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ABSTRACT

How to improve the generalization of CNN models has been
a long-lasting problem in the deep learning community. This
paper presents a runtime parameter/FLOPs-free method to
strengthen CNN models by stacking linear convolution op-
erations during training. We show that overparameterization
with appropriate regularization can lead to a smooth optimiza-
tion landscape that improves the performance. Concretely,
we propose to add a 1×1 convolutional layer before and after
the original k × k convolutional layer respectively, without
any non-linear activations between them. In addition, Quasi-
Orthogonal Regularization is proposed to maintain the added
1× 1 filters as orthogonal matrixes. After training, those two
1× 1 layers can be fused into the original k× k layer without
changing the original network architecture, leaving no extra
computations at inference, i.e. parameter/FLOPs-free.

Index Terms— Over-parameterization, Model general-
ization, Orthogonal regularization

1. INTRODUCTION

A variety of strategies have been proposed to improve the
generalization of CNN models. For example, data augmenta-
tions either with manual design [1] or automatical search [2]
perform well on improving the generalization of different
neural network architectures. Besides, Knowledge distilla-
tion [3, 4], which uses the prediction of large models to guide
the training of small models, can effectively train DNNs
to obtain higher accuracy. All these methods do not mod-
ify the original model architectures, and the improvements
come from training procedure refinements. On the other
hand, some works focus on designing plug-and-play mod-
ules that can be inserted into the well-designed architectures.
For example, SE [5] and CBAM [6] enhance models’ ex-
pressiveness with attention mechanisms. Though significant
improvements in performance can be brought without re-
designing network architectures, these methods introduce
extra parameters/calculations not only during training but al-
so at inference time, which defeats the purpose of deploying
models on mobile devices.
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Fig. 1. Training procedure for Mergeable Linear Block with
Quasi-Orthogonal Regularization. The part in the red dotted
box denotes the original k × k convolution W . U and V are
the added 1 × 1 filters. And it is the proxy tensors QU and
QV that actually convolve with inputs during training. They
are associated together through an upper triangular matrix R.
After training, the orthogonal tensorsQU andQV are merged
into the original filters W , obtaining an equivalent filter W̃ .

In this work, we explore the advantages of overparameter-
ization in CNNs by adding additional 1× 1 filters with regu-
larization before and after the original k × k filters. In addi-
tion, we enforce kernels of the additional 1× 1 convolutional
layers to be orthogonal, which can preserve energy and make
spectra uniform during training by stabilizing the activation
distribution. As a result, the model is promoted to explore its
expressiveness, and higher performance can be obtained dur-
ing training. In addition, we show that with a specific number
of input/output channels, the added orthogonal 1×1 convolu-
tions can be merged into the original convolutions after train-
ing, without changing the original architectures. No extra
parameters or computations are introduced during infer-
ence.

Our motivation is inspired by the recent works on deep
network optimization [7, 8]. [7] shows that two adjacent lin-
ear layers can provide implicit regularization for models to
generalize well. And from an optimization view, [8] finds that



a faster convergence is obtained through replacing a matrix
parameter with a product of matrices (without non-linearity
between them). These investigations motivate us to explore
the advantages of linear combinations in deep CNNs.

2. METHODOLOGY

A Standard CNN model can be seen as a composition of mul-
tiple nonlinear blocks. Each of these blocks consists of a lin-
ear transformation, followed by an element-wise non-linear
activation σ(·), such as ReLU. We use Xj,:,: to denote the j-
th channel of input X ∈ Rchannel×height×width. Then the i-th
channel of output Y can be calculated as the following linear
transformation,

Yi,:,: =

c∑
j=1

W i
j,:,: ⊗Xj,:,: (1)

Here, ⊗ denotes a 2D convolution operator. W i
j,:,: is the j-

th channel of W i. W i is the i-th filter of 4D weights W ∈
Rn×c×h×w, where (n, c, h, w) are filter number, input chan-
nel number, kernel height and kernel width. Biases are omit-
ted for simplicity.

2.1. Mergeable Linear Block

Just as we stated in our motivation, researchers [7, 8] find that
two adjacent linear layers can provide implicit regularization
for models to generalize well, with theoretical proof on a sim-
ple two-layer model. On this basis, we would like to explore
the advantages of linear modules in modern architectures.

