Ristretto: An Atomized Processing Architecture for Sparsity-Condensed
Stream Flow in CNN

Gang Li*
Shanghai Jiao Tong University
Shanghai, China
gliaca@sjtu.edu.cn

Naifeng Jing
Shanghai Jiao Tong University
Shanghai, China
Sjtuj @sjtu.edu.cn

Abstract—Low-precision quantization and sparsity have been
widely explored in CNN acceleration due to their effectiveness in
reducing computational complexity and memory requirements.
However, to support variable numerical precision and sparse
computation, prior accelerators design flexible multipliers or
sparse dataflow separately. A uniform solution that simultane-
ously exploits mixed-precision and dual-sided irregular sparsity
for CNN acceleration is still lacking. Through an in-depth review
of existing precision-scalable and sparse accelerators, we observe
that a direct combination of low-level multipliers and high-level
sparse dataflow from both sides is challenging due to their
orthogonal design spaces. To this end, in this paper, we propose
condensed streaming computation. By representing non-zero
weights and activations as atomized streams, the low-level mixed-
precision multiplication and high-level sparse convolution can be
unified into a shared dataflow through hierarchical data reuse.
Based on the condensed streaming computation, we propose
Ristretto, an atomized architecture that exploits both mixed-
precision and dual-sided irregular sparsity for CNN inference.
We implement Ristretto in a 28nm technology node. Extensive
evaluations show that Ristretto consistently outperforms three
state-of-the-art CNN accelerators, including Bit Fusion, Laconic,
and SparTen, in terms of performance and energy efficiency.

Keywords-Mixed Precision; Dual-sided Sparsity; Condensed
Streaming Computation; Atomized Processing Architecture

I. INTRODUCTION

Nowadays, deep convolutional neural networks have been
ubiquitous in various artificial intelligence fields, including
computer vision [22, 29], natural language processing [10],
and robotics [11, 37]. In order to reduce the computational
complexity and memory requirements of CNN for resource-
constraint inference, a spectrum of network compression
methods have been proposed, such as pruning [21, 33]
and quantization [6, 53]. However, the side effect of these
techniques is that the compressed network has diverse
numerical precisions and irregular sparse patterns across
the layers, which is difficult to witness performance gains

*Equal Contribution

Weixiang Xu*
Institute of Automation, CAS
Beijing, China
xuweixiang2018@ia.ac.cn

Jian Cheng
Institute of Automation, CAS
Beijing, China
jcheng@nlpr.ia.ac.cn

Zhuoran Song
Shanghai Jiao Tong University
Shanghai, China
songzhuoran @sjtu.edu.cn

Xiaoyao Liang<
Shanghai Jiao Tong University
Shanghai, China
liang-xy@cs.sjtu.edu.cn

from conventional general-purpose processors and dedicated
accelerators designed for single-precision dense models
[5, 8, 9, 26, 43]. Therefore, addressing mixed precision
and sparsity simultaneously is crucial for achieving optimal
hardware efficiency.

Existing state-of-the-art CNN accelerators handle mixed
precision and sparsity separately. Precision-scalable accelera-
tors [3, 27, 44-46] focus on designing flexible multipliers to
support variable bit-width at runtime, with little attention to
eliminating computations and movements of zero values.
Sparse accelerators [13, 17, 19, 39, 57] aim to squeeze
out zero values from dataflow, without considering multi-
precision adaption in processing elements. Since the design
space of precision-scalable accelerators is orthogonal to that
of sparse accelerators, we observe that a direct combination
of the custom-designed components from both sides is
challenging and not optimal. Therefore a comprehensive
co-design from the low-level multiplier up to the high-level
dataflow will be essential to the efficient handling of both
mixed precision and irregular sparsity.

A key idea of this work is that both the high-level sparse
convolution and low-level mixed-precision multiplication can
essentially be expressed as the computation between two
compact streams of non-zero elements. Concretely, 1) at
the sparse convolution level, each non-zero weight in the
k x k kernel is multiplied by all the non-zero activations
in the input feature map, and each input feature map is
convolved with multiple kernels to form partial results of
different output feature maps. That is, the sparse convolution
can be calculated as the outer product between two compact
streams containing only non-zero activations and weights. 2)
At the integer multiplication level, when regarding an m-bit
integer as a stream composed of several n-bit atoms (m > n),
the mixed-precision integer multiplication is equivalent to
the outer product of two non-zero atom streams followed by
aggregating partial results with proper shiftings. Since data

Xu Weixiang
高亮

W 3b W4b W 2b
90
80

40

Activation Sparsity (%)
(92 [} ~
o © o

ho

(a) Activation Sparsity

M8 MW4bm 2b

70
X 60
Z 50
w
= 40
o
“ 30
£
@ 20
Z 10 i
o = .| - -
o no & np A &
Q;§\ & \e?\ & &~ &
w <X o 3 & o0
& ® \°§ L

(b) Weight Sparsity

Figure 1: Visualization of average sparsity of activation and weight under different quantization bit-width. All five networks
are trained on the ImageNet dataset and quantized using the same uniform quantization method without pruning.

reuse exists in both value-level convolution and bit-level mul-
tiplication, the stream-based outer products of the two levels
can be seamlessly merged. Then the mixed-precision sparse
convolution can be calculated between sparsity-condensed
weight and activation atom streams. In this way, the low-level
processing elements for mixed-precision multiplication and
high-level dataflow for sparse convolution can be unified into
a common design space, with a single framework to handle
both issues, which is fundamentally different from prior arts.
Based on the proposed condensed streaming computation,
we propose Ristretto, a dedicated accelerator that employs
an atomized processing architecture for CNN inference. The
contributions of this paper are as follows:

« To exploit both mixed precision and dual-sided irregular
sparsity for accelerating CNN inference, we propose
the condensed streaming computation. It represents
sparse feature maps and convolution kernels as non-zero
atom streams. With the help of hierarchical data reuse
in bit-level multiplication and value-level convolution,
mixed-precision sparse convolution can be carried out
through efficient intersection between atom streams.
The fundamental goal of the condensed streaming
computation is to unify the low-level mixed-precision
multiplication and the high-level sparse convolution into
a common dataflow, avoiding the inefficiency of the
separate design methodology.

