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Abstract. Depression is a debilitating condition that can seriously im-
pact quality of life, and existing clinical diagnoses are often complicated
and dependent on physician experience. Recently, research on EEG-based
major depressive disorder (MDD) detection has achieved good perfor-
mance. However, subject-independent depression detection (i.e., diagno-
sis of a person never met) remains challenging due to large inter-subject
discrepancies in EEG signal distribution. To address this, we propose
an EEG-based depression detection model (DCAAN) that incorporates
dynamic convolution, adversarial domain adaptation, and association do-
main adaptation. Dynamic convolution is introduced in the feature ex-
tractor to enhance model expression capability. Furthermore, to general-
ize the model across subjects, adversarial domain adaptation is used to
achieve marginal distribution domain adaptation and association domain
adaptation is used to achieve conditional distribution domain adapta-
tion. Based on experimentation, our model achieved 86.85% accuracy in
subject-independent MDD detection using the multimodal open mental
disorder analysis (MODMA) dataset, confirming the considerable poten-
tial of the proposed method.

Keywords: Depression detection · Electroencephalogram (EEG)· Do-
main adaptation · Subject-independent.

1 Introduction

According to the World Health Organization (WHO), depression is a serious
illness that affects approximately 350 million people worldwide[1]. At present,
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diagnosis of depression is based on clinical interviews and psychiatric question-
naires conducted by physicians on patients. However, given the current lack of
objective criteria[2], diagnosis is highly influenced by physician experience as
well as the authenticity and subjectivity of patient self-description. In contrast,
the electroencephalogram (EEG) is an objective and reliable depression assess-
ment method, with the advantages of high temporal resolution, relatively low
cost, easy recording, and non-invasiveness. EEG signals provide a direct repre-
sentation of neural activity in the brain and are highly correlated with a person’s
emotional state[3]. An increasing number of scholars have used EEG-based data
to construct machine learning models for detecting depression. Support vector
machine (SVM), linear discriminant analysis (LDA), naive Bayes (NB), and k-
nearest neighbor (KNN) algorithms have been used to make predictions with
better results when effective feature selection is performed on EEG. Bashir et
al.[4] proposed an EEG-based major depressive disorder (MDD) detection model,
which achieved 99.70% and 99.60% accuracy with the KNN and convolutional
neural network (CNN) classifiers for a dataset of 34 MDDs and 30 healthy sub-
jects, respectively. Song et al.[5] used 0.5-50 Hz SincFIR filters to preprocess
EEG signals and fed them into a combined CNN and long short-term memory
(LSTM) classification model. They obtained 93.98% and 94.69% accuracy using
30 depressed subjects and 40 healthy subjects as the dataset, using gamma-
band and full-band EEG signals, respectively. Although previous studies using
machine learning models to detect depression have achieved high accuracy, most
have not considered individual independence and are therefore of limited value
for clinical use. Furthermore, current studies exploring individual independent
depression diagnoses have achieved relatively modest results. For example, in the
context of individual independence, Gulay et al.[6] achieved 76.08% classification
accuracy using the novel twin pascal’s triangles lattice pattern model, while Chen
et al.[7] achieved an 84.91% two-class correct rate using the self-attention graph
pooling with soft label (SGP-SL) model based on the multimodal open mental
disorder analysis (MODMA) dataset. To further improve depression diagnosis
and reduce the adverse effects of variability, transfer learning may be a useful ap-
proach[8], known as domain adaptation when the data distribution of the source
and target differ but the two tasks are the same[9]. Zhao et al.[10] proposed a
plug-and-play domain adaptive approach to deal with inter-subject variability,
a common challenge. However, few studies have focused on domain adaptation
methods in MDD detection. Thus, we propose a novel network, called DCAAN,
which uses dynamic convolution as a feature extractor to improve model rep-
resentation, while adapting to both global and local categories using domain
adversarial and dynamic convolution, adversarial domain adaptation, and as-
sociation domain adaptation. Experiments and comparisons were performed to
validate the effectiveness of our model.
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2 Methods

