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Abstract—Most existing human pose estimation (HPE)
methods exploit multi-scale information by fusing feature maps
of four different spatial sizes, i.e. 1/4, 1/8, 1/16, and 1/32 of
the input image. There are two drawbacks of this strategy: 1)
feature maps of different spatial sizes may be not well spatially
aligned, which potentially hurts the accuracy of keypoint
location; 2) these scales are fixed and inflexible, which may
restrict the generalization ability over various human sizes. To-
wards these issues, we propose an adaptive dilated convolution
(ADC). It can generate and fuse multi-scale features of the
same spatial sizes by setting different dilation rates for different
channels. Specifically, it uses a regression module to adaptively
generate dilation rates for different channels. This also enables
ADC to adjust the fused scales according to the sizes of test
persons, and thus helps ADC to have better generalization
ability. ADC can be end-to-end trained and easily plugged
into existing methods. Extensive experiments show that ADC
can bring consistent improvements to various HPE methods.
The source codes will be released for further research.

I. Introduction
Human Pose Estimation (HPE) aims to locate skeletal

keypoints (e.g. ear, shoulder, elbow, etc.) of all persons
in the given RGB image. It is fundamental to action
recognition and has wide applications in human-computer
interaction, animation, etc. This paper is interested in
single-person pose estimation, which is the basis of multi-
person pose estimation [1], [2].

HPE involves two sub-tasks: location (determining
where the keypoints are) and classification (determining
which kinds the keypoints are). The location needs plenty
of local details to get pixel-level accuracy. While classifi-
cation requires a relatively larger receptive field to extract
discriminative semantic representations [3]. Consequently,
HPE methods have to fuse multi-scale information to make
a balance between these two sub-tasks [4]. Most nowadays
HPE methods [5], [6], [7], [8], [9] repeatedly downscale
feature maps to enlarge the receptive fields. Feature maps
of different spatial sizes (i.e. 1/4, 1/8, 1/16, and 1/32 of
the input image) are then resized and summed to exploit
multi-scale information.

This strategy has made great achievements in HPE [7],
[4], [8], but it still leaves to be desired. In this strategy,
feature maps are downscaled by strided convolution (or
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Fig. 1. The receptive fields can be easily enlarged by the downscale-
conv-upscale loop. But during the upscaling, there will multiple
possible postilions for the corresponding pixel. The upscaled feature
maps may be not well aligned with original ones.

pooling). As shown in Figure 1, during the downscaling,
multiple pixels on the larger feature maps are merged
into the same pixel on the smaller ones. The location
information will be destroyed in this process. While during
the upscaling, even if the transposed convolution [10]
is used, it is hard to recover the destroyed location
information. Consequently, there will be multiple possible
corresponding positions on the upscaled feature maps for
original single pixel. Although the final resized feature
maps have the same spatial sizes, their pixels may be not
well aligned. This spatial non-alignment potentially hurts
the accuracy of location. Thus, it may be more preferred
to fuse multi-scale features of the same spatial sizes.

An alternative method is to use dilated convolution,
instead of downscaling, to enlarge receptive fields. In [11],
[12], multiple convolutional layers with different dilation
rates are used to extract feature maps at different scales.
These feature maps have the same spatial sizes and are
well aligned spatially. They are concatenated and fused
by 1 × 1 convolution to exploit multi-scale information.
However, these dilation rates are still manually set and
fixed, which may restrict the generalization ability over
various human sizes.

Towards these issues, we propose an adaptive dilated
convolution (ADC) in this paper. As shown in Figure 2,
it divides channels into different dilation groups and uses
a dilation-rates regression module to adaptively generate



dilation rates for these groups. Compared with previous
multi-scale fusion methods, ADC has three advantages: i)
Instead of using multiple independent dilated convolution
layers, ADC directly assigns different dilation rates to its
channels. In this way, ADC can generate and fuse multi-
scale features in a single layer, which is more elegant
and efficient. ii) ADC allows fractional dilation rates,
which enables ADC to adjust receptive fields with finer
granularity, instead of only four fixed integer scales. Thus
ADC may be able to exploit richer and finer multi-scale
information. iii) The dilation rates in ADC are adaptively
generated, which could help ADC to generalize better to
various human sizes.

