synchroniza-
tion waiting time tiw and gradient computing speed vi where
vi = Di/t

i
s, Ti = tis + tiw + tic and the gap between

synchronization waiting time is ∆tijw = |tiw − tjw|.
2) mathematical model: First, our objective functions are

described as following:

min
D

n∑
i=1

n∑
j ̸=i

∆tijw (5)

min
D

T1, T2, · · · , Tn (6)

(5) and (6) are to minimize the total synchronization waiting
time ∆tijw and total training time Ti. According to the former
preliminaries (1) - (4), ∆tijw can be optimized to ∆tijw = tiw−
tjw = tjs − tis =

Dj

vj
− Di

vi
= 0. Finally we get the following

formula:
Dwj

vj
− Dwi

vi
= 0 (7)

In appendix, we computed the updated wk+1
i in each epoch:

w
(k+1)
i = ui + w

(k)
i =

w
(k)
i /tis∑n

i=1 w
(k)
i /tis

(8)

It is found that the ratio wk+1
i of the next epoch only

depends on the ratio wk
i of the current epoch and total

computing time tis. To ensure the feasibility of the model, each
worker need to broadcast the above two parameters. In Fig.1
it shows the process of task allocation model in epochs. After
getting the ratio wk+1

i by the model, we design a complete
algorithm called SATA, which shows the whole process of
distributed training with the mathematical model.

Fig. 1. The execution process of self-adaptive task allocation model, the ratio
wk+1

i depends on wk
i and ts

B. self-adaptive task allocation algorithm
In this subsection, we proposed a self-adaptive task allo-

cation algorithm (SATA) to accelerate decentralized training.
Before every epoch, SATA will call the model (8) to obtain the
ratio wk

i . Then SATA reassigns data subsets for all workers.
Besides, local mini-batch size is revised by the product of
global batch size N and the ratio wk

i . As can be seen in Fig.
2, there are two cycles in the procedure of SATA. The outer
cycle means reassigning data subsets for all workers based
on the their own wk

i at every epoch. The inner cycle means
mini-batch data gradient aggregations in every epoch.

To accelerate, SATA makes use of self-adaptive task allo-
cation to speed up. Fast workers take a long time to compute
and stragglers take a short time, so the waiting time will be
reduced naturally. Superior to other task allocation methods,
SATA acquires the state of workers precisely based on reason-
able derivation instead of empirical speculations. SATA can
guarantee model parameters changing along with the gradient
descent direction and converging to the stable loss. There is no
changing in synchronous SGD back propagation. Therefore,
the convergence point is equal to the original synchronous
SGD. Besides, many papers([4,5,7,9,11]) also evaluate and
derive the convergence of model when the amount of tasks
is changed.

We describe the procedure of our SATA in Algorithm 1.
There are three main parts in the SATA algorithm, determin-
ing the ratio, redistributing the dataset and training. Under
relatively steady environment, w will be steady after several
epochs. Therefore, the time of redistribution will be eliminated
further in such an environment. By SATA algorithm, we can
accelerate the whole procedure of distributed training.

Algorithm 1 Self-Adaptive Task Allocation (SATA) algorithm
Require:

Randomly initialize the data subset ratio for each worker i
at epoch 0: w0

i

Initialize gradient computing time: tis ← 0
for the kth epoch ∈ 1, 2, · · · , N do

Broadcast tis and wk−1
i

Update wk by Adaptive task allocation model
if wk ̸= wk−1 then

Redistribute dataset to workers with wk

end if
while data are not completely consumed do

mini-batch train model
Record and update (tis)
All-Reduce on model

end while

IV. EXPERIMENTS

In this section, we developed a series of experiments on self-
adaptive task allocation algorithm to observe the DNN model
training acceleration. First, we set up several experiments to
show that SATA can speed up and be heterogeneity-tolerant
on synchronization. We set a real heterogeneous cluster con-
figured with different types of GPUs. Then We compare
the performance between a homogeneous cluster and the
heterogeneous one. Finally, we compare the results of SATA
with other algorithms contributing in straggler problems. The
results of all of these experiments show that SATA is suitable
for complex heterogeneous environments.

