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Abstract

Deep Neural Networks have become ubiquitous in various domains. Meanwhile,

the problems of massive storage and computation costs have hindered the deploy-

ment of these models to real-world applications. This paper proposes a novel and

unified two-stage framework for automatic model compression. To determine the

compression ratio of each layer, we improve the optimization from two aspects.

First, to predict the performance of each compression policy, we propose Dynamic

BN, which improves the correlation significantly with little computation overhead.

Second, to search for the compression ratio allocation, we propose an efficient

and hyperparameter-free solving algorithm based on the proposed Hessian matrix

approximation and Knapsack problem reformulation. Moreover, comprehensive

experiments and analyses are conducted on the CIFAR-100&ImageNet datasets

and various network architectures to demonstrate its performance advantages over
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existing model compression methods under the quantization-only, pruning-only,

and pruning-quantization settings.

Keywords: Deep Neural Networks, Model Compression, Quantization, Pruning.

1. Introduction1

Nowadays, Deep Neural Networks (DNNs) have been leading record-breaking2

results in a wide range of visual applications, including image classification [1],3

object detection [2], etc. However, such performance boosts are mostly built on4

deep and wide network architectures with many parameters. Consequently, energy5

consumption is dominated by DRAM access as large networks do not fit in on-chip6

storage and require a lot of memory bandwidth to fetch the weights [3]. Under7

this circumstance, various model compression techniques have been proposed,8

including pruning [4; 5], quantization [6], neural architecture search [7], etc., to9

reduce the storage and memory bandwidth required to run an inference with such10

large networks so they can be deployed on mobile and embedded systems.11

Briefly speaking, the ultimate goal of model compression is to maximize the12

network performance while satisfying the given model size constraint. In general,13

we can formulate it as the following optimization problem:14

(c∗,W ∗) = argmin
c∈C,W

L(Pc(W )), (1)

where c is a method-specific parameter that determines the compression ratio of15

each layer (e.g., sparsity ratio or quantization bit-width of each layer); C denotes all16

the compression ratio allocations that satisfy the given model size constraint; Pc(·)17

means the function that projects the original weight to its compressed version; L(·)18

represents the training loss. Compared with the standard DNNs training, model19
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compression introduces the extra constrained and discrete parameter c, which is20

the root of its intrinsic difficulty.21

Current mainstream methods [8; 9; 10] adopt a two-stage pipeline that decou-22

ples the original problem (1) as the following two sub-ones:23

First, obtain the optimal compression ratio allocation c with the given pre-trained24

model weight W ,25

c∗ = argmax
c∈C

Score(c,W ). (2)

Second, optimize the model weight W with the given compression ratio of each26

layer c,27

W ∗ = argmin
W

L(Pc(W )). (3)

It is noted that the problem (3) is the standard DNNs training essentially. Thus,28

the problem (2), which means determining the compression ratio of each layer,29

gradually becomes the focus of model compression. Conventionally, this sub-30

problem is solved based on hand-crafted heuristics and domain expertise. As the31

design space is so huge that human heuristic is usually sub-optimal and the manual32

setting is time-consuming, recent works propose kinds of methods to determine33

the compression ratio allocation automatically.34

Considering the formulation of problem (2), there are two key questions we35

need to answer to obtain the optimal compression policy automatically. First, what36

is the specific form of the function Score(·, ·) so that we can predict the perfor-37

mance of each compression ratio allocation efficiently and effectively? Second,38

given the performance prediction function, how can we automatically search for39

the optimal compression policy c∗?40

For the first question, to obtain the real performance of one compression ratio41

allocation, we need to fine-tune the network with the allocation until convergence.42
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Although effective, this strategy is very time-consuming and may take several days43

for a single compression policy on the large-scale dataset. Instead, an efficient44

and widely-used delegate of the real predictor is the performance of the network45

that all layers are compressed directly without any fine-tuning [10; 8]. As our46

experimental results show, the relevance between the real performance and the47

above delegate is very low for various compression techniques and model size48

constraints. To fix this issue, we notice a huge gap exists between the distribution49

of intermediate layers’ feature maps for the pre-trained and compressed weight. We50

suspect that the out-of-date mean and variance statistics of the Batch Normalization51

(BN) layer [11] lead to an underestimated and inaccurate performance prediction.52

Consequently, instead of using the fixed population statistics, we propose Dynamic53

BN, which improves the correlation significantly with little computation overhead.54

For the second question, most existing works adopt kinds of black-box opti-55

mization algorithms which are originally used for hyperparameter search, such as56

Reinforcement learning (RL) [9; 8], Bayesian optimization [10], etc. However,57

these optimization algorithms usually introduce lots of new hyperparameters. Con-58

sequently, tuning these algorithms could be tricky and time-consuming. To fix this59

issue, we first carry out a second-order Taylor expansion on the performance pre-60

diction function Score(·, ·) and then make a two-step approximation of the Hessian61

matrix for its efficient computation. Finally, we can reformulate the problem (2) as62

a variant of the Knapsack problem and solve it via greedy search. Our proposed63

solving algorithm is computationally efficient. For all the experiments we conduct,64

it takes at most several minutes to finish the search process with a single RTX65

2080Ti. What’s more, our solving algorithm is hyperparameter-free, which avoids66

lots of time for manual tuning.67
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To summarize, we propose a novel and unified two-stage framework to obtain68

the compression policy automatically, and the main contributions are three-fold:69

