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Abstract—As an important element of emotional brain-
computer interfaces, electroencephalography (EEG) signals
have made significant progress in emotion recognition due
to their high temporal resolution and reliability. However,
EEG signals vary widely among individuals and do not satisfy
temporal non-stationarity. Furthermore, trained models
cannot maintain good classification accuracy for new
individuals or new sessions during the inference stage.
Although domain adaptation has been employed to address
these issues, most approaches that consider different
subjects or sessions as a single source domain ignore the
large discrepancies between source domains, while methods
that consider multi-source domains need to construct a
domain adaptation branch for each source domain. Here, we
propose a novel emotion recognition method, i.e., multi-
source attention-based dynamic residual transfer (MS-
ADRT). We introduce a dynamic feature extractor, in which
the model uses an attention module to induce parameters to
vary with the sample, implicitly enabling multi-source
domain adaptation by adapting to the sample, thus reducing
multi-source domain adaptation to single-source domain
adaptation. Maximum mean discrepancy (MMD) and
maximum classifier discrepancy (MCD)-based adversarial
training are also used to narrow distances between source
and target domains and facilitate the feature extractor to
mine domain-invariant and sentiment-distinguishable
features. We compared our algorithm with representative
methods using the SEED and SEED-IV datasets, and
experimentally verified that our method outperforms other
state-of-the-art approaches. The proposed method provides
a more effective transfer learning pathway for EEG-based
sentiment analysis under multi-source scenarios.

Index Terms—Electroencephalogram (EEG), emotion
recognition, multi-source domain adaptation, subject-independent

I. INTRODUCTION
Emotions influence interpersonal interactions and decision-

making in humans and play an important role in many
neurological and cognitive sciences, especially in the diagnosis
of psychiatric disorders. Many studies have confirmed the

relationship between psychiatric disorders and emotional state
[1]. Emotional brain-computer interfaces [2] detect the user’s
emotional state through spontaneous electroencephalographic
(EEG) signals, thereby enriching the user’s experience during
interaction. Compared to behavioral signals, such as
vocalizations, facial expressions, gestures, and body postures,
which are easily masked in emotion recognition, physiological
EEG signals are difficult to disguise and exhibit high temporal
resolution. EEG signals can reliably identify human emotions
and direct recognition can be achieved by analyzing the
immediate brain activity induced by emotional stimuli [1].
Fluctuations in EEG signals can directly reflect changes in
emotional state in humans. Extensive studies have already been
conducted using EEG signals to identify emotional states.
Furthermore, EEG-based emotion recognition has made
significant progress due to its high accuracy and reliability [1,
3].

Due to the non-stationarity and large individual
discrepancies of EEG signals [4], emotion classification can be
poorly extrapolated to new individuals or time points. In the
early days of EEG emotion recognition, most studies used
support vector machines (SVM) [5] and linear discriminant
analysis (LDA) [6]. The premise of traditional machine
learning is that training and test data are independent and
identically distributed. However, this is not the case for EEG
data, leading to the wide use of domain adaptation in
subsequent research. There are two types of transfer tasks in
EEG emotion recognition, i.e., cross-subject (transfer from
training subjects to target subjects) and cross-session (transfer
of the same subject in a different session). From the perspective
of feature transfer methods [7, 8], we divided domain
adaptation methods into three categories. The first is marginal
distribution adaptation (MDA), which aims to reduce the
distance between the marginal probability distributions of the
source and target domains. Transfer component analysis is a
representative MDA method [9], which utilizes maximum
mean discrepancy (MMD) to project the source and target
domains into reproducing kernel Hilbert space [10]. The deep
adaptation network (DAN) [11] replaces MMD with multi-



kernel MMD (MK-MMD), adapting the last three layers. In
addition, domain adversarial neural networks (DANNs) [12]
introduce adversarial training strategies to enable shallow
networks to learn domain-invariant features to achieve certain
improvements. The second is conditional distribution
adaptation (CDA), which aims to narrow the distance between
the conditional probability distributions of the source and target
domains by considering category information. Maximum
classifier discrepancy (MCD) leverages class-specific decision
boundaries to align source and target domain distributions to
obtain domain-invariant and emotion-discriminative features to
mitigate domain shift [13]. The third is joint distribution
adaptation (JDA), which combines the advantages of the above
two approaches to reduce the distance of the joint probability
distribution of the source and target domains. Li et al. [14]
considered the functional differences between shallow and
deep network layers and applied adversarial training to adapt to
marginal distribution for task-independent shallow features and
associative domain adaptation to adapt to conditional
distribution for task-related deep features.