« To support the condensed streaming computation, we
propose an accelerator named ‘“Ristretto”, which em-
ploys an atomized processing architecture featuring
massive parallelism and constant input data bandwidth.
Ristretto exploits a channel-wise dataflow for streaming-
based outer product computation. Incorporated with
the compressed data format, Ristretto can eliminate
all zero weight/activation movements and zero atom
computations during inference. In addition, to mitigate
the performance loss caused by the synchronization issue

of parallel computing tiles, we propose a greedy-based
load balancing approach that can leverage the statistics
of both weight and activation.

o To evaluate Ristretto, we implement it on a 28nm
technology node and compare it with two state-of-the-art
precision-scalable accelerators Bit Fusion [46] and La-
conic [44] as well as a state-of-the-art sparse accelerator
SparTen [17] on a collection of quantized CNN models.
Evaluations show that Ristretto consistently outperforms
three accelerators under different quantization bit-width.

The rest of this paper is organized as follows. Section II

introduces the background and motivation of this work.
Section III describes the proposed condensed streaming
computation. Section IV details the Ristretto architecture
and load balancing method. Section V shows the evaluation
results to manifest the efficiency of the Ristretto accelerator.
Section VI concludes this paper.

II. BACKGROUND AND MOTIVATION
A. Accelerating CNN: Sparsity and Mixed Precision

Sparsity is an inherent property of deep convolutional
neural networks, which refers to a few weights and activations
in the trained network being zeros. The sources of sparsity
mainly lie in two aspects. One is the use of the ReLU
activation function [38], which transforms a considerable part
of negative convolution results to zero. The other is from
network pruning [21, 33], which randomly or structurally
forces some weights or activations to zero. During network
inference, all zero movements and computations can be
directly removed without affecting the final results, so sparsity
is often used for hardware acceleration of CNN. Low-
precision quantization [18, 21] is another key technique in
accelerator design. It converts high-precision floating-point
numbers into low-precision fixed-point counterparts, which
can significantly reduce the area and power consumption as
well as bandwidth requirements while maintaining model

Table I: State-of-the-art dual-sided sparse CNN accelerators.

Accelerator Sparse Dataflow Compute Unit
Pre-Processing Compute Post-Processing MAC Precision
SCNN [39] broadcast outer product crossbar 2D array 16b
SparTen [17] inner-join inner product permute network Scalar 8b
SNAP [57] associative index matching inner product two-level reduction | 2D array 16b

Table II: State-of-the-art precision-scalable CNN accelerators.

Compute Unit
Accelerator MAC P Precision Dataflow
LOOM [45] bit-serial 1~16b 2D broadcast
Bit Fusion [46] | bit-decomposition 2/4/8b 2D systolic
BitBlade [41] bit-decomposition 2/4/8b 2D broadcast

accuracy. In conventional single-precision quantization, all
layers in a network share the same numerical precision,
such as INTS8/INT16. Most recently, due to the higher accu-
racy and lower computational complexity, mixed-precision
quantization [6, 14, 35, 48, 53] has shown its superiority
in accelerating CNNs in many applications. For example,
AdaBits [25] trains a single network that can be used
for 2/4/8bit inference adaptively according to the resource
constraints of different hardware platforms. VideolQ [49]
dynamically allocates quantization bit-width to different
frames for fast video recognition.

Although sparsity and mixed precision are often used
separately for accelerating CNN inference, increasing re-
search efforts on the algorithm side have demonstrated
that the combination of both can achieve optimal accuracy-
performance trade-off [51, 52, 54, 55]. Moreover, there is
an intrinsic relationship between sparsity and precision in
the quantized models even if pruning is not carried out. As
shown in Figure 1, when the quantization bit-width of all
five networks goes down from 8bit to 2bit, the sparsity of
both weight and activation boosts significantly. Particularly,
the average sparsity of weight and activation in the 2bit
quantized networks are 47.43% and 75.25%, respectively.
This suggests that a joint design for dual-sided sparsity and
mixed precision is promising for the accelerator to achieve
optimal performance and energy efficiency.

B. Challenge on Accelerator Design

1) Orthogonal Design Spaces: Although the potential of
hardware acceleration for both sparsity and mixed precision is
obvious, prior accelerators are only designed for either of the
two, i.e., sparse accelerators [4, 13, 17, 19, 20, 28, 32, 39, 40,
56-59] and precision-scalable accelerators [3, 7, 12, 15, 27,
31, 36, 41, 44-46, 48]. The goal of a sparse accelerator is to
minimize zero-related data movements and computations to
reduce inference latency and energy consumption. According
to whether the sparsity of weight and activation are exploited
simultaneously, the sparse accelerators can be further divided

into two categories: one-sided and dual-sided accelerators.
The precision-scalable accelerator is designed for integer
computations of variable bit-width. Techniques based on
spatial or temporal multiplexing are commonly applied in
designing bit-flexible multipliers.