ADC can be easily plugged into existing HPE methods
and trained end-to-end by standard back-propagation.
Our contributions can be summarized into three points:

1. We attempt to address the spatial non-alignment and
inflexibility problems in nowadays multi-scale fusion
methods of HPE. These problems are important to
the accuracy of location and generalization ability
over various human sizes.

2. We propose an adaptive dilated convolution (ADC),
which could flexibly fuse well-aligned multi-scale fea-
tures in a single convolutional layer by adaptively
generating dilation rates for different channels.

3. The proposed ADC can be easily plugged into existing
HPE methods and extensive experiments show that
ADC can bring these methods consistent improve-
ments.

II. Related Works

A. Multi-scale Fusion

Multi-scale fusion is widely adopted in many high-level
vision tasks, such as detection [13], [14], [15], semantic
segmentation [16], etc. On the one hand, these tasks
involve both location and classification. They need multi-
scale information to make a balance between these two
sub-tasks. On the other hand, these tasks need to tackle
objects of various sizes. They scale-invariant representa-
tions to get more stable performances. In these tasks, most
methods [7], [13], [16] firstly extract a feature pyramid,
which contains feature maps of different spatial sizes, and
then fuse feature maps to obtain multi-scale information.
However, as we have discussed above, the fused features
may be not well spatially-aligned. This non-alignment
may hurt the accuracy of location. For detection and seg-
mentation, this influence could be ignored, because their
evaluation metrics (IOU) are less sensitive to the accuracy
of location. While HPE methods are evaluated by OKS,
which will be heavily influenced by pixel-level errors. Thus
the non-alignment may restrict the performance of HPE
methods. In the proposed adaptive dilated convolution,
multi-scale features are of the same spatial sizes, which
may be more friendly to human pose estimation.
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Fig. 2. Details of adaptive dilated convolution. Different dilation
groups have different dilation rates, and thus have different receptive
fields.

B. Dilated Convolution
The main idea of dilated convolution is to insert zeros

between pixels of convolution kernels. It is widely used
in segmentation [17], [18] to enlarge the receptive fields
while keeping the resolutions of feature maps. As the size
of its receptive field can be easily changed by adjusting its
dilation rate, dilated convolution is also used to aggregate
multi-scale context information. For example, in [11], the
outputs of convolutional layers with different dilation rates
are fused to exploit multi-scale context information. And
in [12], a similar idea is adopted in an atrous spatial
pyramid pooling (ASPP) module. However, these dilation
rates of different layers are manually set and can only
be integers, which are not flexible enough. Instead, the
dilation rates in ADC can be fractional and are adap-
tively generated, which enables it to learn more suitable
receptive fields for objects of various sizes. Besides, every
dilation group in ADC can represent features at a scale,
which enables ADC to fuse richer multi-scale information
yet in a simpler way.

III. Adaptive Dilated Convolution

A. Constant Dilation Rates
As shown in Figure 3, original dilated convolution can

be decomposed into two steps: 1) sampling according to
a index set I over the input feature map x; 2) matrix
multiplication of the sampled values and convolutional
kernel w. The index set I is defined by the dilation rate
r and size of kernel k × k:

I = {(i · r, j · r, c)},
s.t. ⌊−k/2⌋ ≤ i, j ≤ ⌊k/2⌋, 0 ≤ c < Cin,

(1)

where Cin is the number of channels in x, ⌊·⌋ denotes
rounding down to the nearest integer. Specially, if k = 3
and Cin = 1 then

I ={(−r,−r, 0), (−r,−r + 1, 0), . . . ,

(r, r − 1, 0), (r, r, 0)}.
(2)
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Fig. 3. Original dilated convolution can be decomposed into two
steps: sampling and matrix multiplication. But in ADC, the dilation
rate could be fractional (2.5 in the figure), in which case, the sampled
values will be interpolated from their neighbor pixels.

For value at location (i, j, c) of the output feature map y,
we have

y(i, j, c) =
∑

∆p∈I
wc(∆p) · x((i, j, 0) + ∆p), (3)

where ∆p enumerates the indexes in I, and wc denotes
the corresponding convolutional kernel for the cth output
channel.