However, most previous studies on EEG-based emotion
recognition have not considered the disparities in marginal
distributions between different source data, instead opting for a
simple concatenation approach. Classification performance of
each source domain is degraded due to the distributional
discrepancies between multi-source domains that are not
considered when using single source domain adaptation [15].
This problem can be solved by multi-source domain adaptation
[16], where sources contain multiple domains. Current multi-
source domain adaptation algorithms assume that N source
domains are independent and use domain-specific feature
extractors and classifiers for each source domain. Chen et al.
[17] proposed utilizing a unique feature extractor-classifier pair
for each source-target domain pair, then averaging the
classifier predictions as the target result. Alternative strategies
use a small number of labeled target samples to select the
closest source domains [14]. While multiple domain-specific
networks can address the multi-source domain issue, it can lead
to a linear increase in network parameters and training time as
source domains increase. Hence, more flexible multi-source
domain adaptation methods are still required.

Domain-specific feature extractors require only one set of
networks with parameters that change with the domain, without
repeated network construction. Inspired by the dynamic
residual transfer (DRT) approach [15], we incorporated parallel
dynamic convolutional residual blocks into the feature
extractor, requiring only a single set of networks whose
parameters vary dynamically with the samples. Adjusting the
model according to the domain can be achieved by tuning the
model for each sample, as each domain is considered a
distribution of samples. Squeeze-and-excitation techniques
have a wide range of applications in computer vision and need
only a small amount of computation to achieve effective
improvements [18]. Here, we used an attention module based
on squeeze-and-excitation to make the feature extractor vary
with each sample. We then used MMD to align marginal
distribution and MCD to align conditional distribution. We
named the proposed method Multi-Source Attention-Based

Dynamic Residual Transfer (MS-ADRT). We conducted
extensive experiments and demonstrated that the

proposed multi-source emotion recognition architecture can
significantly improve EEG-based emotion recognition.

This paper is organized as follows: A detailed description
of the proposed MS-ADRT, including the design of the
dynamic extractor and choice of domain alignment algorithms,
is presented in section 2. Descriptions of the EEG datasets and
experimental details are provided in section 3. Multi-view
algorithm validation results are presented and discussed in
section 4. The main conclusions of our research are provided in
section 5.

II. METHODS

A. General Structure of Proposed Network
As outlined in Fig. 1, the proposed MS-ADRT model is

composed of three parts, i.e., attention-based dynamic residual
feature extractor, emotion classifiers, and domain adaptation.
The feature extractor introduces dynamic perception to focus
on domain transfer among source domains. In order to transfer
the knowledge learned from the labeled source domain to the
unlabeled target domain, domain adaptation methods are
necessary to align the feature representation between the
source and target domains.

B. Attention-based Dynamic Residual Feature Extractor
Model fθ with parameter θ is a static model denoted as fθc

when the parameters are shared and fixed. Therefore, using
static networks to map input samples with large distribution
gaps to latent feature space using the same transformation
function is suboptimal. To overcome this issue, dynamic
networks are introduced to alleviate multi-source domain
alignment conflicts. The dynamic part of the model learns
parameters specifically for input sample x, i.e., θ=θ x .
Considering the overlap of source domain distributions and
large number of network parameters, not all parameters need to
adapt dynamically with the sample. To simplify the model and
improve convergence, static and dynamic networks are
combined as feature extractors [15], where some network
parameters vary dynamically with the sample, while others
remain static.

One-dimensional convolutional neural networks (1D-CNNs)
are used to capture high-level spatial frequency information
between different channels based on a differential entropy (DE)
feature vector with a 62 × 5 shape. For simplicity, the bias term
of the convolution is ignored in the following description.