• To predict the performance of each compression policy efficiently and effec-70

tively, we propose Dynamic BN, which improves the correlation significantly71

with little computation overhead.72

• To search for the compression ratio allocation, we propose an efficient and73

hyperparameter-free solving algorithm based on the proposed Hessian matrix74

approximation and Knapsack problem reformulation.75

• We conduct extensive experiments and analyses to demonstrate the advan-76

tages of our method over existing model compression works.77

2. Related Works78

Pruning: Pruning entails systematically removing parameters from an existing79

network and can be divided into unstructured and structured ones according to80

the granularity of sparsity. For unstructured pruning, [3] proposes to zero out the81

weights whose magnitudes are smaller than a threshold and then fine-tune the82

pruned network to restore accuracy. To avoid the risk of irretrievable network83

damage, [12] proposes a dynamic network surgery framework that can recover84

the incorrectly pruned connections. To facilitate hardware acceleration, various85

structured pruning methods are introduced. [13] proposes a filter-level pruning86

method by leveraging the scaling factor of the Batch Normalization layer. By87

adding a structured sparsity regularizer, [14] proposes to reduce trivial filters,88

channels, or even layers.89
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Quantization: Instead of removing parameters, quantization reduces the model90

size by approximating real-valued weights with lower bit-width fixed-point rep-91

resentations. Since the gradient of the quantization function is zero almost every-92

where, most quantization works adopt the straight-through estimator (STE) [15]93

for its gradient approximation and then fine-tune the quantized weights for better94

performance. Extremely, [16] constrains the weights to be binary (e.g. −1 or +1)95

or ternary (e.g. −1, 0 or +1) values. Consequently, except for model compression,96

it is possible to obtain acceleration at inference time by replacing the multiply-97

accumulate operations with cheaper accumulations. For more accurate binary98

neural networks, [17] proposes the Information Retention Network (IR-Net) to99

retain the information that consists in the forward activations and backward gradi-100

ents. Furthermore, [18] proposes the Distribution-sensitive Information Retention101

Network (DIR-Net) to retain the information of gradients by jointly considering102

the updating capability and accurate gradient. [19] extends the above ideas to103

the pre-trained language models and proposes BiBERT towards the accurate fully104

binarized BERT.105

Automatic Model Compression: Traditional model compression methods, either106

pruning or quantization, usually set the compression ratio of each layer through107

hand-crafted heuristics. As the design space is so huge that human heuristic108

is usually sub-optimal and the manual setting is time-consuming, recent works109

propose kinds of methods to determine these parameters automatically. In summary,110

we can divide these methods into one-stage and two-stage ones. For one-stage111

methods, they aim to optimize the problem (1) directly. For example, [20] learns the112

continuous unconstrained model weight W and discrete constrained compression113

ratio of each layer c simultaneously via the Alternating Direction Method of114
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Multipliers (ADMM). For two-stage methods, they solve the two sub-problems (2)115

and (3) sequentially. Specifically, [8] and [9] adopt reinforcement learning (RL)116

for DNNs pruning and quantization, respectively. [10] proposes to conduct pruning117

and quantization simultaneously and uses Bayesian optimization to search for the118

optimal compression ratio allocation as the hyper-parameter.119

Second-order based Compression: The history of second-order information in120

model compression can be traced to the 1990s. For example, OBD [21] proposes121

network pruning based on second-order derivatives. Then, [22] extends the above122

ideas to deep neural networks. What’s more, the HAWQ method proposed in123

[23] allows mixed-precision quantization based on the Hessian information. On124

the other hand, as the computation and storage complexity of the Hessian matrix125

is quadratic to the number of parameters, different approximations are made to126

simplify the calculation and make the storage more flexible. Among them, HAWQ127

[23] only utilizes the top Hessian eigenvalue to measure each layer’s quantization128

sensitivity. Furthermore, HAWQ-V2 [24] consider the full Hessian spectrum,129

namely, the trace of the Hessian matrix, to determine the bit-width of each layer130

for mixed-precision quantization. Compared with existing ones, our Hessian131

approximation demonstrates a better trade-off between effectiveness and efficiency132

for quantization and pruning.133

3. Methodology134

In this section, we first introduce the notations and background briefly. Then, we135

detail the proposed Dynamic BN and solving algorithm step by step by answering136

the two questions raised for the sub-problem (2).137
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3.1. Background138

Neural Networks: We denote a L-layer Deep Neural Network f : Ω×X→ Y139

and a training dataset of N samples (x(n),y(n)) ∈ X× Y with n = 1, . . . , N . The140

model maps each sample x(n) to a prediction ŷ(n) with the given parameters θ ∈ Ω.141

Then the prediction is compared with the ground truth y(n) and evaluated with a142

task-specific loss function ℓ : Y× Y→ R+, which leads to the following training143

loss to minimize L : Ω→ R,144

L(θ) = 1

N

N∑
n=1

ℓ(f(θ,x(n)),y(n))

=
1

N

N∑
n=1

ℓ(n)(θ).

(4)

For the l-th convolution or full-connected layer, we denote the weight tensor as145

W (l) and its flattened version as w(l).146

Quantization&Pruning: In general, we can formulate the quantization and147

pruning as the projection function P : Rd × C → Πc, which takes the origi-148

nal weight vector and compression ratio c as input and outputs the compressed149

weight vector. For quantization and pruning, the compression ratio c denotes150

the quantization bit-width b and sparsity ratio r, respectively. As our model151

compression framework is independent of the specific compression method (e.g.,152

pruning, quantization, etc.), for brevity, we use the notation c to represent any153

single compression method or the combination of them in the following. Besides,154

in this paper, we only consider uniform symmetric quantization and unstructured155

pruning for model weight compression. Then, for quantization, Πb equals to156

s × {−2b−1, . . . , 0, . . . , 2b−1 − 1}d with signed vectors, where s is the step size157

between two consecutive grid points. For pruning, Πr represents the set of all158
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d-dimensional vectors with a sparsity ratio greater than or equal to r. In this159

paper, we adopt Mean Squared Error (MSE) as the the quantization and pruning160

criterion. Then, with the given compression ratio c, the above projection function161

is equivalent to the following minimization problem162

P(w, c) = argmin
ŵ∈Πc

∥w − ŵ∥2. (5)