2.1 Overview

The EEG dataset is defined as
{(

x1, y1
)
, . . . ,

(
xi, yi

)
,
(
xN , yN

)}
, where N rep-

resents the number of EEG samples. Let xi ∈ RC×L denote an EEG sample with
C electrodes and L sampling points and yi ∈ RK denote the corresponding label,
where K represents the number of categories. EEG-based depression diagnosis is
modeled as a domain adaptation problem, with Ds =

{
x1
s, x

2
s, · · · , xi

s, · · · , xns
s

}
,
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{
x1
t , x

2
t , · · · , xi

t, · · · , x
nt
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}
representing the samples of the source and

target domains in training, respectively, where ns is the number of samples in
source domain DS and nt is the number of samples of target domain DT . Our
primary objective is to construct a model capable of better predictions for never-
before-seen newly collected target domain subjects by using all labeled source
data and unlabeled target data, i.e., achieve subject-independent depression de-
tection. As illustrated in Fig. 1, the proposed DCAAN algorithm empowers
the dynamic perception of the feature extractor and combines it with domain
alignment to improve the accuracy of depression diagnosis. The DCAAN model
consists of two modules, i.e., dynamic feature extractor based on dynamic con-
volution and domain adaptation.

Fig. 1. Framework of proposed DCAAN

2.2 Dynamic Feature Extractor

The main architecture of the feature extractor is a variant of the residual net-
work, called a bottleneck residual block [11], which uses a stack of three convolu-
tional layers. These three layers consist of 1 × 1, 1 × 3, and 1 × 1 convolutions,
with the two 1 × 1 convolutions at the beginning and end used to reduce chan-
nel dimensions of channels and the 1 × 3 convolution used to form a bottleneck



4 W. Jiang et al.

structure. The purpose of this is to reduce the number of parameters and matrix
multiplications while increasing depth. 1D-CNN is a powerful tool for feature ex-
traction of time series data, and is widely used in audio signal recognition [12],
behavioral detection [13], and other fields [14]. As EEG signals are time series
data with high temporal resolution and multiple channels, we used 1D-CNN to
extract spatiotemporal information, where the input data are the original EEG
signals. Considering that dynamic networks can be difficult to learn [15], we
only added the dynamic convolution block to the middle 1 × 3 of the bottleneck
block, making a small number of parameters vary dynamically with the sample.
Dynamic convolution consists of an attention mechanism and parallel convolu-
tion kernels (Let M denote the number of parallel 1D-convolution kernels). After
dynamically integrating the parallel convolution blocks using sample-dependent
attention weights, in line with the classical approach [11], we employed batch
normalization and rectified linear unit (ReLU) activation functions.

Attention module In the attention module, squeeze-and-excitation [16] is em-
ployed to generate attention weights for kernels. Squeeze-and-excitation is widely
used in the image field and can be adapted to extract important features. The
squeeze-and-excitation network (SENet) [16] improves the representational capa-
bility of the network through dynamic feature recalibration of channels. However
unlike SENet, our model does not generate attention scores over the channels of
2D-images, but over the M 1D-convolution kernels. The squeeze function com-
presses the temporal information by global average pooling, such that 1D feature
map of each channel is “squeezed” into a single numeric value.

Avgpooling(xi) =
1

L

L∑
n=1

xi(n) (1)

where xi(n) represents the nth column vector of xi. The excitation function
consists of a fully connected layer, a ReLU, a fully connected layer, and a softmax
in turn, to yield sample-specific normalized attention weights π

(
xi
)
∈ R1×M for

the M convolution kernels. Moreover, the computational cost of attention is very
low, much smaller than that of the convolution operation [17].