The receptive field for each channel in convolutional
layer is defined as the square covered by index set I.
In original dilated convolution, the receptive fields of all
channels are the same. Their sizes are:

Area =(⌊k/2⌋ · r − ⌊−k/2⌋ · r)2

=(kr − r + 1)2.
(4)

Specially, when r = 1, the size of receptive field is k2.

B. Adaptive Dilation Rates
In adaptive dilated convolution, the dilation rates are

no longer manually set. As shown in Figure 2, we use
a dilation-rates regression module (DRM) to adaptively
generate the dilation rates for different channels. DRM
consists of a global average pooling layer and two fully
connected layers with nonlinear activations. Suppose DRM
is denoted as a function ϕ(·), then generated dilation rate
r is

r = ϕ(x). (5)

We divide the input channels into g dilation groups.
Each group contains Cin/g channels. The channels in the
same group shares the same dilation rate. Thus the shape
of r is g×1. And the dilation rate of the cth input channel
is r⌊c/g⌋. If g = Cin, then each channel has its own dilation
rate. If g = 1, then all channels share the same dilation
rate.

Consequently, the sampling index set becomes

I = {(i · r⌊c/g⌋, j · r⌊c/g⌋, c)}
s.t. − k/2 ≤ i, j ≤ k/2, 0 ≤ c < Cin.

(6)

In cases where r is fractional, as shown in Figure 3,
we use bilinear interpolation to get the sampling values.

Suppose M(x, (i, j, c)) denotes the interpolated value at
(i, j, c) on x, then we have:

y(i, j, c) =
∑

∆p∈I
wc(∆p) ·M(x, (i, j, 0) + ∆p). (7)

Similarly, in the cth channel of adaptive dilated convo-
lution, the size of receptive field is:

Area =(⌊k/2⌋ · r⌊c/g⌋ − ⌊−k/2⌋ · r⌊c/g⌋)2

=(k · r⌊c/g⌋ − r⌊c/g⌋ + 1)2.
(8)

Consequently, different dilation groups have different sizes
of receptive fields. And thus ADC can fuse multi-scale
information in a single layer.

Since all involved operators are numerical differen-
tiable [19], [?], the proposed adaptive dilated convolution
can be easily plugged into existing models trained end-to-
end by standard back-propagation.

C. Analysis and Discussion
Comparison with Yu et al. In [11], Yu et al. use multiple

dilated convolutional layers with different dilation rates
to extract features at different scales. ADC adopts a
similar idea, but implements it in a simple yet efficient
way. Firstly, ADC consists of only one convolutional
layer. It does not use independent dilated convolutional
layers or extra concatenation. Thus ADC is much more
computation-economic and time-saving. Secondly, every
dilation group in ADC represents features at a different
scale, which enables ADC to exploit richer multi-scale
information than [11]. Thirdly, the dilation rates in ADC
can be fractional and are adaptively generated, instead of
manually set integers. It helps ADC to generalize better
to persons of various sizes.
Comparison with deformable convolution. In [19], Dai et
al. propose a deformable convolutional layer, which allows
the sampling index set I to be non-grid and irregular.
It assigns an offset for each index in I, instead of only
modifying the dilation rates. Compared with adaptive
dilated convolution, deformable convolution enjoys higher
degrees of freedom, but it also has a much higher com-
putational cost. More importantly, the offsets introduced
in deformable convolution are completely unconstrained
and independent. This may cause the input and output
feature maps to lose their spatial correspondence, which
also potentially hurts the accuracy of location. We also
experimentally proved in Sec IV-A5 that the proposed
adaptive dilated convolution is more suitable to human
pose estimation than deformable convolution.
Comparison with scale-adaptive convolution. In [20],
Zhang et al. propose a scale-adaptive convolution (SAC)
to address inconsistent predictions of large objects and in-
visibility of small objects in scene parsing. SAC adaptively
generates pixel-wise dilation rates to acquire flexible-
size receptive fields along spatial dimensions. It works
well for scene parsing, which needs to tackle objects of
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（a) Original residual block （b) Residual block with ADC
Fig. 4. We replace one convolution layer in original residual block
(shown in (a)) with ADC (shown in (b)).

various sizes within a single image. However, in single
person pose estimation, size inconsistent across different
images plays a more important role, which could be better
alleviated via multi-scale fusion along channel dimension.
In SAC, different pixels can have different sizes of receptive
fields, but different channels share the same dilation
rates. Consequently, ADC may be more suitable for single
person pose estimation than SAC. In Sec IV-A5, we also
experimentally prove that ADC works better than SAC
in HPE methods.