An intuitive way is to add extra convolutions to each non-
linear block of models. As shown in Figure 1, we insert one
1 × 1 convolutional layer before and after the original k × k
convolutional layer, denoted by U and V respectively.

1 × 1 convolution, also known as pointwise convolution,
has been widely explored for building new features through
computing linear combinations of the input channels. It al-
lows learnable interactions of cross channel information [9]
and can complement tiny spatial details of feature maps [10].
As the formulation of convolution in Eq.1, 1× 1 convolution
between U and X can be written as,

cU∑
k=1

U j
k,:,: ⊗Xk,:,: =

cU∑
k=1

U j
k,:,: ·Xk,:,: (2)

In 1 × 1 convolution, U j
k,:,: is a real number rather than a 2D

matrix. Therefore, the convolution operator ⊗ between U j
k,:,:

and Xk,:,: can be replaced by multiplication operator ·.
In order not to change the original model architecture after

merging adjacent kernels, the shape of added convolution ker-
nels is set to be 1×1. That is, hU = wU = 1, hV = wV = 1.
As for filter number and input channel number of convolu-
tions, we set nU = cU = cW and nV = cV = nW . In

this way, those two 1× 1 layers can be fused into the original
k × k layer after training to obtain a single k × k layer W̃ ,
without changing the original architecture. According to Eq.1
and Eq.2, inserting U before W can be formulated as below,

Y:,:,i =

cW∑
j=1

W i
j,:,: ⊗ (

cU∑
k=1

U j
k,:,: ·Xk,:,:)

=

cW∑
j=1

cU∑
k=1

(W i
j,:,: · U

j
k,:,:)⊗Xk,:,: =

cU∑
k=1

W̃ i
k,:,: ⊗Xk,:,:

(3)
where W̃ =

∑cW
j=1W

i
j,:,: · U

j
k,:,: is the new equivalent filter,

obtained by merging U and W . The last line of Eq.3 is the
new equivalent convolution. Note that W̃ has the same shape
with the original W . The above derivation takes U and W as
an example and it is the same for W and V .

2.2. Orthogonal Regularization

In the above section, we propose MLB. However, adding ex-
tra linear convolutions means increasing the depth of the mod-
el during training, which gives rise to the notorious problem
of vanishing/exploding gradients [11, 12]. In this work, we
alleviate the problem with the help of orthogonality regular-
ization. We show that maintaining orthogonality of filters not
only has norm-preserving property, but can also promote the
model to explore its expressiveness with the help of stabiliz-
ing activation distribution and reducing redundancy in feature
maps.

In this work, by introducing an appropriate proxy ma-
trix, we propose a novel orthogonal regularization method
that can trade off orthogonality against computation complex-
ity. Specifically, given the added 1 × 1 convolutional kernel
U , we perform QR decomposition on it to get an orthogonal
matrix QU and an upper triangular matrix RU . Several meth-
ods, such as Gram-Schmidt process or Givens rotations can
be used for computing the QR decomposition:

U = QURU (4)

As shown in Figure 1, it is proxy matrix QU rather than
U that actually takes part in the forward and backward propa-
gation, and its derivatives ∂`

∂QU
can be obtained through back-

propagation. Though U does not directly participate in infer-
ence, its derivatives can be obtained through chain rule:

∂`

∂U
=

∂`

∂QU

∂QU

∂U
=

∂`

∂QU
· (R−1U )T (5)

However, it is time-consuming to perform QR decomposi-
tion at every iteration. To alleviate it, we propose Quasi-
Orthogonal Regularization (Quasi-OR). Concretely, accord-
ing to Eq.4, orthogonal matrix can be calculated as

QU = UR−1U (6)
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Fig. 2. Orthogonal property with Quasi-OR in some layers of
ResNet-20 on CIFAR-100.

Here, U is updated by gradient descent with Eq.5. As forRU ,
instead of updating it at each iteration, we introduce an update
interval T . At i-th iteration, Ri

U is approximated as below,

R
(i)
U ≈ R

(kT )
U , if kT < i < (k + 1)T (7)

where k ∈ {0, 1, 2...}. When i = kT , R(kT )
U is obtained

through QR decomposition. In this way, computationally ex-
pensive QR is conducted only once within interval T . In this
work, T is empirically set as 500 iterations.