π(xi) = Softmax
(
W 2

(
ReLU

(
W1 Avgpooling(xi) + b1

)
+ b2

))
(2)

Parallel convolution kernels The M convolution kernels share the same ker-
nel size and dimensions. In general, kernel size and number of parallel M con-
volution kernels are set to be small, so the computational complexity of the
integration operation is low. Let {(Wm, bm)} represent the weight matrix and
bias vector of the mth kernel. The attention calculated by the attention module
is then used for dynamic integration. Let πm denote the attention weight of the
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mth kernel.The formulae are as follows.

∆W (xi) =

M∑
m=1

πm(xi)Wm

∆b(xi) =

M∑
m=1

πm(xi)bm

(3)

where ∆W is the aggregated weight and ∆b is the aggregated bias. Therefore,
∆W and ∆b are sample-dependent and dynamic convolution increases non-
linearity.

2.3 Domain adaptation scheme

The training objective consists of three parts, i.e., depression classification loss
Lc, domain classifier loss Ld, and loss LA of the association domain adaptation
part. Thus, the overall training objective is shown as:

L = Lc + Ld + LA (4)

We adopted the cross-entropy function as the classification loss:

Lc = H(ỹi, yi) (5)

where H represents cross-entropy loss, ỹi is the output of the label classifier for
xi and yi is the depression label.

Transfer learning involves the use of general patterns and features acquired
by a neural network from the source domain to enable it to make predictions on
new target domain data. The domain adaptation algorithm aims to minimize the
distribution of potential features in the source and target domains. We selected
adversarial domain adaptation and association domain adaptation to perform
marginal and conditional distribution alignment.

Adversarial domain adaptation The adversarial domain adaptation ap-
proach was initially applied to image classification [18], but has since shown
efficacy in the analysis of EEG signals [19–21]. This approach primarily consists
of two components, i.e., gradient reversal layer (GRL) [18], and domain classi-
fier. The domain classifier determines whether a given sample is from the source
or target domain, with the label d ∈ {0, 1}. Each sample is first passed through
the feature extractor to obtain feature F and subsequently through the domain
classifier, where θf represents the network parameters of the feature extractor
and θd represents the network parameters of the domain classifier. The princi-
pal aim of adversarial domain adaptation is to induce the feature extractor to
capture domain-invariant features. This is achieved by inserting the GRL be-
tween the feature extractor and domain classifier, whereby the GRL multiplies
the gradient by a negative value only during backpropagation. The GRL enables
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the θf feature extractor parameter to be continually adjusted during training to
maximize the loss of domain binary classification, while the θd domain classifier
parameter is adjusted to minimize the loss of domain classification. The domain
classifier cannot correctly separate the source domain from the target domain
i.e., domain-invariant features are extracted. The loss function of this part can
be written as:

Ld =
1

ns + nt

∑
xi∈Ds∪Dt

H(p̃i, di) (6)

where p̃i is the output of the domain classifier for xi and di is the domain label.
The optimization objectives of θf and θd are as follows:

θ̃f = argmax
θf

Ld

θ̃d = argmin
θd

Ld

(7)

Association domain adaptation To achieve a more fine-grained distribution
alignment, the association domain adaptation(ADA) [22] method is used to
draw the source and target domains according to different categories. As shown
in Fig. 1, F i

s and F j
t are high-level feature representations of the source domain

sample xi
s and target domain sample xj

t extracted by the feature extractor,
respectively. The dot product of F i

s and F j
t is used as a similarity measurement

denoted as sim(i, j) =< F i
s , F

j
t >. Thus, the transition probability from F i

s to
F j
t (i.e., F i

s → F j
t ) can be defined as:

P st
ij = P

(
F j
t | F i

s

)
=

exp (sim (i, j))∑
j′ exp (sim (i, j′))

(8)

Furthermore, P sts
ij can be defined as the circular transfer probability F i

s → F j
t →

F j
s , i.e., the probability of a sample randomly wandering from source domain F i

s

to target domain F j
t and then back to source domain F j

s , which can be written
as:

P sts
ij =

(
P st
ij P

ts
ij

)
(9)

To constrain F i
s circular wandering to F j

s belonging to the same class with all
circular wanderings of the same class having the same probability, walker loss
Lw is defined so that the circular transfer probability is close to the distribution
of U using the following equation:

Lw = H(U,P sts)

U =


1

|class(Di
s)|

, class
(
Di

s

)
= class

(
Dj

s

)
0 , else

(10)
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Furthermore, Lv is introduced to constrain the association of the two domains
to cover as many samples of the target domain as possible.

Lv = H(V, P v)

Vj =
1

|Dt|
, P v

j =
∑

xi
s∈Ds

P st
ij

(11)

Therefore, the loss of ADA can be written as Equation(12), and the weights of
the two parts can be dynamically adjusted using λ.

LA = Lv + λLw (12)

3 Experiment

3.1 Datasets

The public MODMA dataset [23] was used in our experiment. The MODMA
dataset includes EEG and audio data from clinically depressed patients and nor-
mal controls, with EEG signals recorded from a total of 24 MDD patients and
29 HCs. The patients included were carefully diagnosed and selected by profes-
sional psychiatrists. Participants were asked to remain awake and still, without
unnecessary eye movements or any body movements. The data set was acquired
using 129 channels (128 electrodes, E1 to E128; and a reference electrode located
at the central midline position Cz). MDD was confirmed by psychiatric assess-
ment. All subjects were assessed with questionnaires on psychosocial and general
health and sleep quality. A detailed description of the dataset is presented in the
table below. We use the raw EEG signal as input.

Table 1. Details of MODMA dataset

Information MDD HC

Sex Female Male Female Male
Number 11 13 9 20

Age(years) 27.54±9.13 33.69±10.85 29±7.8 32.55±9.65
Education(years) 14.9±3.44 11.84±3.57 16.44±2.87 15.75±2.07

PHQ9 score 19±4.40 17.65±2.55 1.55±1.94 3.15±1.53

3.2 State-of-the-Art Models

In the following experiments, we compared and analyzed the performance of
depression detection with the following methods. Domain adversarial neural
networks (DANN) [18] uses an adversarial domain classifier to assist the fea-
ture extractor to extract domain invariant features. Deep adaptation network
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(DAN) [24] explicitly narrows the distance between the feature distributions of
the source and target domains extracted by multiple task-specific layers with
the help of multi-kernel maximum mean discrepancy to enhance model transfer-
ability. Self-attentive graph embedding method (SAGE) [25] is a graph classifi-
cation framework that embeds graph-level instances into a fixed-length vector,
which is used to implement graph classification tasks. SST-Emotionnet [26] maps
EEG signals into 2D data according to electrode locations and integrates spatial-
spectral-temporal features simultaneously. Self-attention graph pooling with soft
label (SGP-SL) [7] constructs graph structures based on local and global con-
nections between EEG channels, while avoiding information loss through a self-
attention graph pooling module and improving feature discriminability with soft
labels.

3.3 Experimental Settings

In our experiments, 10-fold cross-validation assessment was applied. In detail,
we randomly selected four people as the test set (target domain), including two
HCs and two MDD patients. Samples of the remaining subjects were used as the
training set (source domain). The above 10-fold cross-validation experiment was
repeated 10 times, with the mean, standard deviation, precision, recall, and F1-
score of the classification results then compared and analyzed. For the dynamic
feature extractor, the main bottleneck residual block adopted 1 × 1, 1 × 3, and
1 × 1 convolutions with 128, 62, and 128 filters, respectively. The output vector
is then downscaled to a 32-dimensional vector by a fully connected layer. The
label classifier and domain classifier were both composed of a fully connected
layer, reshaping the feature from 32D to 2D. The number of 1 × 1 parallel M
convolution kernels was set to 2. The training process was optimized by adaptive
moment estimation (Adam), and we set the initial learning rate to 0.001 with a
weight decay of 1e-3. The batch size was 128, with training for 100 epochs.