D. Instantiation
We plug ADC into the backbones of frequently used

HPE models, including the family of SimpleBaseline [21]
and HRNet [4]. Their backbones are built up with residual
blocks [22]. As shown in Figure 4, we replace one ordinary
convolution layer in the original residual block by ADC.
The weights of the last layer in the dilated-rates regression
module are initialized as zeros and its bias are initialized
as ones. Thus, the generated dilation rates in ADC are
initialized are ones. The dilation groups g are set as
g = Cin, in which case each group contains only one chan-
nel. Thus every channel can exploit context information
at different scales, and ADC could fuse as much richer
multi-scale information as it can. We also experimentally
demonstrate that the performance is positively correlated
to g in Sec IV-A4.

IV. Experiments
A. Experiments on COCO

Dataset. All of our experiments about human pose
estimation are done on COCO dataset [23]. It contains
over 200K persons and 250K persons. Our models are
trained on COCO train2017 (57K images), and evaluated
on COCO val2017 (5K images) and COCO test-dev (20K
images).
Evaluation metric. We use the standard evaluation met-
ric Object Keypoint Similarity (OKS) to evaluate our
models. OKS =

∑
i exp(−d2

i /2s
2k2

i )δ(vi>0)∑
i δ(vi>0) , where di is the

Euclidean distance between the detected keypoint and
its corresponding ground-truth, vi is the visibility flag of
the ground-truth, s denotes the person scale, and ki is
a per-keypoint constant that controls falloff. We report
the standard average precision (AP ) and recall, including
AP 50 (AP at OKS=0.5), AP 75, AP (mean of AP scores

from OKS=0.50 to OKS=0.95 with the increment as 0.05,
APM (AP scores for person of medium sizes) and APL

(AP scores for persons of large sizes).
Training. Following the setting of [4], we augment the data
by random rotation ([−30◦, 30◦]), random scaling ([0.7,
1.3]), random translation ([−40, 40]), random horizontal
flip and half body transform [24]. Then we crop out each
single person according to their ground-truth bounding
boxes. These crops are resized to 256× 192 (or 384× 288)
and input to the HPE model.

The models are optimized by Adam [25] optimizer, and
the initial learning rate is set as 1× 10−3. For the family
of HRNet, each model is trained for 210 epochs and the
learning rate decays to 1×10−4 and 1×10−5 at 170th and
200th epoch respectively. For the family of SimpleBaseline,
each model is trained for 140 epochs and the learning rate
decays to 1× 10−4 and 1× 10−5 at 90th and 110th epoch
respectively. All models are trained and tested on 4 Tesla
V100 GPUs. More details can be referred to the Github
repository Pose1.
Testing. During testing, we use the same person detection
results provided in [21], which are widely used for many
single-person HPE models [4], [3]. Single persons are
cropped out according to the detection results and then
resized and input to the HPE models. The flip test [4] is
also performed in all experiments. Each keypoint location
is predicted by adjusting the highest heatvalue location
with a quarter offset in the direction from the highest
response to the second-highest response [4].

1) Ablation Study: To fully demonstrate the superiority
of ADC, we perform ablation studies on different models,
including the family of SimpleBaseline [21] and HRNet [4].
The results are shown in Table I. As one can see, ADC
can bring consistent improvement for different models.
For the smallest model, i.e. SimpleBaseline-Res50, ADC
brings an improvement of 1.4 on AP score. For the largest
model, i.e. HRNet-W48, there is still an improvement
of 0.4 on AP score. The increments decay as the AP
scores increase. This may because it is harder to improve
the performance of a more accurate model. From APM

and APL, we can see that the improvements in medium
and large persons are roughly the same. It indicates that
ADC benefits equally the keypoint detection of large and
medium persons.