For pruning, with the given sparsity ratio r, P(w, r) means that we first sort the163

elements in the vector in ascending order according to the magnitude and then set164

the first r× 100% elements to be zero. For quantization, with the given bit-width b165

and step size s, we have166

P(w, b; s) = s× clip(⌊w/s⌉,−2b−1, 2b−1 − 1). (6)

What’s more, we need to first solve the following optimization problem167

s∗ = argmin
s
∥w − P(w, b; s)∥2 (7)

to obtain the optimal step size s∗ with the given bit-width b. Different methods,168

such as alternating optimization and one-dimensional grid search, can be adopted169

to solve it. Hence, we denote P(w, b) = P(w, b; s∗) in the following.170

3.2. Performance Prediction Function171

For the first question, we need to give the specific form of the function172

Score(·, ·) so that we can predict the performance of each compression policy.173

As the real performance obtained by fine-tuning the compressed network until174

convergence is too time-consuming, an efficient and widely used delegate is the175

performance of the network that all layers are compressed directly without any176

fine-tuning. Therefore, as a preliminary attempt, we first explore the effectiveness177
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Figure 1: We randomly sample different compression ratio allocations of ResNet-20 on

the CIFAR100 and compare the effectiveness of different performance predictors (training

loss (left) v.s. training loss with Dynamic BN (right)) for quantization and pruning.

of this performance prediction function. To keep the differentiability of the function178

Score(·, ·) with regard to the model weights, we run the inference with the com-179

pressed weights and utilize the training loss (4) as the performance predictor. As180

we can see from the left of Figure 1, the relevance between the real and predicted181

performance is very low for either quantization or pruning.182

To improve the performance predictor, we examine the impact of weight183

compression on network inference. The basic computation unit of convolution184

and full-connected layer is the inner product between weight vector w ∈ Rd and185

input vector x ∈ Rd. We consider the perturbation due to weight compression186

as ∆w ∈ Rd and denote the compressed weight vector as ŵ = w + ∆w. Then,187

we denote the original and compressed output as y = wx ∈ R and ŷ = ŵx ∈ R,188

respectively. We assume that all elements {wi}di=1

(
{xi}di=1 and {∆wi}di=1

)
are189
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Figure 2: To justify the deviation of both expectation and variance, we first randomly take

several layers of ResNet-20 on the CIFAR100, and then calculate the E[∆w]
|E[w]| (top) and

Pearson Correlation Coefficient (PCC) between ŵx and wx (bottom) for both quantization

and pruning under different compression ratios.

i.i.d with probability density function of pw (px and p∆w). Besides, px and pw190

(p∆w) are mutually independent. Based on the above assumptions, we first have191

the expectation of compressed output192

E[ŷ] = E[ŵx] = E[(w +∆w)x] = E[wx+∆wx]

= E[y] + E[∆wx] = E[y] + E
[ d∑

i=1

∆wixi

]
= E[y] +

d∑
i=1

E[∆wixi] = E[y] +
d∑

i=1

E[∆wi]E[xi]

= E[y] + d · µ∆w · µx,

(8)

where µ∆w and µx represent the expectation of p∆w and px, respectively. Con-193

ventionally, the input vector x is the output of the previous non-linear activation194

layer. For current commonly used activation functions, we have E[x] ̸= 0 (e.g.195
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E[x] > 0 for ReLU layer). Hence, we can conclude that E[ŷ] = E[y] if and only196

if E[∆w] = 0. To examine the condition, we randomly take several layers of197

ResNet-20 on the CIFAR100 and calculate the E[∆w]
|E[w]| for quantization and pruning198

under different compression ratios. The experimental results in the top of Figure 2199

show that E[∆w] deviates significantly from zero in most cases. Except for the200

expectation, we also have the variance of compressed output201

D[ŷ] = D[ŵx] = D[(w +∆w)x] = D[wx+∆wx]

= D[wx] +D[∆wx] + 2 · Conv(wx,∆wx),
(9)

where Conv(·, ·) represents the covariance of two given random variables. Then,202

as203

D[∆wx] = Conv(∆wx,∆wx) = Conv((ŵ − w)x,∆wx)

= Conv(ŵx,∆wx)− Conv(wx,∆wx),
(10)

we finally have204

D[ŷ] = D[y] + Conv(ŵx,∆wx) + Conv(wx,∆wx). (11)

Hence, we conclude that D[ŷ] = D[y] if and only if ŵx = −wx. Similarly,205

to examine the condition, we randomly take several layers of ResNet-20 on the206

CIFAR100 and calculate the Pearson Correlation Coefficient (PCC) between ŵx207

and wx for quantization and pruning under different compression ratios. The208

experimental results at the bottom of Figure 2 show that there exists a strong209

positive correlation between ŵx and wx in most cases.210

In summary, the above theoretical analysis shows a deviation of both expecta-211

tion and variance for the compressed output ŷ. Besides, as shown in the left and212

middle of Figure 3, we also empirically notice the huge gap between the distribu-213

tion of intermediate layers’ feature maps for the pre-trained and compressed weight.214

12



The previous works (e.g., [25]) also empirically notice the deviation of expectation215

only and propose bias correction to compensate for the accuracy degradation. Fur-216

thermore, in this paper, we propose that such deviation not only degrades the model217

performance but also leads to inaccurate performance prediction. Consequently,218

we propose Dynamic BN and detail it in the following.219

Dynamic BN: Mathematically, the core of Batch Normalization layer is the220

following normalization operation:221

y =
x− µ√
σ2 + ϵ

, (12)

where µ and σ denote the mean and variance statistics of layer input, respectively.222

