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Abstract
Exploration under sparse rewards is a key chal-
lenge for multi-agent reinforcement learning prob-
lems. Previous works argue that complex dynamics
between agents and the huge exploration space in
MARL scenarios amplify the vulnerability of clas-
sical count-based exploration methods when com-
bined with agents parameterized by neural net-
works, resulting in inefficient exploration. In this
paper, we show that introducing constrained joint
policy diversity into a classical count-based method
can significantly improve exploration when agents
are parameterized by neural networks. Specifi-
cally, we propose a joint policy diversity to mea-
sure the difference between current joint policy and
previous joint policies, and then use a filtering-
based exploration constraint to further refine this
joint policy diversity. Under the sparse-reward set-
ting, we show that the proposed method signifi-
cantly outperforms the state-of-the-art methods in
the multiple-particle environment, the Google Re-
search Football, and StarCraft II micromanagement
tasks. To the best of our knowledge, on the hard
3s vs 5z task which needs non-trivial strategies
to defeat enemies, our method is the first to learn
winning strategies without domain knowledge un-
der the sparse-reward setting.

1 Introduction
Multi-agent reinforcement learning (MARL) is an increas-
ingly important field. Many real-world problems [Swamy
et al., 2020; Bazzan, 2009] are naturally modeled using
MARL technology. To address MARL problems, many
works [Rashid et al., 2018; Lowe et al., 2017] have been pro-
posed. Although these works have made significant progress
on challenging MARL tasks, they all focus on dense reward
multi-agent cooperation scenarios. However, in many real-
world scenarios, rewards extrinsic to agents are extremely
sparse [Pathak et al., 2017].

To enable agents to handle these sparse-reward scenarios
well, studies on how to improve the ability of agents to ex-
plore environments are essential. Many great works [Jin et
al., 2018; Hazan et al., 2019; Xu et al., 2021] have been

proposed in RL. However, recent studies [Liu et al., 2021;
Ryu et al., 2022; Mahajan et al., 2019] experimentally show
that classical exploration methods, such as count-based ex-
ploration [Strehl and Littman, 2008; Jin et al., 2018] and vari-
ants [Burda et al., 2018b; Bellemare et al., 2016] which ex-
tend these methods to high-dimensional state spaces, do not
work well in MARL scenarios when agents are parameterized
by neural networks. They believe this is caused by complex
dynamics between agents and the huge exploration space in
MARL scenarios that amplify the vulnerability of these clas-
sical methods when encountering neural networks.

To handle the issue, some exploration methods [Wang et
al., 2019; Zheng et al., 2021; Chenghao et al., 2021] for
multi-agent tasks have been proposed. For example, [Wang
et al., 2019] proposes an exploration bonus by preferring
states that can affect transitions. [Zheng et al., 2021] propose
a better estimate of the uncertainty of the state for MARL to
calculate bonuses. Overall, most of these methods enhance
exploration by making better use of state-level information.
However, relying only on exploration bonuses based on state-
level information is not sufficient to achieve efficient explo-
ration [Rashid et al., 2019].

To this end, this work studies how other information can
be used to encourage exploration. We note that our goal is
to make agents to learn policies that can solve a given task.
Motivated by this, a natural question is whether policy-level
information is helpful for exploration. In this paper, we focus
on using policy-level information (i.e., joint policy diversity),
to enhance classical exploration methods based on state-level
information, such as count-based exploration. Specifically,
we force agents to choose different behaviors compared to
the previous episodes by maximizing the difference between
the current joint policy and previous joint policies. The differ-
ence is measured by the proposed unbalanced diversity mea-
surement. It is important to highlight that unconstrained op-
timization of the differences between joint policies does not
necessarily improve exploration. Due to the huge joint policy
space, this is likely to encourage agents to learn a different,
yet unhelpful joint policy for exploration (e.g., always staying
in a state). To this end, we propose a filtering-based explo-
ration constraint to force agents to optimize their joint policy
in the direction that improves exploration.