We observe that the design spaces of existing sparse and
precision-scalable accelerators are orthogonal. Concretely,
The sparse accelerator focuses on the design of sparse
dataflow, including 1) pre-processing stage: extracting non-
zero data from feature maps and filters and matching them
into pairs; 2) compute stage: addressing efficient mapping,
scheduling, and computation for disordered and unbalanced
non-zero workloads; 3) post-processing stage: dispatching
and reorganizing the out-of-order results obtained from the
second stage, as shown in Table 1. For example, to calculate
multiple vector inner products in parallel, SparTen [17]
broadcasts an activation vector to multiple compute units
(CU). In each cycle, each CU uses an inner-join module
to extract a non-zero weight-activation pair and feed it into
the scalar-based MAC for computation. Results of CUs are
finally routed to the data buffer through a permute network.
SNAP [57] employs an associative index matching (AIM) to
pair non-zero elements in the weight and activation vectors
and calculates vector inner product through a 2D MAC array
followed by a two-level partial sum reduction. These sparse
accelerators exploit either scalar-based MAC or standard 2D
MAC array for computation, leaving the majority of design
efforts to the sparse dataflow. On the contrary, designing low-
level compute units that support variable precision, rather
than high-level dataflow, is the key to precision-scalable
accelerators. For example, both Bit Fusion [46] and Bitblade
[41] design the spatial decomposable PE to support 2/4/8bit
multiplications, whereas, at the dataflow level, they select
weight stationary-based systolic array and broadcast-based
2D mesh, respectively. The overall architecture of LOOM
[45] is also a 2D broadcast-based mesh. However, bit-serial
multipliers are applied for 1~16bit inference, as shown in
Table II.

2) Inefficiency of Direct Combination: To design an
accelerator that supports both sparsity and mixed precision,
an intuitive approach is to directly combine the well-designed
sparse dataflow and bit-flexible processing elements of prior
works. However, due to the orthogonal design spaces, we
notice that it is hard to achieve optimal efficiency in this
separate design methodology. Below, we showcase two naive

>70% area

Table III: Sparsity exploitation of state-of-the-art precision-

>60% power

Searten | N scalable accelerators.
| Avec [3[5]-]4] } inner-join .
iAmask %@J_}_ﬂ_) Priority | | Prefix vAC % Accelerator Weight Activation Weight Bit Activation Bit
inec [5[A[=]3] ** ! Encoder| | Sum = BiF—Pragmatic 3] 7
(wmask[0T0T1T0[1[~[~[1]} Bit-Tatical [12] v v

””””) Laconic [44] 7 7
SparTen+Bit Fusion @ Ristretto (this work) ‘ v v v v

””””””””””” [| bandwidtn
8b: 1 pairlcycle
Fusion| match 4b:4 pairsicycle
T 2b: 16 pairs/cycle
n 8b: 1 multicycle
compute 4b: 4 multsfcycle
2b: 16 mults/cycle

[Avec [3]5]--]4] i

I

1Amask[0]21[0T0T1[~[--[1])
_

H 128b I

| Wvee [5[-1]--[3] !
iWmask[0[O[2TO A -~[--T1}: [

inner-join 0

inner-join 1

inner-join 15

Figure 2: An illustration of combining SparTen with Bit
Fusion for mixed-precision sparse computation.

designs to help understand the challenges and inferiority of
direct combination.

a) Sparse Accelerator (SparTen) <— Mixed-Precision (Bit
Fusion). SparTen [17] is a state-of-the-art dual-sided sparse
CNN accelerator. It contains several CUs to calculate the
inner product between activation and weight vectors. To
eliminate computation and movement of zero values, SparTen
employs the bitmap compression format, where a data vector
is represented as a compact non-zero vector along with
a bitmask that records the positions of non-zero values.
To match and extract weight-activation pairs from the
compressed vectors for computation, each CU exploits an
inner-join module that operates on the bitmasks through
priority encoding and prefix summation. In each cycle, The
inner-join module searches out a non-zero pair of data and
feeds them into the 8bit MAC for computation. It is clear that
the sparse dataflow of a CU has an equal bandwidth of data
extraction and multiplication, i.e., one effectual multiplication
per cycle, as shown in Figure 2.

To support mixed-precision computation, a naive approach
is to replace the fixed-precision MAC with a bit-flexible
multiplier, such as the fusion unit in Bit Fusion [46] that
can perform one 8bit, four 4bit, or 16 2bit multiplications in
one cycle. However, this will cause a bandwidth mismatch
between data extraction and computation when the bit-width
is lower than 8. That is, the sparse dataflow cannot meet the
requirement of matching and feeding more than one pair of
data to the fusion unit. To increase the bandwidth of non-zero
matching, up to 16 inner-join modules are needed to work in
parallel in each CU, as shown in Figure 2. This will result
in two problems: 1) significant overhead on the area and
power consumption since one inner-join module accounts for
more than 60% of the area and power consumption of a CU;
2) severe resource underutilization when the CU does not
work at the peak throughput (16 mults/cycle). Moreover, the
unbalanced workloads of the parallel inner-joins can also lead
to non-negligible performance loss. Note that similar issues
caused by bandwidth mismatch between high-level sparse
dataflow and low-level multiplication can also be witnessed
in other sparse accelerators [39, 57] when directly replacing

Channel Index of NZ W

e

e o'
i
fx 1
(e x |
Iq1
—EE—a !

\

o
o
o
o1 =/
3
g Encader
02 X

sannel Index of NZ A
o|lr|le]|e
mlole]e

1
o
o
0

ch:

Input

g
2
S
g
g
=
5
g

Activation Buffer

Laconic [22[o]6]o] [e]o]1]2] Laconicssnap | [22]6 [6]2
[o]

ITERTIT oo

Qp <] 1®] ®
~|=] f [Co[LM |®

ol 7 EE EES RS
\’D g’ AM ® AlM @
X ® x
o) et =g
® ® ®

Figure 3: An illustration of incorporating Laconic with SNAP
to eliminate movement of zero values.

the fixed-precision MAC with a precision-scalable MAC.

b) Precision-Scalable Accelerator (Laconic) < Sparsity
(SNAP).