A. acceleration by SATA algorithm in heterogeneous environ-
ments

We do experiments on multiple machines with multiple
GPUs to evaluate results of SATA algorithm. We train ResNet,
VGG and ConvNet models on three nodes as well as one
node with multiple GPUs with different initial values of w.
We record the ratio w, gradient computing time ts and total
training time T in each epoch. In Fig. 3 and 4, the total training
time is reduced along with the increasing of epoch (subgraph
c,f in Fig. 3 and 4). The gap between gradient computing time
of two workers becomes smaller too (subgraph a,d in Fig.
3 and 4). After several epochs, the ratio w becomes steady
(subgraph b,e in Fig. 3 and 4).

Further we compared results using the same ratio with the
self-adaptive ratio among three groups of GPU clusters. The
results in Fig. 5 show that with our SATA algorithm the
training time will be reduced in heterogeneous environments.

B. compared to other algorithms for straggler problems

In the final experiment, we focus on the straggler problem
comparing with All-Reduce and AD-PSGD algorithm. We
set a straggler with 2X, 5X and 10X slowdown and set the
speedup ratio of PS as 1 as done in Prague [7]. As shown in
Fig. 6, our SATA algorithm converges more quickly compared

Fig. 2. The procedure of self-adaptive task allocation algorithm with three GPUs. Two cycles represent how the subsets and mini-batch sizes change as epoch
increases. After one epoch, results return to cycle (1). After one gradient aggregation, results return to cycle (2)

to All-Reduce and AD-PSGD. In Fig. 7, SATA can reach about
3.3X that of All-Reduce given 2X/5X slowdown, 3.8X that of
AD-PSGD under 2X slowdown and 1.9X under 5X slowdown.

V. CONCLUSION

To deal with stragglers in heterogeneous environments, we
proposed a self-adaptive task allocation algorithm (SATA) in
this paper. We firstly build a strict mathematical model for self-
adaptive task allocation to determine the precise amount of
mini-batch size iteratively updating for each worker. And then
we give a detail process of our SATA algorithm for distributed
training. By this algorithm, workers can reallocate local dataset
adaptively according to current gradient computing time. We
also set up a heterogeneous environment and designed a
series of experiments to evaluate the performance of SATA
for straggler problems. The experimental results show that
SATA can accelerate distributed training about 3.3X that of
All-Reduce and about 1.9X-3.8X that of AD-PSGD algorithm.
It means that SATA has sound performance for straggler
problems in heterogeneous environments.

In future, we will focus on distributed self-adaptive task
allocation algorithms which will eliminate broadcast or cen-
tralized communication.

REFERENCES

[1] T. Ben-Nun and T. Hoefler. “Demystifying Parallel andDistributed Deep
Learning: An In-Depth Concurrency Analysis”. In: ACM Computing
Surveys 52.4 (2018)

[2] Mu Li, Zhou Li , Alex Smola, Parameter server for distributed machine
learning, In NIPS, 2013

[3] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaim-ing
He. Accurate, large minibatch SGD: training imagenet in 1 hour.CoRR,
abs/1706.02677, 2013

[4] E. Y ang, D. K. Kang, and C. H. Y oun. “BOA: batch orchestration
algorithm for straggler mitigation of distributed DL training in hetero-
geneous GPU cluster”. In: The Journal of Supercomputing (2019).

[5] Aaron Harlap et al. “Addressing the straggler problem for iterative con-
vergent parallel ML”. In: Proceedings of the Seventh ACM Symposium
on Cloud Computing, Santa Clara, CA, USA, October 5-7, 2016.

[6] X. Lian et al. “Asynchronous Decentralized Parallel Stochastic Gradient
Descent”. In Proceedings of the 35th International Conference on
Machine Learning, PMLR 80:3043-3052, 2018(2017).