We empirically evaluate the proposed method on three
challenging environments: a discrete version of the multiple-
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Figure 1: Normalized sample use by different methods with respect to our method (smaller values are better). Our method achieves a better
or comparable sample efficiency compared to baselines. Infinity means that the method fails to achieve a success rate above 50% at a given
step.

particle environment (MPE) [Wang et al., 2019], the Google
Research Football [Kurach et al., 2020] and StarCraft II mi-
cromanagement (SMAC) [Samvelyan et al., 2019]. In all ex-
periments, we consider the sparse-reward setting. This means
that agents get rewards only when they complete a given task.
We show that our method significantly outperforms the state-
of-the-art baselines on almost all tasks (RQ1 in Sec. 5.1).
Fig. 1 shows a normalized sample size to achieve a success
rate above 50% with respect to our method. Moreover, to
our best knowledge, on some hard tasks such 3s vs 5z, our
method is the first to learn winning strategies without domain
knowledge under the sparse-reward setting. To better under-
stand the exploration behaviors of the proposed method, we
present extensive experiments in the reward-free setting. Re-
sults show that our method, which is on top of a classical
bonus-based method (i.e., count-based method), can explore
significantly more states compared to the classical method
(RQ2 in Sec. 5.2).

In summary, we make three contributions: (i) We pro-
pose a novel method to enhance classical exploration meth-
ods based on state-level information by using policy-level di-
versity for sparse-reward multi-agent tasks; (ii) We propose
a constrained joint policy diversity to measure the difference
between current joint policy and previous joint policies; and
(iii) Our method significantly outperforms the state-of-the-art
methods on three challenging benchmarks under the sparse-
reward setting, including MPE, GRF, and SMAC.

2 Related Work
Many exploration techniques have been studied for single-
agent deep reinforcement learning problems. Among them,
two types of bonus-based methods are the most popular.
One type is count-based methods which encourage agents to
visit novel states [Strehl and Littman, 2008; Bellemare et al.,
2016]. The other class of methods relies on prediction errors
for problems related to the agent’s transitions [Pathak et al.,
2017; Burda et al., 2018a; Burda et al., 2018b; Badia et al.,
2020]. However, these methods focus on how to better esti-
mate the state uncertainty in the high-dimensional state space.
Recent studies [Mahajan et al., 2019; Wang et al., 2019;
Liu et al., 2021] experimentally show that these methods do

not work well in MARL scenarios which have larger explo-
ration spaces and complex dynamics between agents.

Recently, some exploration methods designed for multi-
agent scenarios have been proposed. EITI and EDTI [Wang
et al., 2019] capture the influence of one agent’s behaviors
on others, and agents are encouraged to visit states that will
change other agents’ behaviors. More recently, EMC [Zheng
et al., 2021] uses prediction errors of individual Q-values
as intrinsic rewards for exploration. CDS [Chenghao et al.,
2021] maximizes the mutual information between agents’
identities and their trajectories to encourage extensive explo-
ration. In summary, these methods introduce some heuristic
principles to make better use of state-level information. In
contrast, our work focuses on policy-level information.

More recently, some researchers have turned to other
technical lines to improve exploration in MARL scenarios.
CMAE [Liu et al., 2021] proposes a goal-conditioned ex-
ploration method that can cleverly use domain knowledge.
[Zhang et al., 2021] uses a learned centralized environmental
model to replace the real environment, thus improving sam-
ple efficiency. [Ryu et al., 2022] uses a powerful simulator to
modify the distribution of initial states, making agents more
likely to find rewards. However, all of these methods have
some insurmountable issues, such as the difficulty of obtain-
ing domain knowledge and the accuracy of the learned model.
In contrast, our work is a bonus-based method that does not
depend on domain knowledge or a learned model.