The orthogonality loss within one nonlinear block (com-
posed of U,W, V followed by a nonlinear function) is:

Lortho =
∥∥QT

UQU − I
∥∥2
F

+
∥∥QT

VQV − I
∥∥2
F

(8)

3. EXPERIMENTS

In this section, we evaluate the proposed method in terms of
qualitative and quantitative studies. Specific configurations
are conducted for the added 1 × 1 convolutional layers: (1)
we initialize them with the identity matrix, which is a special
orthogonal matrix, keeping the spectrum of outputs the same
with that of inputs. (2) The weight decay is set to 0.

3.1. Effectiveness Exploration

In this section, we explore the effect of the proposed method
from a qualitative view. Specifically, we first show the effec-
tiveness of Quasi-OR in making spectra uniform and stabi-
lizing the activation distribution. Then we visualize the opti-
mization landscape to further explore the advantages of MLB.

3.1.1. Quasi-OR

Figure 2 visualizes QTQ after training to show how Quasi-
OR can preserve orthogonality. Here, we train ResNet-20-
MLB (equip the ResNet-20 with MLB by adding 1×1 kernels
U ,V before and after the original k × k convolutional layer
respectively) on CIFAR-100 with Quasi-OR. The colors of
pixels range from white to dark blue, indicating their values
from 0 to 1. As shown in Figure 2, Quasi-OR behaves close
to the goal

∥∥QTQ− I
∥∥2
F

= 0.
We further show the effectiveness of Quasi-OR in mak-

ing spectra uniform and stabilizing the activation distribution.

The spectrum of a matrix is the set of its eigenvalues. In C-
NNs, given a convolutional kernel W with its transformation
Y = WX , the spectrum ofW measures how ‖Y ‖

‖X‖ varies with
different X . We take ResNet-20-MLB on CIFAR-100 as an
example. In order to show the relationship between spectrum
and orthogonality, 1000 images are randomly selected from
CIFAR-100 and used for forward and backward propagation.
The results of ‖Y ‖‖X‖ are shown in Figure 3, sorting from the
largest to the smallest. Comparing with no regularization, our
Quasi-OR makes the spectrum more uniform, guaranteeing
that the energy of activations will not be amplified.
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Fig. 3. The spectrum of weights. Taking ResNet-20 equipped
with MLB as an example. ‖Y ‖‖X‖ of the first QU is calculated
and sorted from the largest to the smallest.

3.1.2. Optimization landscape

Following [13], we calculate the Lipschitzness and “effec-
tive” β-smoothness in training ResNet-20, which measures
the stability and the smoothness of optimization landscape of
loss function [14]. From the Figure 4, though gradient pre-
dictiveness of the original ResNet-20 (red shade) is thin e-
nough compared with that without BatchNorm in [13], our
method performs a thinner shade (green shade), indicating
that the Lipschitzness of the loss function can be further im-
proved. The above observation can also be explained by the
reparametrization [13] of trainable parameters, which makes
the underlying optimization more stable (measured by Lip-
schitzness). Concretely, from the original W to our W̃ =

{U,W, V }, the new W̃ is equivalent to reparameterizing W
through two learnable orthogonal transformations.

(a) Layer1.2.convW. (c) FC.(b) Layer2.7.convW.

Fig. 4. The gradient predictiveness [13] of ResNet-20
with/without our method. The thinner shade shows the s-
moother loss landscape and thus less training difficulty.



Table 1. The Top-1 accuracy on CIFAR-10/100 across dif-
ferent architectures and the same architecture with different
depth/width.

Model CIFAR-10 Acc.(%) CIFAR-100 Acc.(%)
Baseline ACNet Ours Baseline ACNet Ours

VGG-8 92.88 – +0.42 70.68 – +0.70
VGG-16 93.58 +0.35 +0.96 74.16 +0.64 +0.91
ResNet-20 92.88 – +0.60 69.63 – +0.76
ResNet-56 94.17 +0.78 +0.89 73.44 +0.46 +1.08
WRN-16-2 94.31 – +0.62 73.64 – +0.52
DenseNet-40 93.0 +0.55 +0.77 72.45 +0.27 +0.86
DenseNet-100 94.23 – +0.93 76.12 – +1.21
SqueezeNet 92.63 – +0.52 69.41 – +0.54

Table 2. Performance on ImageNet across architectures.