Bit-serial computation has been widely applied in precision-
scalable accelerator design. Compared to bit-parallel com-
putation, it enables exploring bit-level sparsity for fine-
grained acceleration. Table III lists three state-of-the-art bit-
serial CNN accelerators. Among these, Laconic [44] has
been demonstrated to outperform the other two in terms of
performance.

The architecture of a Laconic tile is depicted in Figure 3.
It employs a 2D mesh architecture, each PE in the 2D
array contains multiple bit-serial multipliers that undertake
the computation of the inner product between weight and
activation vectors. Filters and feature maps in the buffers
are broadcast within rows/columns, where each row shares
the same weights to calculate different spatial convolution
windows, and each column shares the same activations
to calculate different output features. To extract effectual
terms (non-zero bit and corresponding shift offset), booth
encoders are placed at the boundary of the PE array. During
inference, non-zero terms in activations and weights are
traversed to perform multiplication. Due to data sharing and
parallel computing, the latency of a PE is determined by
the non-zero weight-activation pair that has the maximum

M Theoretical M Tile Average ™ Tile Max (Laconic)

30
_. 25
]
o 20
E 15
g
8 10
0 I I I | | - _I _m
0.1 0.2 0.3 04 05 06 07 08 09
W/A Sparsity
(a) 4 x4 PEs
W Theoretical M Tile Average ™ Tile Max (Laconic)
30
25
< 20
Z
> 15
c
8 10
3
> 1000l I
0 N o B0 BN w
0.1 0.2 0.3 04 05 06 07 08 09
W/A Sparsity
(b) 8 x 8 PEs

Figure 4: Visualization of Laconic performance with respect
to different levels of value sparsity. Each PE contains
16 parallel bit-serial multipliers to calculate inner product
between 8bit vectors. The sparse vectors are randomly
generated from a uniform distribution, and the results are an
average of 1000 runs.

#term, x #term,,, and the overall latency of a tile is deter-
mined by the slowest PE.

We can notice that Laconic is insensitive to value-
level sparsity. For a better understanding, we conduct an
experiment to investigate the performance of a Laconic
tile for inner product computation under different levels
of weight/activation sparsity, as shown in Figure 4. The
theoretical latency is the performance upper bound, which is
measured by dividing the total number of workloads by the
number of multipliers in the PE array, where the workload
of one multiplication is denoted as #term, x #term,, for a
weight-activation pair. The average tile latency assumes that
data sharing among PEs is disabled, and only parallel bit-
serial computations are performed in each PE. It is clear that:
1) both data sharing among PEs and parallel computing within
a PE contribute significant degradations to the performance; 2)
an increasing value-level sparsity does not lead to significant
improvement in performance, and the benefits of sparsity
will decrease as the tile size gets larger.

To eliminate movements of zero values from Laconic,
compression formats such as CSR can be applied to the

Step 0 Step 1 Step 4
o3 []01] (2]o1] []o1]
P XIS P
(1y[11]J1Jorfor]| [11]11]o1]or| [11]11]o1]01]
L
Step 0 1x2° x -1x2°
Step 1 3x2%x -1x2° | 1x2°x 3x2°
Step 2 3x2” x3x2* | 1x2°x 127
Step 3 3x2%x 1x2° | 1x2°x 1x2°
Step 4 3x2% x 1x2°

Figure 5: An example of multiplication between 4bit activa-
tion and 8bit weight using 1D convolution.

dense tensors. In this situation, the inner product between
condensed vectors is performed in each PE. Since the
sparse patterns of pair-wise vectors are different among
PEs, local matching logics that extract weight-activation
pairs are needed. Besides, the booth encoders at the array
boundary should be moved into the PEs for local encoding. To
perform local data matching, an associative index matching
(AIM) from SNAP can be integrated into each PE. The
modified Laconic architecture is shown in Figure 3. It has two
problems: 1) considerable area overhead introduced by local
matching and encoding; 2) significant PE underutilization
caused by zero weights and activations, especially when
the value-level sparsity is high. Note that Bit-Pragmatic [3]
and Bit-Tactical [12] in Table III have a similar broadcast-
based 2D mesh architecture with Laconic, it is challenging
for them to address both dual-sided bit-sparsity and value-
sparsity efficiently, so does Bit Fusion [46] that features a
canonical 2D systolic array.

In conclusion, due to the orthogonality between sparse
dataflow and bit-flexible compute units in prior works, an
incremental design that simply combines the components
from both sides is not ideal. To tackle this issue, in this
paper, we propose Ristretto, an accelerator that, for the
first time, exploits both dual-sided irregular sparsity and
mixed precision for CNN inference. Based on the proposed
condensed streaming computation, the low-level mixed-
precision multiplication and high-level sparse convolution can
be seamlessly merged into a shared dataflow and efficiently
calculated with an atomized processing architecture.

III. CONDENSED STREAMING COMPUTATION

In this section, we present the dataflow of the Ristretto
accelerator. First, we introduce the hierarchical data reuse
that resides in CNNs, which serves as the bridge to unify the
stream-based representations of high-level sparse convolution
and low-level mixed-precision multiplication. Then we detail
the proposed condensed streaming computation, an atomized
framework for mixed-precision sparse processing.