3 Preliminaries
A cooperative multi-agent task is modeled as a multi-agent
Markov decision process (MDP). An n-agent MDP is defined
by a tuple (S,A,P,R,Z,O, n, γ,H). S is the state space.
A is the action space of each agent. At each time step t,
each agent’s policy πi, i ∈ N ≡ {1, . . . , n}, selects an action
ait ∈ A. All selected actions form a joint action at ∈ An.
The transition functionP : S×An → ∆(S) maps the current
state st and the joint action at to a distribution over the next
state st+1. All agents receive a collective reward rt ∈ R ac-
cording to the reward functionR : S ×An → R. The objec-
tive of all agents’ policies is to maximize the collective return∑H
t=0 γ

trt, where γ ∈ [0, 1] is the discount factor, H is the



horizon, and rt is the collective reward obtained at timestep
t. Each agent i observes local observation oit ∈ Z according
to the observation function O : S × N → Z . All agents’
local observations form a full observation ot. All agent’s pol-
icy πi form a joint policy π : On → ∆(An). In this paper,
we follow the standard centralized training with decentralized
execution paradigm (CTDE) [Rashid et al., 2018].

4 Method
In this section, we present a novel exploration method for
sparse-reward multi-agent tasks. The proposed method ex-
ploits information from the joint policy level to improve
classical count-based methods [Strehl and Littman, 2008;
Burda et al., 2018b], which are based on state uncertainty
and do not work well with neural networks. An overview of
the proposed method is given in Fig. 2.

4.1 Joint Policy Diversity
One possible solution to use information from the joint pol-
icy level to drive exploration is to encourage diversity be-
tween joint policies. Specifically, in the k-th parameter up-
date, we optimize the current joint policy πθ with the con-
straint that πθ is distinct from previous joint policies (i.e.,
π1, · · · ,πk−1). To implement this idea, a natural choice is
using KL-divergence to measure the distance between joint
policies. Formally, the distance is defined by

Jkl(πθ) =

k−1∑
j=1

1

k − 1
Dkl(πθ,πj). (1)

However, there are several issues in Eq. 1. The first issue is
that KL-divergence is not suitable in our setting. The accu-
mulative KL-divergence of a trajectory is defined as

Dkl(πθ,πj) = Eτ∼πθ

[∑
t

log
πθ(at|ot)
πj(at|ot)

]
= H(πθ,πj)−H(πθ)

(2)

where H(πθ,πj) is the cross-entropy between πθ and πj ,
and H(πθ) is the entropy of πθ. As shown in the above
derivation, using KL-divergence as the distance measure
would inherently encourage learning a joint policy with small
entropy H(πθ), which is undesirable in our problems since a
low entropy joint policy is harmful for exploration. Thus, we
ignore H(πθ) in Eq. 2. In other words, we choose to use
Cross-Entropy instead of KL-divergence. Formally, the dis-
tance based on the cross-entropy is defined as

Jce(πθ) =

k−1∑
j=1

1

k − 1
H(πθ,πj)

=

k−1∑
j=1

1

k − 1
Eτ∼πθ

[∑
t

log
1

πj(at|ot)

]
.

(3)

The second issue is that, to calculate Eq. 3, we need to cal-
culate the distance between the current joint policy and the
previous k − 1 joint policies at the k-th parameter update.
As the training process continues, we need to consider a large
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Figure 2: Overview of the proposed method.

number of previous joint policies, which leads to an unaccept-
able consumption of computational resources. Consequently,
we introduce a joint policy mixture πmix which is the average
of all previous joint policies. Formally, in the k-th parameter
update, the joint policy mixture πmix is defined as

πmix(a|o) =

k−1∑
j=1

1

k − 1
πj(a|o) (4)

Then, according to Jensen’s inequality, we have

Ĵce(πθ) = Eτ∼πθ

[∑
t

log
1

πmix(at|ot)

]
≤ Jce(πθ). (5)

The above inequality tells us that the cross-entropy between
the current joint policy πθ and the joint policy mixture πmix is
a lower bound of the original optimization objective Jce(πθ).
Thus, we can optimize the original objective by maximizing
this lower bound which has a moderate computational cost.
In this paper, we get a joint policy mixture πmix by using past
joint action/observation histories to train networks. Details of
implementation are given in supplementary material.