3.4 Evaluation Metrics

In depression diagnostic binary classification tasks, accuracy (Acc), precision
(Pre), recall (Rec), and F1-score are typically used as evaluation metrics to
measure the effectiveness of a model, defined as:

Acc =
TP + TN

TP + FN + FP + TN

Pre =
TP

TP + FP

Rec =
TP

TP + FN

F1-score =
2× Pre×Rec

Pre+Rec

(13)

where TP, FN, FP, and TN represent true positive, false negative, false positive,
and true negative, respectively.
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Table 2. Subject-independent classification performance on MODMA dataset

Model Acc Pre Rec F1-score

SAGE [25] 67.92 64.00 66.67 65.30
SST-Emotionnet [26] 73.58 69.23 75.00 72.00

SGP-SL [7] 84.91 80.77 87.50 84.00
DAN [24] 64.77 55.72 64.88 55.81
DANN [18] 85.08 90.01 85.06 84.09

DCAAN(ours) 86.85 91.14 86.81 85.97

4 Results

We compared our model with several state-of-the-art MDD diagnosis methods
based on subject-independent experiments, as shown in Table 2. SAGE [25], SST-
Emotionnet [26], and SGP-SL [7], which do not use transfer learning, achieve
MDD diagnosis by fully capturing valid spatiotemporal high-dimensional fea-
tures.The results in the Table 2 were obtained from subject-independent exper-
iments conducted by Chen et al. [7], with SGP-SL showing the highest accuracy
of 84.91%. Given the limited research on the use of transfer learning in MODMA,
we used the DANN and DAN approaches according to the same experimental
paradigm. Results showed that DCAAN achieved the highest classification accu-
racy (86.85%), and best Pre, and F1-score metrics. DCAAN exceeded SGP-SL
by 2% and outperformed both classical domain adaptation methods (DAN and
DANN). Our approach, which uses a relatively simple but efficient dynamic fea-
ture extractor combined with powerful marginal and conditional domain adap-
tation, achieved the highest subject-independent MDD diagnosis. As shown in
Fig. 2, we drew confusion matrices of the first- and fourth-fold cross-validations
and 10-fold average results, with DCAAN showing the high diagnostic accuracy
for both HCs and MDDs.

Fig. 2. Confusion matrices of depression detection on MODMA dataset
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To explain the effectiveness of our algorithm, we used t-SNE [27] to visualize
changes in the feature distributions, as shown in Fig. 3. We randomly selected
3000 samples in the source domain and 200 samples in the target domain in
each cross-validation experiment, with the first- and fourth-fold results shown in
Fig. 3. Fig. 3(a) shows the original distribution of the source and target domains,
and Fig. 3(b) shows the feature distribution of the output of the feature extrac-
tor. Clearly, our method distinctly separated the source and target domains
based on classes, resulting in reduced intra-class distance and a well-defined
inter-class boundary.

5 Conclusions

The proposed DCAAN model applies domain adaptation to EEG-based MDD
diagnosis, which can better attenuate the effects of individual variability in EEG
signals on diagnostic accuracy. This model, trained on limited known data,
showed good diagnostic results for unknown individuals, thereby offering an
objective and scientific approach for detecting depression. Based on a series of
experiments, we demonstrated the feasibility and usefulness of dynamic con-
volution for adaptive feature extraction. On the publicly available 128-channel
MODMA dataset, our model achieved 86.85% binary classification accuracy us-
ing a 10-fold cross-validation strategy. Although we only applied the DCAAN
model to the field of EEG depression diagnosis in this study, our approach could
be widely applied to other EEG-based classification problems, such as emotion
recognition, motor imagery, epilepsy detection, and sleep stage classification.

Fig. 3. Visualization of DCAAN using t-SNE
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