The original signal is first subjected to a 1 × 1 convolution
operation, then sent to the static and dynamic network to
extract features. The static part is composed of a 1 × 3
convolution operation, where W0 is a Cout × Cin × 1 × 3weight
matrix, Cout is the number of output channels, and Cin is the
number of input channels. The static component serves as a
common feature extractor, which explores and exploits
similarities between different domains and maps the original
feature space of different domains to a shared high-level
hidden feature space. The dynamic component consists of
multi-parallel 1 × 1 convolution kernels and an attention
mechanism similar to SqueezeNet [19]. Building upon research



in dynamic convolutions [20], dynamic parallel convolutions
are used to enhance the representation ability of the feature
extractor with negligible additional floating-point operations
per second. To achieve personalized integration, an attention
mechanism that generates weights λ(x) is also used for the
combination of static and dynamic networks. Let Wθ(x) denote
the feature extractor parameters, W0 denote the static
component, and ΔWθ(x) denote the dynamic component as a
residual block. Wθ(x) can be defined as:

Wθ(x)=λ(x)W0 + (1-λ(x))ΔWθ(x) (1)

Regarding the attention mechanism architecture, squeeze-
and-excitation [18] is adopted to dynamically aggregate multi-
parallel convolution kernels. Specifically, the input features are
first squeezed by average pooling. The output is then processed
through a sequence of operations, i.e., Multi-Layer Perception
(MLP), ReLU activation layer, MLP, and softmax activation
layer, as depicted in the blue box in Fig. 1, to obtain a
normalized attention score π x , defined as:

π(x)=Softmax(W2(ReLU W1avgpooling x +b1 )+b2) (2)

The squeeze-and-excitation technique is used to
dynamically adjust the weights of K parallel 1 × 1 convolution
modules with full use of global frequency and EEG channel
information. The 1 × 1 convolution kernels {Φ1,…,Φi,…,ΦK}
are linearly weighted and summed as follows:

ΔWθ(x)= i=1
k πi(x)Φi� (3)

For a given input x, the convolution x*Φi (* represents
convolution operation) is a linear model, while the combined
model x*ΔWθ(x) is a non-linear function. Therefore, the
dynamic residual network possesses more presentation power
than the static network.

The output Φi of each convolution kernel can be considered
as a potential feature subspace. The attention score πi(x)
assigned for optimal integration of feature subspaces is
dependent on different values of x and plays a key role in
enhancing beneficial information and reducing useless
knowledge. Parallel dynamic convolution blocks in the feature
extractor allow the model to adapt to different samples, and
implicitly realize multi-source domain adaptation. In this case,
we transformed EEG emotion recognition from a multi-source
domain adaptation problem to a single-source problem.

Different from dynamic convolutions [20], the squeeze-
and-excitation-based attention mechanism dynamically merges
static and dynamic networks. The attention calculation is the
same as (2), although the output is not attention over
convolution kernels, but rather a two-dimensional attention
vector λ(x) over the static and dynamic modules. Parameter
λ(x) is used to determine whether to focus on the static or
dynamic parts.

C. Domain Adaptation Scheme
As the dynamic feature extractor proposed above converts

a multi-source domain adaptation problem to a single-source
domain adaptation problem, there is no need to perform
domain alignment for each pair of domains separately. Let
Xs= xs1,xs2,⋯ ,xsi,⋯ ,xsn and Xt= xt1,xt2,⋯ ,xtj,⋯ ,xtn
represent the samples of the source and target domains in
training, respectively, where n is the number of samples of the
source domain and Xs , m is the amount of samples of the
target domain Xt. Let Hk denote the reproduced kernel Hilbert
space (RKHS) with characteristic kernel k. φ is the mapping
function of kernel k. MMD is defined as:

LMMD Xs,Xt =‖
1
n i=1

n ϕ xsi� - 1
m j=1

m ϕ xtj� ‖H2 (4)

Fig. 1. Framework of proposed MS-ADRT. Whole structure can be divided into feature extractor, classifiers, and loss functions. Dynamic parameters of feature
extractor are generated from input samples provided by the attention module.



Let x denote one sample and y denote the emotion label.
The total model is composed of feature extractor G , as
described above, and classifiers F1 and F2 (green box in Fig. 1).
Let p1 y xt represent the C-dimensional probability
distribution output of F1 when input is xt , and p2 y xt
represent the output of F2. Let p1c, p2c represent the probability
that the input sample is classified as the cth category, and C is
the number of categories of the emotion. To align marginal
probability distribution p(x) and conditional probability
distribution p(y|x) , we propose a three-stage adversarial
training mechanism referring to MCD.

Step A First, feature extractor G and classifiers F1 and F2
are trained to ensure that the source samples are correctly
classified. MMD is utilized to encourage feature
representations of the source and target domains extracted by
the feature extractor to exhibit the same marginal distributions.
The objective function can be presented as (5):

min
G,F1F2

LCE Xs,Ys +γLMMD Xs,Xt (5)

γ=
2

1+e-
r

100
-1

where γ is the weight, which gradually increases from 0 as
training iteration r progresses and controls the tradeoff
between capturing emotion-discriminative features and
domain-invariant features.