Next, we discuss how to further modify Eq. 5. In our set-
ting, agents are expected to choose actions that were less
frequently chosen before, which is helpful for exploration.
Therefore, we propose an Unbalanced Cross-Entropy by
adding a penalty term into the original cross-entropy. For an
observation-action pair (ot,at) from a joint policy πθ and
a policy mixture πmix, when the probability πmix(at|ot) is
higher than a fully random joint policy πrand (i.e., selecting
each joint action with the same probability), the penalty term
will reduce the contribution of the observation-action (ot,at)
pair to the distance. Formally, the unbalanced cross-entropy
is defined as

Huce(πθ,πmix) =Eτ∼πθ

[∑
t

log
1

πmix(at|ot)

+
∑
t

I
[πrand(at|ot)
πmix(at|ot)

≤ 1
]

log β

] (6)

where I[·] denotes an indicator function and β ∈ (0, 1] is a
penalty factor. The unbalanced cross-entropy Huce(πθ,πmix)



Figure 3: Comparison of our method against baseline methods on MPE. The proposed method significantly outperforms all baseline methods.

recovers the original cross-entropy H(πθ,πmix), when β is
set to 1.

To calculate the distance in Eq. 6, we need to estimate the
joint action probability. To this end, we use an auto-regressive
form [Fu et al., 2022] to represent a joint policy mixture
πmix(a|o). Given an execution order X = {x1, · · · , xn},
we can factorize a joint policy πmix(a|o) into the form of

πmix(a|o) ≈ πar
mix(a|o) =

n∏
i=1

πxiθxi (a
xi |oxi , ax1 , · · · , axi−1).

(7)
where πxiθxi is the xi-th agent. In this way, we can obtain an
estimate of the joint action probability without directly learn-
ing a joint policy.

In summary, we use the joint policy diversity

Ĵ ar
uce(πθ) = Huce(πθ,π

ar
mix) (8)

which is based on the auto-regressive form, the joint policy
mixture, and unbalanced cross-entropy to drive exploration.

4.2 Filtering-based Exploration Constraint

Maximizing Ĵ ar
uce(πθ) increases the joint policy diversity and

thus helps agents to find a new joint policy that is different
from previous joint policies. However, not all joint policies
in the joint policy space are helpful for exploration. For ex-
ample, under the guidance of diversity, agents will even learn
a new joint policy that always stays in a certain state. This
case may happen as long as the new joint policy differs from
the previous ones. Obviously, such joint policies would waste
opportunities that could be used to explore new states. To
this end, it is necessary to add constraints when maximizing
Ĵ ar

uce(πθ). One natural way is to consider in Eq. 8 the effect of
each observation-action (ot,at) pair on the exploration, i.e,

the uncertainty (or novelty) of st+1. Therefore, we modify
Eq. 8 as follows

Eτ∼πθ
[∑

t

d(ot,at)u(st+1)
]

(9)

where d(ot,at) = log 1
πmix(at|ot) + I

[
πrand(at|ot)
πmix(at|ot) ≤ 1

]
log β,

and u(st+1) is the uncertainty of st+1.
However, the constraint is too mild, and agents can still

get positive incentives from Eq. 9 by visiting states with low
uncertainty u(st+1). To this end, we introduce a filtering-
based exploration constraint

Ĵ ar
fec,uce(πθ) = Eτ∼πθ

[∑
t

d(ot,at)I[u(st+1) ≥ cu]u(st+1)
]

(10)
where cu is a hyperparameter that controls the strength of
the constraint. Compared to Eq. 9, the above constraint is
stronger, and agents can only get positive incentives when
they visit states with uncertainty not less than cu. In general,
by combining the joint policy diversity with the exploration
constraint, we encourage agents to find a new joint policy that
is helpful for exploration.