[7] Qinyi Luo, Jiaao He, Youwei Zhuo, and Xuehai Qian. 2020. Prague:
High-Performance Heterogeneity-Aware Asynchronous Decentralized
Training. Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems. Association for Computing Machinery, New York, NY, USA,
401–416.

[8] Yeo S , Bae M , Jeong M , et al. Crossover-SGD: A gossip-based
communication in distributed deep learning for alleviating large mini-
batch problem and enhancing scalability. 2020.

[9] Chen, Jianmin et al. “Revisiting Distributed Synchronous SGD.” ArXiv
abs/1702.05800 (2016): n. pag.

[10] J. Jiang et al. “Heterogeneity-aware Distributed Parameter Servers”. In:
Acm International Conference. 2017,pp. 463–478.

[11] Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu. 2016. Staleness-
aware async-SGD for distributed deep learning. In Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence
(IJCAI’16). AAAI Press, 2350–2356

[12] C. Szegedy et al. “Inception-v4, Inception-ResNet and the Impact of
Residual Connections on Learning”. In: AAAI (2016)

[13] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks
for Large-Scale Image Recognition”.In: Computer Science (2014).

(a) ResNet50-ts (b) ResNet50-W (c) ResNet50-T

(d) VGG16-ts (e) VGG16-W (f) VGG16-T

Fig. 3. the gradient computing time before one gradient aggregation, the ratio and training time from one machines with RTX2080ti and GTX1080ti.

(a) ResNet50-ts (b) ResNet50-W (c) ResNet50-T

(d) VGG19-ts (e) VGG19-W (f) VGG19-T

Fig. 4. the gradient computing time before one gradient aggregation, the ratio and training time from three machines with 2*RTX2080ti and V100 respectively.
(a) and (d) represent gradient computing time among workers. (b) and (e) represent the ratio wk

i . (c) and (f) represent the total training time

Fig. 5. total training time in one epoch compared with different types of
GPUs

(a) convergence curve in 2X slowdown (b) convergence curve in 10X slowdown

Fig. 6. the training convergence curve of models for ResNet50.

APPENDIX

Assuming that the kth epoch task allocation of workers is
w

(k)
i , the (k + 1)th epoch is w

(k+1)
i , and the changed ratio is

ui as (9)
w

(k+1)
i = w

(k)
i + ui, i ∈ [1..n] (9)

Due to the waiting time of n workers expected to be 0, so
the relationship between workers can be expressed as (10)

Dw
(k+1)
i

vi
−

Dw
(k+1)
j

vj
= 0, i ̸= j (10)

From the view of the linear equation system, (10) is
equivalent to (11).

Dw
(k+1)
i

vi
−

Dw
(k+1)
j

vj
= 0,∀i, j = (i+ 1)mod n (11)

Simply to get:

w
(k)
i + ui

vi
−

w
(k)
j + uj

vj
= 0,∀i, j = (i+ 1)mod n (12)

Extract the coefficient matrix to get

A′ =



1
v1

−1
v2

0 · · · · · · 0 0

0 1
v2

−1
v3

· · · · · · 0 0

0 0 1
v3

−1
v4

· · · · · · 0
...

0 0 · · · · · · 0 1
vn−1

−1
vn

 (13)

(a) speedup in 2X slowdown (b) speedup in 5X slowdown

Fig. 7. the training speedup of models

The global batchsize remains unchanged, so we have (14)
and then (15).

w1 + w2 + · · · · · ·+ wn = 1 (14)

u1 + u2 + · · · · · ·+ un = 0 (15)

Combining (13) with (15) we have (16)

A =

[
A′

1 1 · · · · · · 1 1

]
(16)

The constant term is

b =



w
(k)
2

v2
− w

(k)
1

v1
w

(k)
3

v3
− w

(k)
2

v2
...

w(k)
n

vn
− w

(k)
n−1

vn−1

0


(17)

Therefore we only need to solve (18).

A • u = b

u = [u1, u2, · · · · · · , un]
T (18)

Finally we get the solution in terms of u as (19).

u =
vi∑n
j=1 vj

− w
(k)
i (19)