Model Top-1 Acc.(%) Top-5 Acc.(%)
Baseline Ours ∆ ↑ Baseline Ours ∆ ↑

AlexNet 56.11 57.03 +0.92 80.2 80.83 +0.63
AlexNet-BN 60.54 61.07 +0.53 82.79 83.24 +0.45
ResNet-18 70.4 71.20 +0.8 89.45 90.01 +0.56
DenseNet-121 75.1 76.04 +0.94 92.29 92.87 +0.49

3.2. Results

We evaluate our method from a quantitative view by apply-
ing it to various architectures. Experiments are conducted
on CIFAR-10/100 and the large-scale dataset ImageNet [15].
Standard PyTorch data augmentations and identical settings
are performed for both baseline and ours for comparabili-
ty. From the results in Table 1 and 2, we have the follow-
ing observations: (1) Our methods can improve performance
across different architectures, including the compact network
SqueezeNet [16], indicating that our method can integrate
well with different modern architectures. (2) Accuracy gains
are consistent across different network depth/width with the
same architecture, suggesting that the improvements induced
by ours may be complementary to those obtained by simply
increasing the depth of the base architecture. It is consis-
tent with our explanation above that two learnable orthog-
onal transformations provide reparametrization of trainable
parameters, making the underlying optimization more stable
and smooth.

3.3. Ablation studies

In this section, we perform ablation studies to find out
whether our proposed Quasi-OR is indeed specifically better
for our MLB (and vice versa). In other words, we would like
to show that MLB with Quasi-OR is not a simple combina-
tion like “A+B”. Therefore, we conduct ablation experiments
on whether Quasi-OR/MLB would also increase the perfor-
mance of the original networks respectively. We take vanilla
ResNet-56 on CIFAR-100 as our baseline and design three
ablation experiments: 1) ResNet-56 + MLB, 2) ResNet-56 +
Quasi-OR and 3) ResNet-56 + MLB + Quasi-OR. Training

Table 3. Ablation studies with ResNet-56 on CIFAR-100.
Method Top-1(%) ∆ ↑ (%)

ResNet-56(baseline) 73.58 –
ResNet-56 + MLB 73.62 +0.04
ResNet-56 + Quasi-OR 72.28 -1.34
ResNet-56 + MLB + Quasi-OR(ours) 74.52 +0.94

configurations are the same for them including random seed.
From results in Table 3, we have the following findings,

First, comparing the second line of Table 3 with the base-
line, there is practically no improvement on accuracy. This
phenomenon is inconsistent with the conclusion of [7, 8] who
argue that implicit regularization can be provided by those
adjacent linear layers for models to generalize well. This is
because adding extra linear convolutions increases the depth
of the model. As illustrated in Figure 3, when there is no
regularization on those added 1× 1 filters, it gives rise to the
notorious problem of exploding gradients because of the large
spectrum of those filters. The situation is particularly serious
when three linear layers are blocked together in MLB without
activations between them.

Second, in order to explore whether the accuracy im-
provement is simply attributed to the Quasi-Orthogonal Reg-
ularization, we design an ablation experiment by directly
applying Quasi-OR on the original k × k filters. Comparing
the third line of Table 3 with the baseline, directly applying
Quasi-OR on k × k filters even hurts the accuracy. Previous
works [17, 18] on the orthogonality of filters also notice the
same phenomenon. Note that an essential precondition for
the output channels of W to be orthogonal is that the shape of
W should satisfy n ≥ chw. In practical networks, the above
precondition is often unsatisfied with some convolutional lay-
ers. For example, the shape of layer22∼layer38 in ResNet-56
is [32, 32, 3, 3] and the rank of WTW ∈ R(chw)×(chw) is
less than m so that

∥∥WTW − I
∥∥ = 0 will never be obtained

for those layers. The unbalance between the objective and
practical filter shapes may cause accuracy degeneration.

4. CONCLUSION

In this paper, we propose a simple yet effective training re-
finement method. By simply adding 1×1 convolutional layer
with specific number of input/output channels before and after
the k× k filters, they can be merged into the original filters to
obtain an equivalent convolutional layer. Quasi-Orthogonal
Regularization is proposed to further make spectra uniform
and stabilize the activation distribution of added 1 × 1 con-
volutions. Experiments show that our approach demonstrates
consistent improvements over various modern architectures
on different datasets.
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