We maximize Ĵ ar
fec,uce(πθ) by using the bonus bjpd(ot,at)

which is defined as

bjpd = I[u(st+1) ≥cu]u(st+1)

(
log

1

πar
mix(at|ot)

+ I

[(πar
rand(at|ot)
πar

mix(at|ot)

)
≤ 1

]
log β

) (11)

4.3 Overall Exploration Bonus
In this section, we introduce the final augmented reward r̂,
which includes the extrinsic reward r, the bonus bjpd based on
the constrained joint policy diversity, and the bonus bcls which



Figure 4: Comparison of our method against baselines on the sparse-reward version of SMAC. The proposed method significantly outperforms
all baseline methods.

is the classical exploration bonus based on state uncertainty.
In this paper, we use easy-to-implement count-based bonus
as our bcls = 1/

√
Ncntr(st+1), where Ncntr(·) stands for the

state visit count. For simplicity, we replace u(st+1) in Eq. 11
with bcls. For continuous state tasks, such as SMAC, we use
RND [Burda et al., 2018b] to estimate bcls. We use the ad-
dition operation that is widely used in the literature [Zha et
al., 2021; Wang et al., 2019] to combine bjpd and bcls. For-
mally, the final augmented reward received by agents at each
timestep is defined as

r̂ = r + w1 · bjpd + w2 · bcls (12)

where w1 and w2 are hyperparameters.

5 Experiments
The experiments are designed to answer the following
research questions: RQ1: how is our method compared
with the state-of-the-art exploration methods on multi-agent
benchmarks in the sparse-reward setting (Sec. 5.1)? RQ2:
how will our method explore environments without extrinsic
rewards (Sec. 5.2)? RQ3: how important each component
is in our method (Sec. 5.3)? We evaluate our method on
three challenging environments: (1) a discrete version of the
multiple-particle environment (MPE) [Liu et al., 2021]; (2)
the StarCraft II micromanagement (SMAC) [Samvelyan et
al., 2019]; and (3) the Google Research Football (GRF) [Ku-
rach et al., 2020]. In all environments, we consider the
sparse-reward setting. All experiments run with five random
seeds. Details for environments and training are given in
supplementary material.

Experimental Setup. In MPE, following previous
works [Wang et al., 2019; Liu et al., 2021], we consider three

standard tasks: Push Box, Pass, Secret Room. We also
consider other challenging tasks: Room, Large Push Box
and Large Pass. In all tasks, agents see a positive reward
only when they complete the given task. In SMAC, we
consider six standard tasks: 2m vs 1z, 3m, 8m, 3s vs 4z,
3s5z, and 3s vs 5z. We consider the sparse reward
setting, which means agents see a positive reward only
when all enemies are taken care of. In GRF [Kurach
et al., 2020], following previous work [Chenghao et al.,
2021], we consider three tasks: 3 vs 1 with keeper,
counterattack easy, and counterattack hard.
In GRF tasks, only scoring leads to rewards.

Baselines. We consider several baselines. Following pre-
vious works [Liu et al., 2021; Wang et al., 2019], we first
consider QMIX [Rashid et al., 2018] which is a popular
value-based method for MARL, and COUNT which includes
a classical count-based bonus [Strehl and Littman, 2008] on
top of QMIX. Then, we consider recently proposed meth-
ods: CMAE [Liu et al., 2021] utilizes domain knowledge
and learns an exploration policy by selecting goals from
many restricted spaces; EITI and EDTI [Wang et al., 2019]
capture the influence of one agent’s behaviors on others;
EMC [Zheng et al., 2021] uses prediction errors of individual
Q-values as intrinsic rewards for exploration; CDS [Cheng-
hao et al., 2021] introduces diversity between agents to en-
courage extensive exploration. In SMAC and GRF, the count-
based bonus and our bcls are approximated by RND [Burda et
al., 2018b]. Our method is based on COUNT and introduces
additional constrained joint policy diversity.