-

input tile \: ‘—Hattenin 28 5 67 ; Intersection ‘i | 628 | -6%5 ;
. L s ‘ ~ || |es| e |
28| 5 | || Activationstream (001 11 010101 11/ Step0 0111010101/11) ! \
| X |

| - - ! | -6°67 | 4*28 | 4*5
67 - 4 6 3 4 1 ‘ 01,10 10 11 |
| . e L . L T A : N —Z < :
x| MWelesTeem 01001010001111000001 faya ' 461 |
| oo o-oooooos e |1 Stepl 011101010111, R — :
p | | Compression . o0 Welght = 1 XX ! | output tile 0 1
! T v 1.!3],‘3.0;10].1lll:)l — ‘
6| || Atomstream 011101010111 011010111101, v | vors | 1s | !
kermelo || swttofet 42 2060 220020 | > }
: x 000011 011001, ///T/ 738 \
3|-4| 1 ¥ 001100 011010); ~ 4728 167 | 375 |
|| Channelindex 0 0 00 00 0001 11| Step 10 I’(Q.Ill 01010111 | -4%5 |
! | sm 000000 010010, 011010111101/ T el |
kernel 1 J' Last Atom 101010 101111 } N | output e T J

LA

Figure 6: An illustration of the condensed streaming computation for mixed-precision sparse convolution.

A. Integer Multiplication as 1D Convolution

In quantized models, all weights and activations are
represented as integers. Due to the use of the ReLU function
[38], activations are usually regarded as unsigned integers,
whereas weights are signed integers. Arithmetically, an m-bit
integer can be viewed as the summation of [m/N| terms,
where each term refers to the product of an N-bit atom and
its corresponding shift offset. For example, 29 (01_11_01)
is equal to the summation of terms in {1-2*3.221.20}
under 2bit atom granularity. Therefore, the product of an
m-bit and an n-bit integer can be expressed as the summation
of the outer products between two streams with [m/N] and
[n/N] terms, respectively. Note find that this computation
can be reformulated as a 1D convolution between two streams.
Figure 5 shows an example of calculating —11 x 13 using
1D convolution. In this example, the 4bit activation and 8bit
weight contain two and four 2bit atoms, respectively. The
entire computation consists of five steps. In each step, parallel
atom multiplications are carried out in the intersection region
between two streams. The final result is the aggregation of
all partial products over the five steps. It can be noticed
that there is massive atom-level data reuse throughout the
computation. For example, each weight atom is multiplied
by all activation atoms over five steps, which is similar to
the weight sharing scheme in CNN.

B. A Unified Framework

There are two types of value-level data reuse in CNN: input
reuse and weight reuse. The input reuse refers to an input
feature map is convolved with different convolution kernels to
obtain multiple output feature maps, whereas the weight reuse
denotes that in 2D convolution, each weight in the k x k kernel
is multiplied by the activations of a specific input region
to form the partial results of an output feature map. Since
data reuse exists at both the atom and value level, the high-
level convolution and low-level integer multiplication have
the potential to be merged to form a unified representation.

Based on this observation, we propose condensed streaming
computation (CSC), a unified dataflow to exploit both dual-
sided sparsity and mixed precision for CNN inference. The
CSC pipeline includes three parts: flattening, compression and
intersection. Figure 6 shows an example of mixed-precision
sparse convolution using CSC, where an 8bit input feature
map tile is convolved with two 4bit kernels to obtain two
output feature map tiles. Concretely, the CSC workflow is
as follows:

1) Flattening. Both the input feature map tile and con-
volution kernels are flattened to compact 1D streams.
As depicted in Figure 6, the 2 x 2 feature map tile
and two 2 x 2 kernels are reshaped in a zigzag manner.
Note that along with each weight/activation, there is
also metadata, i.e., the spatial coordinates and channel
index, that is used for recording the position of each
non-zero value.

Compression. This phase squeezes out all zero atoms
from weight and activation streams and reorganizes
them into compact atom streams. In this way, both
value-level and bit-level sparsity are exploited, enabling
the maximal reduction of ineffectual workloads under a
certain atom granularity. Since weights and activations
in each stream are broken down into atoms, shift offsets
and last atom flags are generated to identify the relative
position of each non-zero atom in a weight/activation.
Besides, a sign bit is also generated for each atom to
denote whether it is signed or unsigned.
Intersection. In this phase, 1D convolution between
atom streams is performed, which is similar to the
computation in Figure 5. The weight stream is kept
static, and the activation stream is gradually shifted
from the head to the tail of the static stream with
a step size of one atom. In each step, parallel atom
multiplications are conducted in the intersection region
between two streams, and proper shifting is added
to each partial product before accumulating to the

2)

3)

final results. The alignment and aggregation of partial
products are scheduled by the metadata, including shift
offsets, spatial coordinates, and channel indices. Note
that a long static stream can be partitioned into several
short streams. In this case, the shifting of the activation
stream will be repeated multiple times.

From the above workflow, it is clear that by leveraging
hierarchical data reuse, the high-level sparse convolution
and low-level mixed-precision multiplication are unified into
a common dataflow, where computations and movements
of zero atoms are eliminated. Note that the flattening and
compression of filters can be conducted offline with the
help of compression format (detailed in Section IV-B). For
feature maps, both value-level and atom-level compression
are implemented on-chip. Specifically, the zero values in
feature maps can be squeezed out through a post-processing
unit when the computation of an output group is finished,
and the zero atoms in activations can be removed on the fly
with a negligible cost (detailed in Section IV-C1).