To avoid interdependence among samples in the same batch, the BN layer adopts223

the fixed population statistics during inference. However, as the theoretical analysis224

and experimental results in Figure 3 show, there exists a huge deviation of these225

two statistics for the intermediate features. This observation enlightens us to226

improve the performance predictor by correcting the statistical deviation for the227

BN layer. A naive implementation method is to update the statistics offline by228

recalculating them on the training data, which makes the performance predictor229

non-differentiable to the model weights. Instead, to fix the issue while ensuring230

differentiability, we propose Dynamic BN and turn to mini-batch statistics231

µB =
1

m

m∑
i=1

xi, σ2
B =

1

m

m∑
i=1

(xi − µB)
2, (13)

during our performance prediction with the training loss (4). As shown in the right232

of Figure 3, Dynamic BN can fill the gap of feature maps’ distribution at the cost233

of little additional computation for mini-batch statistics calculation. Consequently,234

as shown in the right of Figure 1, the relevance between the real and predicted235

performance is improved significantly.236
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Figure 3: We randomly take a Batch Normalization layer from ResNet-20 on the CIFAR100

and compare the distribution of its input and output for the pre-trained weight (Original),

compressed weight (Quantization/Pruning), and compressed weight with Dynamic BN

(Quantization/Pruning + Dynamic BN).

3.3. Compression Ratio Determination237

For the second question, with the given performance predictor, we need to solve238

the corresponding discrete constrained optimization problem (2) for the optimal239

compression ratio allocation. For brevity, here we only consider the original240

training loss without Dynamic BN as the prediction function in the following. The241

conclusions still hold when Dynamic BN is involved. First, we instantiate our242

formulation of the problem (2) as below:243

min
{c(l)}Ll=1

1

N

N∑
n=1

ℓ(f(w +∆w,x(n)),y(n))

s.t. ∆w(l) = P(w(l), c(l))− w(l)

L∑
l=1

M(c(l), w(l)) ≤ target size, c(l) ∈ C

(14)
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where C denotes the candidate compression ratios of each layer. The function244

M(·) calculates the size of compressed weight, which means245

M(b(l), w(l)) = |w(l)| · b
(l)

32
(15)

for quantization as we assume the original weights are stored in single-precision,246

and247

M(r(l), w(l)) = |w(l)| · (1− r(l)) (16)

for unstructured pruning. |·| denotes the number of vector elements. Other notations248

follow the previous definitions.249

However, the above problem is computationally expensive as we need to250

evaluate the network on the whole training dataset for all the feasible compression251

ratio allocations. Instead, to make the optimization computationally tractable, we252

first replace the original training loss with its second-order Taylor expansion253

L(w +∆w) =
1

N

N∑
n=1

ℓ(n)(w +∆w)

≈ L(w) + gTw∆w +
1

2
∆wTHw∆w,

(17)

where gw = ∇L(w) denotes the gradient vector and Hw = ∇2L(w) denotes the254

Hessian matrix. For the given pre-trained model weight, it’s reasonable to assume255

that it has converged to a local minimum with nearly zero gradient vector. As a256

result, we can ignore both the zeroth-order constant and first-order term, and only257

keep the second-order loss perturbation258

∆L =
1

2
∆wTHw∆w (18)

caused by model compression. However, on the one hand, the complexity of the259

Hessian matrix is quadratic to the number of weights. On the other hand, the260
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interaction between different weights only allows the black-box search algorithms,261

which have many hyper-parameters, for problem-solving. To fix these two issues,262

we propose a two-step Hessian approximation (i.e., GGN and Block-diagonal263

Approximation) and detail it in the following.264

GGN Approximation: The original Gauss-Newton algorithm is an approxima-265

tion to Newton’s method for nonlinear least square problems,L(θ) = 1
2

∑
n(f(θ,x

(n))−266

y(n))2. [26] generalized this idea as the following:267

Definition 1. For objectives of the form L(θ) =
∑

n an(bn(θ)), with bn : RD →268

RM and an : RM → R, the Hessian can be written as269

∇2L(θ) =
∑
n

(∇θbn(θ))
T∇2

bnan(bn(θ))(∇θbn(θ))

+
∑
n,m

[∇bnan(bn(θ))]m∇2
θb

(m)
n (θ),

(19)

where [·]m selects the m-th component of a vector, and b
(m)
n denotes the m-th270

component function of bn. The generalized Gauss-Newton matrix (GGN) is defined271

as the part of Hessian that ignores the second-order information of bn,272

G(θ) :=
∑
n

(∇θbn(θ))
T∇2

bnan(bn(θ))(∇θbn(θ)). (20)

In general, the task-specific loss function (e.g., cross-entropy loss and square-error273

loss) ℓ is convex. Therefore, to ensure the approximated Hessian to be positive274

semidefinite and loss perturbation to be non-negetive, we decouple the training loss275

(4) as bn = f (n)(w) and an = ℓ(n)(bn). According to (20), we obtain the following276

Hessian approximation277

H̃w =
1

N

N∑
n=1

(∇f (n)(w))TΣ(n)(∇f (n)(w)), (21)
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where∇f (n)(w) denotes the Jacobian matrix of f (n) on w, Σ(n) denotes the Hessian278

matrix of ℓ(n) on f (n). On the other hand, for any given loss function ℓ, we can279

write its Σ(n) explicitly. Take the cross-entropy loss as an example. It’s easy to280

derive that281

Σ
(n)
ij =


1

(f
(n)
t )2

i = j = t,

0 otherwise,
(22)

where t denotes the ground-truth label. Consequently, we reduce the complexity282

of the Hessian matrix from quadratic growth to linear growth concerning the283

number of weights. Then, we substitute the above approximation into Eq. (18) and284

approximate the loss perturbation as285

∆L̃ =
1

2
∆wT H̃w∆w

=
1

2N

N∑
n=1

[∇f (n)∆w]TΣ(n)[∇f (n)∆w].
(23)