5.1 Experiments on Standard Multi-agent Tasks
Results on MPE. We first compare our method with base-
lines on MPE tasks. The training curves are included in



Figure 5: Comparison of our method against baselines on the sparse-reward version of Google Research Football.

Task (1M) COUNT CMAE Ours w/o JPD Ours
Push Box 100.2K±13.4K 108.9K±19.7K 129.4K±28.9K 150.6K±8.2K (+50%)

Pass 164.8K±7.7K 133.9K±22.2K 204.1K±31.9K 259.7K±20.6K (+58%)
Secret Room 99.3K±9.6K 78.5K±7.1K 126.4K±5.9K 145.8K±9.2K (+47%)

Room 483.2K±22.4K 236.7K±14.1K 498.8K±50.7K 574.4K±16.2K (+19%)
Large Push Box 146.6K±11.2K 160.1K±19.5K 177.6K±25.8K 234.7K±26.3K (+60%)

Large Pass 467.7K±21.6K 182.3K±46.4K 510.1K±9.9K 524.8K±9.9K (+12%)

Table 1: The number of explored states for each methods trained without extrinsic reward. Higher number is better for exploration.

Fig. 3. The results of CMAE are obtained using the publicly
available code released by the authors. EITI and EDTI, which
need to learn dynamics, both fail in all tasks. CMAE which
utilizes domain knowledge is the state-of-the-art method in
sparse-reward MPE. We observe that CMAE can learn win-
ning strategies on simple tasks but the performance is un-
stable, while on difficult tasks CMAE fails. As we ex-
pected, COUNT which combines with a count-based ex-
ploration bonus can solve easy tasks, but does not perform
well on hard tasks. Our method which introduces con-
strained joint policy diversity on top of COUNT shows amaz-
ing sample efficiency on all tasks. Compared to COUNT,
our method solves tasks faster on all tasks, which con-
firms the importance of constrained joint policy diversity.
Compared to CMAE, our method achieves comparable per-
formance on some tasks (e.g., Secret Room), and our
method still achieve good performance on other tasks (e.g.,
Large Pass) where CMAE fails. This demonstrates the
stability of our method.

Results on SMAC. To further study RQ1, we evaluate
our method in more challenging tasks with continuous state
space. We consider the sparse reward setting, which means
agents see a positive reward only when all enemies are taken
care of. Since CMAE does not provide an implementation
on SMAC, we get the results of CMAE from the original
paper [Liu et al., 2021]. As shown in Fig. 4, QMIX which
relies on random exploration fails in all tasks. And CDS,
which introduces diversity between agents, also can not learn
a winning strategy. RND and EMC can solve easy tasks,
such as 2m vs 1z and 3m. However, as we expected, they
both fail in the more challenging tasks such as 3s vs 5z
which is classified as hard even in the dense-reward set-
ting [Samvelyan et al., 2019]. In contrast, our method works
well in all tasks. Specifically, on easy tasks, our method
significantly outperforms RND and achieves comparable

performance to EMC. In hard 3s vs 5z, to our knowledge,
our method is the first to learn winning strategies without
domain knowledge under the sparse-reward setting.

Results on GRF. Next, we evaluate our method on three
challenging Google Research Football (GRF) offensive sce-
narios: 3 vs 1 with keeper, counterattack easy
and counterattack hard. In GRF, all experiments fol-
low the training settings of CDS [Chenghao et al., 2021], ex-
cept that all experiments use TD(λ) to speed up training. The
training curves are reported in Fig. 5. We observe that, as the
difficulty of the task increases, the advantages of our method
become more obvious. On easy tasks, our method slightly
outperforms the state-of-the-art method CDS, but on harder
tasks, our method significantly outperforms all baselines.