Characteristics. We notice that the condensed streaming
computation has the following key characteristics:

« It operates at a constant input data bandwidth under
different bit-width. For example, assume that there are 16
2bit multipliers that enable 16 2bit atom multiplications
in parallel. In each step, it can calculate one 8bit, four
4bit, or 16 2bit multiplications with a constant input
bandwidth of 2bit/step. However, with the same com-
putational throughput, the input (activation) bandwidth
of a fusion unit in Bit Fusion [46] under 8bit, 4bit, and
2bit configurations are 8 bit/cycle, 16 bit/cycle, and 32
bit/cycle, respectively.

« The number of steps in the intersection phase is solely
determined by the length of two streams, which can be
precisely estimated in advance. Assume the number of
activations and weights in input feature map and kernels
are A and W, and the density at value and atom (of
non-zero values) levels are o, @,, and fB,, B,. Then
the length of non-zero atom streams are ,0,A and
ByB.W, respectively. Ideally, the number of steps in the
intersection phase is o, 0,A * [B,B,W /N1 + €, where N
is the length of the static stream.

o Changing the order of atoms (and associated metadata)
within a stream do not affect the final result since each
atom in one stream is calculated with every atom in the
other stream.

« Due to data reuse, the number of workloads among all
atoms is consistent, which indicates that there is no
balancing issue within a stream during intersection.

In the next section, we will elaborate on how these char-
acteristics are leveraged for microarchitecture design and
optimization.

Core

Controller

Atomizer Atomputer
Buffer

Compute Tile 0
. Output
Compute Tile 1 }—D P
_.‘ P Buffer
4,‘ Compute Tile 2 ‘—»

l_,‘ Compute Tile m-1 }—»

T Post-Pr ing Unit [« {

il

Host Processor

1/O Interface

Input
Buffer

DRAM
I
v

Figure 7: Overall Architecture of the Ristretto Accelerator.

IV. RISTRETTO ARCHITECTURE
A. Overview

The sparsity and diverse numerical precision in deep neural
networks provide a unique opportunity for dedicated acceler-
ators to achieve optimal efficiency. We propose Ristretto, a
novel CNN accelerator that can simultaneously handle dual-
sided irregular sparsity and mixed-precision computation.
Figure 7 shows the overall architecture of the Ristretto
accelerator. The on-chip compute cores are communicated
with the off-chip processor and DRAM via an I/O interface.
Each compute core contains data buffers, compute tiles, a
post-processing unit, and a controller.

The workflow of the Ristretto accelerator is as follows.
When the host processor issues a start command, a batch of
compressed feature map tiles and convolution kernels in the
off-chip DRAM are loaded to the compute cores and stored
in the input and weight buffers. Before the calculation starts,
the compressed kernels and associated indices required for
the current round of calculation are read from the weight
buffer and fed to the Atomputer (abbreviated from the “atom
computer”) in each compute tile under the control of the core
controller. When the calculation starts, the activation words
are read from the input buffer and sent to the compute tiles in
parallel. By removing zero atoms from an activation word, the
Atomizer pops the non-zero atoms and associated metadata
into the subsequent Atomputer and Atomulator (abbreviated
from the “atom accumulator”) for computation. During the
process, partial results of each compute tile are aggregated
and written to the shared output buffer periodically. When a
group of output feature maps is obtained in the output buffer,
they are sent to the off-chip DRAM or input buffer after
post-processing.

B. Compression Format and Buffer Organization

As mentioned in Section III-B, the flattening and com-
pression phases of the condensed streaming computation

a01 a03 | a04
X a06 | a07 all
al4 a16 | a17
a01 [a06 | a07 a14| a03 (a04 | al1|al6 a17|
x o[fe] [ofefr]e]e]
y el o) o]]e]]2]

Figure 8: Block COO-2D format.

Table IV: Shift ranges under different activation bit-width.

Activation Bit-width 8b 6b 4b | 2b
Shift Range 0246 | 024 | 02 | O

can be implicitly realized via compression format and buffer
organization. Concretely, Ristretto employs the COO-2D
format to compress the feature maps and filters to avoid both
on-chip and off-chip movement of zero values. Since the
input feature maps are partitioned into tiles during inference,
the block COO-2D encoding is adopted, where the coordinate
of the non-zero activation represents the spatial offset to the
starting position of a tile, as shown in Figure 8. As for the
zero atoms in non-zero values, since the network weights are
fixed after training and quantization, Ristretto removes zero
atoms from weights offline. That is, only the non-zero weight
atoms and the corresponding metadata are transferred during
inference. However, for feature maps, it is not practical to
exclude zero atoms off-chip. First, the massive bit operations
at runtime will lead to a significant burden on the host
processor. Second, since feature maps dominate the off-chip
traffic during inference, the overhead caused by metadata
(shift offsets, position indices, etc) of feature map tiles is
much larger than that of kernels. In Section IV-C1 we will
show that the zero atoms in feature maps can be squeezed
out on the fly through the Atomizer with a negligible cost.

According to the condensed streaming computation, mul-
tiple output feature maps can be calculated in parallel.
Therefore, the on-chip buffers exploit a multi-bank design to
enable parallel access. Each bank of input buffer continuously
stores multiple compressed feature map tiles that are mapped
to the same compute tile. The metadata associated with
feature maps is stored in a separate buffer in the same order.
Similarly, kernels corresponding to the same input feature
map in the weight buffer are stored continuously.