2) Error Analysis: In this section, we use the error
analysis tool in [26] to further explore how ADC help HPE
models achieve better results. We mainly study four types
of errors: 1) jitter: small error around the correct keypoint
location; 2) missing: large localization error, the detected
keypoint is not within the proximity of any body part;
3) inversion: confusion between semantically similar parts
belonging to the same instance. The detection is in the
proximity of the true keypoint location of the wrong body

1https://github.com/leoxiaobin/deep-high-resolution-net.
pytorch.git



TABLE I
Results of different models with or without adaptive convolution. The input sizes are 256× 192. Results are reported on COCO val2017.

Method Backbone ADC AP AP 50 AP 75 APM APL

Simple Baseline
[21]

Res50 × 70.4 88.6 78.3 67.1 77.2√
71.8 89.2 79.7 68.5 78.7

Res101 × 71.4 89.3 79.3 68.1 78.1√
72.5 89.5 80.4 69.3 79.3

Res152 × 72.0 89.3 79.8 68.7 78.9√
72.8 89.3 80.6 69.5 79.7

HRNet
[4]

HRNet-W32 × 74.4 90.5 81.9 70.8 81.0√
75.0 90.6 82.0 71.4 81.7

HRNet-W48 × 75.1 90.6 82.2 71.5 81.8√
75.5 90.8 82.3 72.3 82.5

(a) (b)

Fig. 5. Error analysis results of SimpleBaseline-Res50 (a) without
ADC and (b) with ADC.

part; 4) swap: confusion between semantically similar
parts of different instances. The detection is within the
proximity of a body part belonging to a different person.
We use SimpleBaseline-Res50 as the baseline model, and
plot the error analysis results with and without ADC in
Figure 5. As one can see, ADC can reduce the proportion
of all four types of errors. Especially, the proportion
of missing error is reduced by 0.4%. It suggests that
ADC could help the model to be more robust and detect
keypoints in more cases. This may be attributed to that
ADC can adaptively adjust the dilation rates. The jitter
error and inversion error directly indicate the accuracy of
location and classification respectively. The proportions
of these two errors are both reduced by 0.2%. It suggests
that ADC can simultaneously benefit the location and
classification of keypoints.

3) Statistical Analysis: In this section, we make a sta-
tistical analysis to further investigate how the generated
dilation rates in ADC are related to the sizes of test
persons. We divide the test persons in COCO val2017 into
three types according to the areas of their bounding boxes.
Persons whose bounding boxes have areas: 1) smaller than
32× 32 are divided into the small group (53166 persons);
2) greater than 32 × 32 but smaller than 96 × 96 are
divided into the medium group (25173 persons); 3) greater
than 96 × 96 are divided into the large group (25787
persons). We still use SimpleBaseline-Res50 with ADC
as the studied model. The backbone, i.e. Resnet-50, has
four stages, and they contain 3, 4, 6, 3 residual blocks
respectively.

We plot the means and variations of the dilation rates
of different channels in Figure 6. For example, Figure 6
(a) shows the mean dilation rates of ADC in the third
block of the first stage (256 channels). Figure 6 (especially
the top row) suggests that the dilation rates are closely
related to the sizes of test persons. The dilation rates
for larger persons are more likely to larger. It enables
ADC to be more robust over various human sizes. Besides,
the dilation rates for the deeper block also tend to have
larger means (bottom row). It may because that deeper
blocks are more concerned with semantic features and
need larger dilation rates to enlarge the receptive fields.
Additionally, the mean dilation rates of different channels
in the same layer are quite different. The larger variance
of these dilation rates also indicates that ADC can fuse
rich multi-scale information via different channels.

4) Study of Dilation Groups g: We perform compar-
ative experiments to explore the influence of dilation
groups g. We use the SimpleBaseline-Res50 as the baseline.
We gradually improve g from 2 to Cin. The results are
shown in Table II. As one can see, the model performance
becomes better when g increases. It suggests that the
number of different dilation rates matters, which also
indicates the importance of multi-scale information fusion
in HPE.

TABLE II
Results of SimpleBaseline-Res50 with different dilation groups g.

The input sizes are 256× 192. Results are reported on COCO
val2017.