5.2 Exploration without Extrinsic Rewards
To study RQ2 and analyze exploration behaviors of the pro-
posed method, we train COUNT, CMAE, Ours w/o JPD, and
Ours after 1 million without extrinsic rewards. Ours w/o JPD
ablates the joint policy diversity by only keeping the filtering-
based exploration constraint I[u(st+1) ≥ cu]u(st+1) in
Eq. 11. We first report the number of explored states and the
improvement of our method compared to COUNT in Tab. 1.
More explored states mean better exploration. We also re-
port the visited state entropy in the supplementary material.
We make four observations. First, our method explores more
states than COUNT in all tasks, showing that the superior per-
formance (Fig 3) in the sparse-reward setting comes from our
better exploration. Second, our method outperforms Ours w/o
JPD, which confirms the importance of joint policy diversity.
Third, the filtering-based exploration constraint is beneficial
for exploration. This may be because assigning additional
bonuses to states with higher uncertainty (i.e., higher nov-
elty) allows agents parameterized by neural networks to more



Figure 6: All agents are trained without extrinsic rewards. The y-axis is the joint action entropy of the joint policy mixture. A low joint action
entropy is harmful to exploration.

Figure 7: Ablation studies for the proposed method.

easily distinguish between novel states and familiar states.
Fourth, states explored by CMAE are significantly less than
that of our method and COUNT. This suggests that the strong
performance of CMAE in some tasks comes from its use of
domain knowledge, rather than its exploration ability.

In supplementary material, we report the percentage of
states with higher novelty (uncertainty greater than 0.7) in
an episode. We observe that COUNT wastes many opportu-
nities that could be used to explore new states. In contrast,
our method has better exploration ability and wastes fewer
opportunities.

To further understand the impact of the joint policy diver-
sity on exploration, the joint action entropy of the joint policy
mixture, which is defined in Eq. 4, is shown in Fig. 6. We first
observe that the joint action entropy of our method is higher
than that of Ours w/o JPD. A high joint action entropy implies
that the action selection of the joint policy mixture, which
consists of historical joint policies, is more uniform. This
explains why our method can explore more states than Ours
w/o JPD, and confirms the importance of the diversity term
in Eq. 11. In addition, we also observe that the exploration
constraint can slightly increase the joint action entropy. This
may be a by-product of the rapid change in bonuses caused
by the exploration constraint.

5.3 Ablations
To study RQ3 and further understand the proposed method,
we carry out ablation studies. To confirm that our unbal-
anced cross-entropy is more suitable for exploration than
KL-divergence, we replace the unbalanced cross-entropy in
Eq. 11 with KL-divergence. As shown in Fig. 7 (left), our

method is better under the reward-free setting.
Then, to study the impact of cu (Eq. 10) on exploration,

we train agents with different cu under the reward-free set-
ting. The results are reported in Fig. 7 (middle). We make
two observations. First, a weak constraint (cu = 0) does not
improve exploration compared to COUNT. This confirms the
importance of the proposed filtering-based constraint. Sec-
ond, a too-strong constraint (cu = 0.9) is also harmful. This
is because it would make bjpd = 0 (Eq. 11) in most cases.

To study the impact of β in Eq. 6, we train agents with dif-
ferent β in 2m vs 1z under the sparse-reward setting. The
results are shown in Fig. 7 (right). We make two observa-
tions. First, the unbalanced cross-entropy is significantly bet-
ter than the original cross-entropy (β = 1.0). This confirms
that the unbalanced cross-entropy is important for efficient
exploration. Second, a too-low β (such as 0.1) also hurts
sample efficiency. This is reasonable because in this case,
the penalty term overwhelms the cross-entropy term.

6 Conclusion
In this paper, we focus on sparse-reward multi-agent tasks.
We present a novel exploration method, which exploits both
constrained joint policy diversity and classical bonus based
on state uncertainty to jointly encourage exploration. We
evaluate our method on three challenging environments un-
der the sparse-reward setting. Results show that our method
pushes forward state-of-the-art. One limitation of the current
work is that it focuses on discrete-action tasks. In the future,
we will explore the possibility of extending our method to
scenarios with continuous-action space.
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