C. Compute Tile Microarchitecture

In Ristretto, the compute tiles are responsible for the
condensed streaming computation. Apart from an accu-
mulate buffer, each compute tile contains an Atomlizer,

=

IIIIIII%IIIIIII

Un-shuffled w00 w00 woO1 w02 w02 w03 w03
W Stream] A O] [W] [3]

wl0 wl0 will will wl2 wil2 wil3 wi3

S I I T I S R O I S R

Shuffled w00 w10 w20 w30 w40 w50 w60 w70
W Stream N O B Oy O O O
w0l will w2l w3l w4l w51 w6l w71
Figure 9: An illustration of stream shuffle. Each kernel
contains four 4bit weights. L and H refer to the low 2bit
and high 2bit atoms respectively. For clarity, all atoms are
regarded as non-zeros in this example.

an Atomputer, and an Atomulator, which deals with the
following issues respectively: 1) how to parse the incoming
activation words and metadata to generate compact non-
zero atoms and associated control information; 2) how to
perform computation between streams; 3) how to collect
and accumulate partial results. In this section, we detail the
microarchitecture of the compute tile that supports 2/4/8bit
inference. By default, the atom bit-width is set to 2bit.

1) Atomizer: The Atomizer takes an 8bit activation word
and a (x,y) coordinate as input. In each cycle, it scans the
activation word through a low-cost leading one detection logic
to generate a 2bit non-zero activation atom, a shift offset, a
last flag, and a (x,y) coordinate. The first three are the input
to the Atomputer, and the last one is sent to the Atomulator.
Note that the generation of sign bit for activation atom is
ignored in the Atomizer because all atoms are unsigned when
the ReLU function is used. Since zero values are removed
from feature maps beforehand, each 8bit word contains at
least one, two, and four non-zero atoms under 8bit, 4bit,
and 2bit quantization. This indicates that the Atomizer will
hold an 8bit word for at most four cycles before reading
the next word from the data buffer. When a word contains
multiple (2bit or 4bit) activations, the generated last flag is
used for recording whether the current atom is the last atom
of the same activation. Similarly, if multiple atoms belong
to the same activation, the (x,y) coordinate is latched for
more than one cycle before the next is read. For a 2bit atom,
the possible shift offset is within the range of {0,2,4,6}, as
shown in Table IV.

2) Atomputer: The Atomputer undertakes the intersection
operation of the condensed streaming computation, where
parallel atom multiplications are performed between the
static weight and dynamic activation streams in a systolic
style. However, an arbitrary organization of atoms in the
weight stream will lead to considerable overheads in microar-

:ll Local Weight Buffer I :ll Dispatcher |

act atom

I ctrl

offset+
last flag

<<|

|
oyl
L_l_/

Figure 10: Microarchitecture of the Atomputer.

chitecture design. First, for each 2bit atom multiplication,
the combination of shift offsets from both operands will
cause a wide shift range, i.e., {0,2,4,6,8,10,12}, which is
not area-efficient. Second, if atoms belonging to the same
weight are continuously mapped, complex reduction units
(such as augmented reduction tree in [30]) are required to
aggregate the adjacent partial products destinated to the same
output. Fortunately, since shuffling atoms within a stream
does not affect the final result, the above issues can be
alleviated through dataflow-microarchitecture co-design. As
depicted in Figure 9, we make the following restrictions on
the static weight stream: 1) To reduce the complexity of
shifting, atoms corresponding to the same slice of weight are
grouped and mapped continuously. This allows a decoupled
shift operation, where only the shift offset of the activation
atom is required in each multiplication, leaving the other to
operate on the accumulated results; 2) To eliminate coordinate
contention, weight atoms are mapped in a channel-first
manner to calculate different output feature map.

Figure 10 shows the microarchitecture of the Atomputer.
It contains a local weight buffer, a dispatcher, and a chain of
atom multipliers. Each multiplier is connected to a shift unit
followed by an accumulator. Before calculation starts, the
weight atoms and associated sign bits are read from the local
weight buffer and latched in the weight atom registers to form
a static stream. In each cycle, the leftmost multiplier receives
a non-zero activation atom from the Atomizer to perform
multiplication, and right shifts the current atom before the
next arrives. Before sending to the accumulator, each product
is aligned in the shift unit according to the shift offset of
the activation atom. When the last flag is 1, the accumulator
delivers the valid result outside and clears the accumulation
register to zero at the end of the cycle. Note that all the
weight atom registers work in a ping-pong manner. This
allows an intermediate update of the weight atoms when the
computation of a weight atom is done.

I atom

T
Local Weight Index Buffer I product

—)l I v I

act atom \l/ |

I]
ﬂ)’ Addrgen H Addrgen I—)l Addrgen 1—)
[come]

]]
—)I Addrgen H Addrgen |

= mEmE

seE =0

Figure 11: Microarchitecture of the Atomulator and accumu-
late buffer.

3) Atomulator: When the atom products are obtained in
the Atomputer in each cycle, the Atomulator is responsible for
generating output coordinates and routing these products to
the accumulate buffer. Figure 11 shows the microarchitecture
of the Atomulator. It contains a local weight index buffer,
a chain of address generators, and a crossbar. The address
generators also work in a systolic manner, which is synchro-
nized with the multipliers in the Atomputer. In each cycle,
the address generators receive the (x,y) coordinates of the
weight and activation atom to calculate the write addresses
to the accumulate buffer. The coordinates of weight and
activation atoms are from the local weight index buffer and
the Atomizer, respectively. Mathematically, given the spatial
coordinates of input activation (x;,,yi,) and weight (x,,,yy),
the output coordinate (X, Yo) can be calculated as:

{xout:k_] — Xy + Xin (1)
Your =k —1 =Y + Yin

where k is the kernel size. Accordingly, the address can be
calculated as:

address = your ¥ (Wi +k — 1) + Xou 2)

where W;,, denotes the width of the input feature map tile.
This address is the offset to the original point of the current
output feature map tile. Since the coordinates calculated by
Equation 1 may be out of the boundary of an output feature
map, the generated address is validated through the comp
module before pushing to the subsequent queue. Similar to
[39], we do not address the non-unit convolution stride in
the Atomputer due to the high complexity of managing out-
of-order coordinates of compressed streams. Therefore the
output coordinate in Equation 1 is always calculated assuming
the stride is equal to 1. Although this will inevitably introduce
ineffectual outputs, the stride access to the effectual output
values can be easily realized in the accumulate buffer with
negligible cost.