Step B Second, classifiers F1 and F2 are trained on fixed
feature extractor G to maximize classification discrepancy of
the target domain between the two classifiers. L1-distance is
exploited to measure the discrepancy between the two
classifiers, consistent with MCD.

min
F1F2

LCE Xs,Ys - Ldis(Xt) (6)

Ldis Xt = P1(Xt)-P2(Xt) 1 (7)

Step C Third, feature extractor G is trained to minimize the
discrepancy between the two fixed classifiers. During
experiments, it was difficult to correct the target domain
samples whose features were distributed outside the source
domain, so hyperparameter n was set to denote n repetitions of
feature extractor G training in the final step. The objective
function is shown in (8):

min
G

Ldis(Xt) (8)

For the overall training, each epoch continues the three-
stage training process sequentially according to its respective
loss function until the model converges.

III. EXPERIMENTS

A. Datasets and Preprocessing
Two public EEG datasets, i.e., SEED [21] and SEED-IV

[22], were used to evaluate our proposed method. The SEED
dataset contains EEG data from 15 subjects asked to watch 15
Chinese film clips labeled as negative, neutral, and positive
emotions. Each subject participated in three experiments, with
a one-week interval between each session. The SEED-IV
dataset contains EEG data from 15 subjects asked to watch 24
Chinese film clips categorized as happy, sad, calm, and fearful.
Each subject participated in three experiments, with time

intervals between experiments of 1 day to 2 months. For both
datasets, EEG data were recorded using a 62-channel ESI
Neuroscan system, with the international 10–20 system layout
and sample rate of 1 000 Hz. After EEG data collection, the
signals were preprocessed to improve the signal-to-noise ratio.
For SEED and SEED-IV, the raw EEG signals were first
down-sampled to a 200-Hz sampling rate, then filtered with a
1–75 Hz band-pass filter and segmented to 1 s in SEED dataset
and 4 s in SEED-IV dataset, respectively. The DE feature [23]
was extracted from each segment in five frequency bands: i.e.,
delta (1–4 Hz), theta (4–8 Hz), alpha (8–14 Hz), beta (14–30
Hz), and gamma (31–50 Hz).

Zheng et al [21] demonstrated that the DE feature is
effective and reliable in emotion classification. The DE feature
can be used to measure the complexity of a continuous random
variable, calculated with the following formula based on signal
� drawn from Gaussian distribution N μ, δ2 :

h x =- -∞
∞ p(x)log(p(x)� )= 1

2
log2πeδ2 (9)

Before feeding into the model, we normalize all DE data in
an electrode-wise way. Chen et al. [17] investigated the impact
of different normalization strategies and verified that electrode-
wise normalization significantly outperforms sample-wise and
global-wise normalization.

B. Parameter Settings
As shown in Fig. 1, the whole feature extractor is

composed of 1 × 1, 1 × 3, and 1 × 1 convolutions, with [128,
128, 62] filters, respectively. The dynamic parallel 1 × 1
convolution blocks are only added on the 1 × 3 convolution
kernel. Following Resnet [24], batch normalization is
performed before the ReLU activation function and after each
convolution operation. The two classifiers are both composed
of three-layer MLPs, reshaping the feature from 310D-256D-
128D to the size of the emotion categories (three in SEED, four
in SEED-IV). The final layer is followed by a softmax
classification. An Adam optimizer is adopted for the training
process, with the learning rate initially set to 0.01 with a weight
decay of 0.0005 for all experiments, and all other parameters
set to default: β1= 0.9, β2= 0.99, ϵ= 10e-8. The size of the mini-
batch is 256.

C. Experimental Settings
We take only the first session of SEED and SEED-IV in

the cross-subject experiment to avoid the effect of time. In
detail, the prediction accuracy of the cross-subject task is the
average of the leave-one-subject-out cross-validations. We
perform cross-session experiments for each subject separately
to prevent the influence of different individuals, and the cross-
session accuracy is the average of all subjects.