Block-diagonal Approximation: To introduce more priors about the structure286

of the optimization problem (14), we assume that the Hessian matrix is block-287

diagonal with only non-zero terms for weights within the same layer. Therefore,288

we can further approximate the loss perturbation as289

∆L̃block =
1

2

L∑
l=1

(∆w(l))T H̃w(l)∆w(l). (24)

Finally, based on the above two-step approximation, we can reformulate the290

problem (14) as291

min
{c(l)}Ll=1

1

2

L∑
l=1

(∆w(l))T H̃w(l)∆w(l)

s.t. ∆w(l) = P(w(l), c(l))− w(l)

L∑
l=1

M(c(l), w(l)) ≤ target size, c(l) ∈ C

(25)
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Obviously, the above problem (25) can be transformed into an integer linear292

programming problem. More specifically, it is equivalent to a special variant of the293

Knapsack problem called the Multiple-Choice Knapsack Problem (MCKP) [27].294

Consequently, we propose a greedy search algorithm to solve it efficiently. More295

specifically, we choose a layer with the highest priority based on the proposed296

greedy criterion and then decrease its compression ratio. We repeat the above step297

until the target model size constraint is broken. The detailed steps are as follows:298

1) Sort the candidate compression ratios of each layer in descending order and299

denote it as {ci}Ki=0.300

2) Initialize each layer with the largest candidate compression ratio and denote the301

current solution as ci(l) .302

3) Calculate the incremental profit density303

∆L̃(l)
block,c

i(l)
− ∆L̃(l)

block,c
i(l)+1

M(ci(l)+1, w
(l))−M(ci(l) , w

(l))
(26)

for each layer and update the compression ratio of the layer l∗ with the largest304

one to ci(l∗)+1.305

4) Repeat step 3) until the target model size constraint is broken.306

3.4. Summary of Algorithm Procedure307

In the previous sections, we have introduced the two key techniques (i.e.,308

Dynamic BN and efficient solving algorithm) in detail. To further understand the309

process of determining the optimal compression ratio allocation, we combine these310

two components and summarize the overall procedure in the Algorithm 1. Please311

refer to it for more implementation details.312
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Algorithm 1 Determination for the Optimal Compression Ratio Allocation

Input: training dataset {(x(n),y(n))}Nn=1; pre-trained network with weights

{w(l)}Ll=1; candidate compression ratios of each layer C; target model size T

Output: compression ratio of each layer {ci(l)}Ll=1

1: /* Step 1: calculate loss perturbation of each layer */

2: calculate {{∆w
(l)
c = P(w(l), c)−w(l)}c∈C}Ll=1 for quantization and/or pruning

3: initialize {{∆L̃(l)
block,c}c∈C}Ll=1 with zero

4: for n = 1 to N do

5: set model.train() for Dynamic BN

6: compute output and gradient for (x(n),y(n))

7: update {{∆L̃(l)
block,c}c∈C}Ll=1 according to Eq. (24)

8: end for

9: /* Step 2: greedy search for optimal compression ratio allocation */

10: sort candidate compression ratios C in descending order and denote it as

{ci}Ki=0

11: initialize the current compression ratio of each layer ci(l) as i(l) = 0

12: while cuurent model size below the target T do

13: for l = 1 to L do

14: obtain the next compression ratio ci(l)+1 and its corresponding loss pertur-

bation ∆L(l)
block,c

i(l)+1

15: calculate the incremental profit density of current layer as
∆L̃(l)

block,c
i(l)

− ∆L̃(l)
block,c

i(l)+1

M(c
i(l)+1

,w(l))−M(c
i(l)

,w(l))

16: end for

17: sort the incremental profit density among layers, denote the layer with the

largest one as l⋆, then update the compression policy by i(l
⋆) ← i(l

⋆) + 1

18: end while
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What’s more, we analyze the computational complexity of the above model313

compression framework. As shown in the Algorithm 1, the computation cost314

of our method is mainly composed of two parts, namely the calculation of loss315

perturbation and the greedy search to solve MCKP. For the calculation of loss316

perturbation, we denote the number of images as N and the computational com-317

plexity of network forward/backward propagation for a single image as T . Then318

its total computational complexity is O(NT ). Empirically, the loss perturbation319

converges rapidly, and a few hundred images are enough for its approximation. For320

the greedy search to solve MCKP, we denote the number of candidate compression321

ratios as |C| and the number of layers as L. First, the computational complexity of322

picking the largest element from an unordered sequence isO(L). As the maximum323

number of iterations of the loop is |C|L, its total computational complexity is324

O(|C|L2). In summary, the total computational complexity for determining the325

optimal compression ratio allocation is O(NT + |C|L2).326

4. Experiments327

In this section, we first introduce the experimental setup thoroughly from328

different aspects. Then, we conduct a detailed comparative analysis of the proposed329

Dynamic BN and Hessian approximation to justify their effectiveness. Furthermore,330

we show the fine-tuned accuracy results of our compressed models and compare331

them with other state-of-the-art methods. Finally, we visualize the compression332

ratio of each layer to understand what our method learns.333

4.1. Experimental Setup334

Datasets: We conduct analysis on the CIFAR-100 dataset [28], which consists of335

50k training images and 10k testing images in 100 classes. We compare with other336
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state-of-the-art compression methods on the ImageNet dataset [29], which consists337

of 1.2M training images and 50k validation images in 1000 classes. We report338

the Top-1/5 accuracy on the validation split for the performance measure. We339

perform standard data augmentation [1] for these two datasets. More specifically,340

for CIFAR-100, 4 pixels are padded on each side, and a 32×32 crop is randomly341

sampled from the padded image or its horizontal flip. For ImageNet, the image342

is first resized so that the shorter side is 256, then a 224 × 224 crop is randomly343

sampled from the image or its horizontal flip, with the per-channel mean subtracted.344

Table 1: Correlation analysis for different performance predictors under different model

size constraints. The ‘NZ-x%’ and ‘Ave. y-bits’ mean that the percentage of non-zero

elements and averaged bit-width of the model weights are x% and y-bits, respectively.