Groups 2 4 8 Cin

AP 71.5 71.5 71.7 71.8
AP 50 89.1 89.3 89.1 89.2
AP 75 79.4 79.2 79.5 79.7
APM 68.2 68.3 68.3 68.5
APL 78.3 78.3 78.5 78.7

5) Compared with Other Methods: In this section, we
experimentally prove that ADC is more suitable to human
pose estimation than deformable convolution (DC) [19]
and scale-adaptive convolution (SAC) [20]. Comparative
experiments are performed on SimpleBaseline-Res50. As
shown in Table III, although DC can bring an im-
provement on the baseline, its performance is inferior to
that of ADC. As we have discussed in Sec III-C, the
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Fig. 6. Mean dilation rates in ADC of different blocks in SimpleBaseline-Res50. The subplots are named in the format of
ADC_stageID_blockID. These statistical comparisons suggest that the dilation rates for relatively larger persons are also likely to be
larger.

unconstrained and independent offsets of DC may cause
the input and output feature maps to lose their spatial
correspondence, which potentially hurt the accuracy of
location. SAC can alleviate the size inconsistent along
spatial dimensions, but involves little multi-scale fusion
along the channel dimension, which is more important
in HPE. Consequently, the improvement of SAC is lower
than both DC and ADC.

TABLE III
Results of SimpleBaseline-Res50 with deformable convolution (DC)

or adaptive dilated convolution (ADC). The input sizes are
256× 192. Results are reported on COCO val2017.

Method AP AP 50 AP 75 APM APL

Baseline 70.4 88.6 78.3 67.1 77.2
DC [19] 71.4 89.2 79.3 67.9 78.3
SAC [20] 71.1 89.1 78.7 67.7 78.1

ADC 71.8 89.2 79.7 68.5 78.7

B. Experiments for Semantic Segmentation
Similar to human pose estimation, semantic segmenta-

tion also requires rich multi-scale information to make a
balance between local and semantic features. Thus the
proposed ADC should also benefit the performance of
semantic segmentation models. In this section, we plug
ADC into different models to demonstrate its benefits on
semantic segmentation.

We use CityScapes [27] as our training (2975 images)
and validation (500 images) datasets. We use FCN [28],
PSANet [29], DeepLabV3 [12] and DeepLabV3+ [17] as
our baseline models. The input sizes are set as 769× 769.
All models are trained for 40K iterations. More details can
be referred to the Github repository mmsegmention2. As
shown in Table IV, ADC can bring consistent improve-
ments to different Semantic Scene Parsing models. For
FCN, ADC even improves the mIOU by 4.27.

2https://github.com/open-mmlab/mmsegmentation.git

TABLE IV
Results (mIOU) of different models on CityScapes validation

dataset. The input sizes are 769× 769. All results are trained for
40K iterations. w/o ADC: without ADC. w/ ADC: with ADC.

Method Backbone w/o ADC w/ ADC
FCN [28] Res50 71.47 75.74

PSANet [29] Res50 77.99 78.57
DeepLabV3 [12] Res50 78.58 78.70

DeepLabV3+ [17] Res50 78.97 80.11

V. Conclusion

In this paper, we mainly focus on multi-scale fusion
methods in human pose estimation. Existing HPE meth-
ods usually fuse feature maps of different spatial sizes
to exploit multi-scale information. However, the location
information is irreversibly destroyed during the downscal-
ing, and thus the upscaled feature maps may be not well
spatially-aligned. This non-alignment potentially hurts the
accuracy of keypoint location. Besides, scales of these
feature maps are fixed and inflexible, which may restrict
its generalization over different human sizes. In this paper,
we propose an adaptive dilated convolution (ADC), which
exploits multi-scale information by fusing channels with
different dilation rates. In this way, each channel in ADC
can represent features at a scale, and thus ADC can
exploit richer multi-scale information from features of the
same spatial sizes. More importantly, the dilation rates
for different channels in ADC are adaptively generated,
which enables ADC to adjust the scales according to the
sizes of test persons. As a result, ADC can help HPE fuse
better aligned and more generalized multi-scale features.
Extensive experiments on both human pose estimation
and semantic segmentation prove that ADC can bring
consistent improvements to these methods.
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