In our experiments, cross-subject consists of a multi-
source domain adaptation task with 14 source domains, while
cross-session contains two source domains. As the cross-
subject task is more difficult to transfer than the cross-session
task, we used a three-stage training method combining MMD
and MCD as described in Section 2. In the cross-session task,
we removed the MMD method. We conducted several
experiments with K set to 2–5. Results showed that MS-



ADRT is insensitive to the number of parallel convolution
kernels. Considering accuracy and computational effort, we
used four parallel convolution kernels for the cross-subject
task and two parallel convolution kernels for the cross-session
task. All experiments were performed using an NVIDIA RTX
3090 GPU with 24 Gb of memory.

IV. RESULT AND ANALYSIS

A. Performance Across Subjects and Sessions
TABLE I shows the cross-subject and cross-session

emotion recognition results based on the SEED and SEED-IV
datasets. Mean and variance of prediction accuracy for all
individuals were used as evaluation metrics, considering
overall level and local variability.

As seen in TABLE I, the MDA-only algorithms, such as
MMD, DANN, and DAN, showed lower classification
accuracy than the algorithms accounting for CDA, such as
MCD and JDA. For the SEED dataset, MS-ADRT
demonstrated the highest accuracy across subjects (90.81%)
and sessions (91.60 %) and showed the highest accuracy for
the SEED-IV dataset. Thus, these results indicated that
dynamic neural networks are effective in emotion recognition.

Furthermore, we found that the prediction accuracy of
cross-session transfer was generally higher than that of cross-
subject transfer in both datasets, regardless of the algorithm
used. These findings suggest that the distribution differences in
EEG signals between subjects are greater than the distribution
differences in the same subject across sessions, signifying that
knowledge transfer across sessions is easier than transfer
across subjects. Our approach showed greater improvement in
accuracy across subjects where transfer was more difficult, and
weaker improvement in accuracy across sessions.

B. Performance Across Emotions
To explore the classification results of the three emotions

under different algorithms, we constructed a confusion matrix
for the three emotions across subject tasks (Fig. 2). Compared
with DANN and JDA, our method showed high prediction
accuracy for all three emotions. Comparison showed that the
classification of neutral and negative emotions was relatively
difficult. Previous studies using SEED data have reported that

positive emotions are easier to classify for video-stimulated
emotions [25, 26]. In music-induced EEG data, classification
of pleasure is more accurate than that of fear [27], which is
inconsistent with our findings. Thus, the patterns of brain
arousal for different emotions need to be further explored.

C. Study on Alignment Loss Function
As shown in TABLE II, we compared the effects of using

three different domain alignment losses on the proposed
dynamic residual feature extractor: i.e., marginal distribution
loss of MMD, conditional distribution loss of MCD, and joint
distribution loss of both. In the absence of MCD, Ldis in Fig. 1
needs to be removed. For both cross-subject and cross-session,
there was a significant improvement in accuracy when using
conditional distribution MCD. It should be noted that
alignment loss is crucial for the multi-source domain
adaptation problem. As shown in Table II, without the
alignment loss function, although the model can adapt to all
source domains, migration to the target domain is difficult due
to the large distribution differences between the target and
source domains.

The dynamic feature extractor aims to improve the
representational power of the model [20, 30], so the model can
fully learn from multi-source data, while alignment loss can
constrain the feature extractor to extract statistically similar and
emotionally sensitive features in the target domain [31].

For cross-subject testing, using both MMD and MCD
produced higher prediction accuracy than using either alone.
However, for cross-session testing, using MCD alone resulted
in better outcomes compared to using both, which led to
negative transfer. The choice of alignment algorithm needs to
be adapted to the difficulty of the migration problem. For
problems with small migration gaps, overly powerful
alignment can lead to negative migration and degradation of
results. The emotion recognition classification results indicated
that cross-individual tasks are more difficult than cross-session
tasks, consistent with the findings of [25].

D. Comparison Between Static And Dynamic Feature
Extractors

In Table III, we compared the classification results between
the static feature extractor with the dynamic feature extractor

Fig. 2. Confusion matrix of EEG emotion recognition of SEED dataset using MS-ADRT, DANN, and JDA.



employed by MS-ADRT. For the static feature extractor, the
two attention mechanisms and the parallel convolution blocks
in Fig. 1 need to be removed, and the rest of the parameter
settings were consistent with MS-ADRT. As seen in TABLE
III, MS-ADRT achieves nearly 1% improvement in the cross-
subject task and 0.5% improvement in the cross-session task
compared to the static feature extractor. It confirmed our claim
that MS-ADRT simplifies domain alignment by dynamically
adapting to all source domains. Moreover, this dynamic feature
extractor can be easily grafted onto existing domain adaptation
algorithms, providing a new research paradigm for the multi-
source domain adaptation problem of EEG emotion
recognition.