Method Constraint
Original Loss +Dynamic BN

PCC SCC Tau PCC SCC Tau

Quant
Ave. 3-bits 0.23 0.23 0.15 0.86 0.66 0.49
Ave. 4-bits 0.37 0.40 0.27 0.78 0.68 0.51
Ave. 5-bits 0.40 0.35 0.25 0.79 0.66 0.50

Pruning
NZ-50% 0.12 0.11 0.07 0.62 0.63 0.45
NZ-25% 0.10 0.16 0.11 0.60 0.59 0.42
NZ-20% 0.06 0.13 0.08 0.88 0.89 0.71

Network Architectures: We evaluate our method on a wide range of network345

architectures. We use the ResNet-20 and ResNet-18/50 as in [1] for CIFAR-100346

and ImageNet, respectively. What’s more, we evaluate our method on the more347

challenging lightweight networks, including MobileNet-V1 [30] and MobileNet-348

V2 [31]. Except for MobileNet-V1, all the other models pre-trained on ImageNet349

are taken from the Pytorch model zoo.350

Model Compression Pipeline: As stated before, we adopt a two-stage framework351
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and decouple the model compression problem as the following two sub-ones. First,352

determine the optimal compression ratio allocation and quantize/prune the pre-353

trained model weight with the solved compression policy. More specifically, for354

quantization-only, the candidate compression ratios mean the candidate bit-widths355

ranging from 1-bit to 8-bit. For pruning-only, the candidate compression ratios356

mean the candidate sparsity ratios ranging from 10% to 95%. When quantization357

and pruning are conducted simultaneously, each candidate compression ratio corre-358

sponds to a tuple which consists of both quantization bit-width and sparsity ratio.359

As we note that the calculation result of (24) converges rapidly with a few hundred360

images, we only randomly sample 1024 images from the training set to figure out361

the approximate loss perturbation in the later experiments. Second, fine-tune the362

model weights with the solved compression ratio of each layer. The fine-tuning363

details are introduced in the following.364

Fine-tuning Details: We perform fine-tuning after quantization and/or pruning365

to restore accuracy. We use the SGD optimizer with a momentum of 0.9 and a366

mini-batch size of 128/256 for the experiments on CIFAR-100/ImageNet. For367

quantization, we adopt the Straight-Through Estimator (STE) [16] to estimate the368

gradient. We use the cosine annealing strategy for all the experiments to decay the369

learning rate. For method analysis on CIFAR-100, fine-tuning is performed for 120370

epochs with the initial learning rate/weight decay of 0.01/5e-4. For compression371

results on ImageNet, fine-tuning is performed for 60 epochs with an initial learning372

rate of 0.05. The weight decay is 1e-4 for ResNet-18/50 and 5e-5 for MobileNet-373

V1/V2, respectively.374

Calculation of Compression Ratio: Our calculation of compression ratio is375

consistent with the existing works [10; 20]. For quantization, we assume the376
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original weights are stored in single precision of 32-bit, so b-bit quantization means377

compression ratio of 32
b
×. For pruning, the sparsity ratio of r means the percentage378

of non-zero weights is 1 − r, and the corresponding compression ratio is 1
1−r
×.379

When quantization and pruning are conducted simultaneously, the compression380

configuration of (b, r) means the compression ratio of 32
b
· 1
1−r
×.381
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(b) ResNet-20 on CIFAR-100

Figure 4: Quantitative Analysis for the proposed two-step Hessian approximation. We take

ResNet-18 on the ImageNet and ResNet-20 on the CIFAR-100 as examples and randomly

sample 100 different compression ratio allocations for quantization and pruning, respec-

tively. Then we compute and compare the corresponding true (∆L) and two approximated

(∆L̃ and ∆L̃block) loss perturbations for each compression policy.

4.2. Method Analysis382

Dynamic BN: We argue that Dynamic BN could improve the performance predic-383

tion significantly in Section 3.2 and show the qualitative results in Figure 1. Here384

we further conduct quantitative analysis. In summary, we focus on two perfor-385
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mance predictors, namely the original training loss (4) and the improved one with386

Dynamic BN, and compare their correlation with the real performance. First, we387

randomly sample 100 different compression ratio allocations for quantization and388

pruning on ResNet-20 under different model size constraints. Then, we fine-tune389

each compressed network until convergence and get the corresponding sample390

pair which consists of the real performance and the value of the specific predictor.391

Finally, to judge the relevance of different predictors qualitatively, we adopt three392

widely used indicators that measure the correlation between sequences, namely393

Pearson Correlation Coefficient (PCC), Spearman Correlation Coefficient (SCC),394

and Kendall’s Tau (Tau). As the predictors we compare are negatively correlated395

with the real performance, we only report their absolute values here. The results396

summarized in Table 1 show that Dynamic BN could significantly improve the397

relevance under different correlation indicators and model size constraints for398

quantization and pruning.399

Hessian Approximation: To solve the optimization problem efficiently, we400

propose a two-step approximation that includes GGN and Block-diagonal ap-401

proximation for the Hessian matrix in Section 3.3. Here we further conduct an402

empirical analysis to justify the effectiveness of the proposed strategies. Similarly,403

we randomly sample 100 different compression ratio allocations and compute the404

corresponding true loss perturbation, namely ∆L, and the two approximated loss405

perturbations, namely ∆L̃ and ∆L̃block, for each compression policy. We repeat406

the above procedure for both ResNet-18 on the ImageNet and ResNet-20 on the407

CIFAR-100 with quantization and pruning. As the summarized results in Figure 4408

show, these points are roughly distributed on a straight line passing through the409

origin. Therefore, we empirically justify that our approximated Hessian can still410
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Figure 5: Comparison between the proposed two-step Hessian approximation and HAWQ-