TABLE I

COMPARISON OF DIFFERENT ALGORITHMS ON SEED AND SEED-IV DATASETS

Dataset Method Cross-subject Cross-session

SEED

MMD 80.88 ± 10.1 84.38 ± 12.05
MCD 85.63 ± 6.04 87.65 ± 9.23
DAN [17, 28] 65.84 ± 2.25 79.93 ± 7.06
DANN [28] 79.19 ± 13.14 83.15 ± 12.01
JDA [29] 88.28 ± 11.44 91.17 ± 8.11
MS-ADRT 90.81 ± 6.98 91.60 ± 4.57

SEED-IV
DAN [28] 32.44 ± 9.02 55.14 ± 12.79
DDC [17] 37.41 ± 6.36 57.63 ± 11.28
MS-ADRT 68.98 ± 6.80 76.11 ± 13.42

TABLE II

COMPARISON OF DOMAIN ALIGNMENT LOSSES ON SEED AND SEED-IV
DATASETS

Dataset Method Cross-subject Cross-session

SEED

MMD and MCD 90.81 ± 6.98 91.38 ± 5.45
MCD 90.59 ± 7.19 91.60 ± 4.57
MMD 78.79 ± 4.67 86.36 ± 9.04
w/o MMD and MCD 76.57 ± 7.30 85.29 ± 8.50

SEED-IV

MMD and MCD 68.98 ± 6.80 74.24 ± 14.27
MCD 67.86 ± 9.43 76.11 ± 13.42
MMD 63.34 ± 11.14 75.77 ± 12.03
w/o MMD and MCD 61.85 ± 11.18 71.41 ± 12.11

TABLE III

COMPARISON BETWEEN STATIC AND DYNAMIC FEATURE EXTRACTORS

Dataset Method Cross-subject Cross-session

SEED
MS-ADRT 90.81 ± 6.98 91.60 ± 4.57
Only static 89.54 ± 6.94 90.89 ± 7.78

SEED-IV
MS-ADRT 68.98 ± 6.80 76.11 ± 13.42
Only static 67.96 ± 11.91 75.51 ± 12.14

E. Feature Visualization
To clearly represent how the distribution of features

captured by the feature extractor varies, we used t-distributed
stochastic neighbor embedding (t-SNE) [32] to map the

Fig. 3. Visualization of latent representations using t-SNE. For simplicity, we only used SEED as an example for illustration. (a) Denotes original DE feature
distribution, and (b), (c), and (d) are the visualization results of the features extracted by DANN, JDA, and MS-ADRT, respectively.



features extracted by the last fully connected layer to a 2D
plane after principal component analysis (PCA) [33]. The t-
SNE non-linear downscaling method can map the structure of
high-dimensional feature space to low-dimensional space for
feature visualization, and the t-SNE algorithm can be
accelerated by removing redundant crosstalk features through
PCA dimensionality reduction.

For simplicity, we randomly selected the second subjects as
target domains and the rest as source domains, and randomly
selected 100 samples from each domain. Embedding
distributions using different algorithms are shown in Fig. 3.
The embedding distributions of neutral and negative emotions
were harder to separate, leading to lower classification
accuracy than that of positive emotion. The boundaries of the
three emotion categories in DANN were relatively blurry as
DANN has no alignment constraints for different categories.
Compared with JDA, our method achieved clearer intra-class
compression and inter-class separation, resulting in higher
classification accuracy in target domains (points of the triangle
in Fig. 3). Thus, these results suggest that our approach can
flexibly consider the distribution discrepancies of multi-source
domains to enhance the transfer effect.

V. CONCLUSIONS
In the current paper, we propose and discuss the MS-ADRT

model, which not only considers large cross-subject and cross-
session variation challenges in EEG-based emotion recognition,
but also large discrepancies in the distribution between source
domains. Specifically, we introduce a dynamic feature
extractor, where the model parameters of the dynamic residual
block are not fixed but vary with the sample. The model
achieves multi-source domain adaptation by adapting to
samples, thus eliminating the need to create a domain
adaptation branch for each source domain. Experimentally, the
model shows superior adaptation to multi-source domains and
transfer performance compared to other state-of-the-art EEG-
based emotion recognition methods.
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