V2. We take ResNet-18 on ImageNet as the example and randomly sample 100 different

compression ratio allocations for quantization and pruning. Then we compare the correla-

tion (left and middle) and relative percentage error (right) between the true (∆L) and two

approximated (∆L̃block and ∆L̃diag) loss perturbations for each compression policy.

capture most of the information in the original one with much-reduced complexity.411

Furthermore, we compare our two-step approximation with HAWQ-V2 [24],412

which only utilizes the trace information of the true Hessian matrix. We denote413

the loss perturbation via HAWQ-V2 approximation as ∆L̃diag. The experimental414

results are summarized in Figure 5. More specifically, we compare with HAWQ-415

V2 approximation from two different aspects. First, we calculate the Pearson416

Correlation Coefficient (PCC) between the true loss perturbation (∆L) and the two417

approximated ones (∆L̃block and ∆L̃diag), respectively. As the left and middle of418

Figure 5 show, our approximation demonstrates a higher correlation. Second, we419

examine the relative percentage error between the true loss perturbation and the420

two approximated ones (i.e., |∆L−∆L̃block

∆L | × 100% and |∆L−∆L̃diag

∆L | × 100%). As421

the right of Figure 5 shows, our approximation demonstrates the lower error. All422
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the above experimental results justify that our two-step Hessian approximation is423

superior to HAWQ-V2 in estimating the loss perturbation.424
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Figure 6: Fine-tuned Top-1 accuracy of ResNet-20 on the CIFAR-100 under different

compression ratios. We first ablate the effectiveness of different components of the

proposed framework for quantization (left) and pruning (middle), respectively. Besides,

we justify that our method can utilize the complementary nature of quantization and

pruning (right) and further improve the performance of the compressed model.

4.3. Fine-tuned Results425

After analysis of the proposed framework, we further fine-tune the models with426

the solved compression ratio allocations and compare the accuracy results with427

other model compression approaches.428

4.3.1. Results on the CIFAR-100429

We first consider compressing ResNet-20 on the CIFAR100 dataset and sum-430

marize the results in Figure 6. As the left and middle of Figure 6 show, all the431

methods that utilize the second-order information demonstrate better performance432

than uniform compression ratio allocation for quantization and pruning under dif-433

ferent model size constraints. Besides, the experimental results also justify that our434

two-step Hessian approximation (∆L̃block) is superior to HAWQ-V2 (∆L̃diag) in435
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Table 2: Summary of compression results on the ImageNet dataset. The ‘NZ Ratio’ and

‘Ave. Bits’ refers to the percentage of non-zero elements and averaged bit-width of the

model weights, respectively. The ‘Comp. Ratio’ represents the overall compression ratio.

Network Method Automated Pruning Quantization NZ Ratio Ave. Bits Comp. Ratio Top-1 Top-5

ResNet-18

Full-Precision - - - - - 1.00× 69.76 89.08

Low-Bit-ADMM [32] ✗ ✗ ✓ - 3.0 10.67× 68.00 88.30
LQ-Net [33] ✗ ✗ ✓ - 3.0 10.67× 69.30 88.80

Ours ✓ ✗ ✓ - 2.6 12.40× 70.19 89.40

Ours ✓ ✗ ✓ - 2.3 13.91× 69.63 89.06

State of Pruning [34] ✗ ✓ ✗ 50.0 - 2.00× 69.71 -
State of Pruning [34] ✗ ✓ ✗ 12.5 - 8.00× 63.86 -

Ours ✓ ✓ ✗ 25.0 - 4.00× 69.76 89.23

Ours ✓ ✓ ✗ 12.5 - 8.00× 67.29 87.86

ResNet-50

Full-Precision - - - - - 1.00× 76.13 92.86

Low-Bit-ADMM [32] ✗ ✗ ✓ - 3.0 10.67× 74.00 91.60
LQ-Net [33] ✗ ✗ ✓ - 4.0 8.00× 76.40 93.10

HAQ [9] ✓ ✗ ✓ - 3.0 10.57× 75.30 92.45
HAQ [9] ✓ ✗ ✓ - 2.1 15.47× 70.63 89.93

Ours ✓ ✗ ✓ - 3.0 10.75× 76.92 93.31

Ours ✓ ✗ ✓ - 2.1 15.45× 76.11 92.86

L-OBS [22] ✗ ✓ ✗ 45.5 - 2.20× - ≈85
GSM [35] ✓ ✓ ✗ 20.0 - 5.00× 74.30 91.98

LR Rewinding [36] ✗ ✓ ✗ 21.0 - 4.77× 75.30 -
Ours ✓ ✓ ✗ 25.0 - 4.00× 76.24 93.01

Ours ✓ ✓ ✗ 20.0 - 5.00× 76.11 92.98

Ours ✓ ✓ ✗ 16.7 - 6.00× 75.81 92.86

CLIP-Q [10] ✓ ✓ ✓ 30.6 3.3 31.81× 73.70 -
Ours ✓ ✓ ✓ 27.8 3.2 36.00× 75.92 92.79

MobileNet-V1

Full-Precision - - - - - 1.00× 70.20 89.26

DC [3] ✗ ✗ ✓ - 3.2 10.09× 65.93 86.85
HAQ [9] ✓ ✗ ✓ - 3.1 10.22× 67.66 88.21
DC [3] ✗ ✗ ✓ - 2.2 14.81× 37.62 64.31

HAQ [9] ✓ ✗ ✓ - 2.2 14.81× 57.14 81.87
Ours ✓ ✗ ✓ - 3.2 10.00× 69.32 88.80

Ours ✓ ✗ ✓ - 2.2 14.69× 65.55 86.64

Prune or Not Prune [37] ✗ ✓ ✗ 50.5 - 1.98× 69.50 89.50
Prune or Not Prune [37] ✗ ✓ ✗ 25.9 - 3.86× 67.70 88.50

Ours ✓ ✓ ✗ 50.0 - 2.00× 70.82 89.91

Ours ✓ ✓ ✗ 25.1 - 3.98× 68.25 88.30

CLIP-Q [10] ✓ ✓ ✓ 52.6 4.6 13.19× 70.30 -
ANNC [20] ✓ ✓ ✓ 42.0 2.8 26.7× 66.49 87.29

Ours ✓ ✓ ✓ 51.8 4.4 13.97× 70.47 89.49

Ours ✓ ✓ ✓ 34.7 3.3 27.82× 68.64 88.44

MobileNet-V2

Full-Precision - - - - - 1.00× 71.88 90.29

DC [3] ✗ ✗ ✓ - 4.3 7.47× 71.24 89.93
HAQ [9] ✓ ✗ ✓ - 4.3 7.47× 71.47 90.23

Ours ✓ ✗ ✓ - 4.3 7.50× 71.83 90.36

DC [3] ✗ ✗ ✓ - 3.3 9.69× 68.00 87.96
HAQ [9] ✓ ✗ ✓ - 3.3 9.69× 70.90 89.76

Ours ✓ ✗ ✓ - 3.3 9.76× 71.05 90.12

DC [3] ✗ ✗ ✓ - 2.3 13.93× 58.07 81.24
HAQ [9] ✓ ✗ ✓ - 2.3 14.07× 66.75 87.32

Ours ✓ ✗ ✓ - 2.3 14.00× 69.21 89.07
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terms of fine-tuned accuracy. Then, we also ablate the effectiveness of the proposed436

Dynamic BN and Hessian approximation, and justify that these two techniques437

can be combined to improve the performance further. Finally, as the right of438

Figure 6 shows, our method can utilize the complementary nature of quantization439

and pruning and outperform any single one under the same compression ratio by440

conducting quantization and pruning simultaneously.441

4.3.2. Results on the ImageNet442

What’s more, we compare our method with kinds of state-of-the-art model443

compression works on the ImageNet and summarize the results in Table 2. To444

verify the effectiveness of our method comprehensively, we cover the network445

architectures with a wide range of depth (e.g., ResNet-18 vs. ResNet-50) and446

different number of parameters (e.g., ResNet-50 vs. MobileNet-V1/V2). Besides,447

we also cover kinds of compression techniques to justify the generality of our448

method. According to the degree of automation for determining the compression449

ratio allocation, we compare with hand-crafted methods [32; 33; 34; 3; 22;450

36; 37], and automatic methods [9; 35; 10; 20]. According to the adopted451

compression technique, we compare with quantization-only [32; 33; 3; 9],452

pruning-only [34; 22; 36; 37; 35] and pruning-quantization [10; 20]453

methods. For these various works considered here, we all obtain significant454

accuracy improvement under the similar model size constraint.455

5. Compression Ratio Allocation Visualization456

In this section, we visualize the optimized compression ratio allocations to457

understand our method further. We take MobileNet-V1 and ResNet-50 as examples458

and conduct quantization and pruning simultaneously. The results are summarized459
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(a) Compression ratio allocation for ResNet-50
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(b) Compression ratio allocation for MobileNet-V1

Figure 7: Visualization of the optimized compression ratio allocations. We take MobileNet-

V1 and ResNet-50 as examples and conduct quantization and pruning simultaneously. For

each network architecture, except for the allocated total compression ratio of each layer

(bottom), we also visualize the specific compression ratio caused by quantization (top)

and pruning (middle), respectively.
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in Figure 7. More specifically, except for each layer’s allocated total compression460

ratio, we also visualize the specific contribution of quantization and pruning,461

respectively. We notice that our method prefers quantization rather than pruning for462

these two network architectures. This strategy is consistent with the experimental463

results that, compared with pruning, quantization will cause less performance464

degradation under the same compression ratio. For MobileNet-V1, we notice that465

the allocated compression ratios of the pointwise convolution layer are significantly466

higher than the ones of the depthwise convolution layer. Moreover, for the same467

type of layer, the allocated compression ratio becomes higher as the network layer468

becomes deeper. Unfortunately, these empirical rules do not apply to ResNet-50,469

which indicates that we could not accurately determine the compression ratio of470

each layer based on some simple human heuristics.471

6. Conclusion and Future Work472

Deep neural networks have shown great promise in various domains. How to473

efficiently and effectively compress these deep models is still an open research474

topic. This paper proposes a novel and unified two-stage framework for automatic475

model compression. Briefly speaking, we improve the optimization of compression476

ratio allocation from two aspects. First, we propose Dynamic BN that improves the477

performance prediction significantly with little additional computation cost. Sec-478

ond, we propose an efficient and hyperparameter-free solving algorithm based on479

the proposed Hessian matrix approximation and Knapsack problem reformulation.480

Extensive experiments and analyses are conducted to justify the advantages of our481

method over existing model compression works. However, our proposed method482

is partially based on Batch Normalization (BN) layer. In future work, we aim to483
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extend the framework to BN-free models with a similar idea. Moreover, we will484

explore combining more compression techniques (e.g., low-rank decomposition)485

for more downstream tasks (e.g., object detection). Finally, to enhance the pro-486

posed automatic model compression framework, we hope to explore more possible487

trade-offs between effectiveness and efficiency for both performance predictor and488

solving algorithm.489
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