According to the dataflow illustrated in Section IV-C2,
the output channel index of each atom product is solely
determined by the weight atom. Therefore, the pair-wise
atom product and address are routed through the crossbar
under the control of channel indices of weight atoms. When
more than one product is destined to the same output feature
map in one cycle, a direct routing will cause buffer access
contention and computation stall. To alleviate this issue, we
add low-cost FIFOs before the crossbar, as in SCNN [39].

4) Accumulate Buffer: The accumulate buffer exploits
a multi-bank design and is implemented as register files.
Each bank is used for caching an output feature map tile
of a specific channel. To enable parallel access, the number
of banks is kept consistent with the length of the static
stream in the Atomizer. Results of different compute tiles
are aggregated and written to the output buffer when the
computation of one weight slice is finished. To overlap
computation with data transfer, each bank is double-buffered.

As illustrated in Section IV-C2, Ristretto exploits a
decoupled shift to reduce the complexity of the Atomputer.
Therefore, to perform the second stage of shift, each buffer
bank is connected to a shift unit, as shown in Figure 11.
During aggregation, each partial result is read and aligned
according to the shift offset of the corresponding weight
slice.

D. Support for 16/32bit Inference

Ristretto can be configured to support high-precision
inference with two methodologies: spatial extension and
temporal decomposition. Unlike prior work that leverages
additional PEs to calculate higher bytes and lower bytes
separately in spatial extension [44], we can simply modify
the shifters in Ristretto to support a wider shift range, such
as {0,2,4,6,8,10,12,14} for up to 16bit inference. A more
economical method is to decomposite a high-precision model
into several low-precision models and calculates in sequence.
For example, a 16bit model can be partitioned into four 8bit
sub-models. This allows much smaller shifters to reduce area
overhead.

E. Load Balancing

In Ristretto, the input feature maps are partitioned into
several groups in the channel dimension. Each group is
mapped on a compute tile to calculate the same group of
output feature maps. Due to the varying number of non-
zero atoms in each feature map and convolution kernels,
the number of workloads in different compute tiles is
unbalanced, leading to performance loss due to resource
underutilization. Therefore, load balancing is essential to
improve the accelerator efficiency.

Ideally, the most promising choice for load balancing is
to use the statistics of both input feature maps and kernels.
However, it is challenging to achieve this goal in prior works.
One of the main reasons is that the statistics needed for

load balancing can not be collected until the calculation
starts. For example, SparTen [17] extracts non-zero pair of
weight and activation on the fly during the calculation of the
vector inner product so that the number of non-zero pairs
between vectors can not be known in advance. However,
in the condensed streaming computation, the latency is
determined by the length of streams, which can be obtained
before the calculation starts. First, the number of non-zero
weight atoms can be collected offline when training and
quantization are finished. Second, when a group of output
feature maps is obtained, the number of non-zero atoms of
each feature map can be counted through the post-processing
unit using a low-cost module that is similar to the Atomizer.
Therefore, Ristretto jointly utilizes weight and activation for
load balancing.

Considering the computation of an input feature map with
multiple convolution kernels in a compute tile. Assume that
the number of non-zero atoms in a feature map tile and
kernels is ¢ and S, respectively, and the number of multipliers
in the Atomputer is N. According to the principle of
condensed streaming computation, the theoretical calculation
cycles corresponding to one feature map tile can be estimated
as:

Clt*LﬂJrs 3)
where,
e mod(S,N)—1, mod(S,N) #0 @
o N-1, mod(S,N) =0

Since € is much smaller than the first term in Equation 3,
we omit it for simplicity. Since the convolution kernels are
shared among all tiles in the input feature map, the inference
cycles corresponding to a whole input feature map can be
formulated as:

S S

=3 G 3] 73] o

where T is the number of non-zero atoms in the input feature
map. It is clear that the inference cycle is determined by the
non-zero atoms of the input feature map and corresponding
kernels. Therefore, Ristretto uses the metric in Equation 5
to allocate workloads for different compute tiles.

Assume the number of input and output feature maps in
one inference phase in m and n, respectively. Each input
feature map is convolved with n kernels to obtain n output
feature maps. Assume the number of compute tiles and
multipliers is M and N. Then, the goal of load balancing
is to divide the m input feature maps and corresponding
kernels into M groups so that the number of workloads in
different groups is as close as possible. Similar to SparTen
[17], Ristretto exploits a greedy-based approach. First, the
Cr values for each input feature map and corresponding
kernels are calculated. Second, the m Cr values are paired in
a “largest-smallest, second largest-second smallest” manner

Table V: Baseline accelerators evaluated in this work.

Accelerator Value Sparsity ~ Bit Sparsity Variable Precision
Bit Fusion [46] v

Laconic [44] v v

SparTen [17] NV

SparTen-mp v v

until the number of groups is equal to M. In this way, the
input feature maps and kernels belonging to the same group
are mapped to the same compute tile. Since the balancing
can be performed before the calculation starts, each group
can be loaded and stored in a separate buffer bank, avoiding
the crossbar between the input buffer and compute tiles.
To balance the workloads of the input layer, an intuitive
approach is to count the number of non-zero atoms in the
host processor before inference starts. However, this will
introduce non-negligible overheads, especially for low-end
processors. Therefore, a compromise made by Ristretto is
that it does not conduct load balancing for the input layer.

V. EVALUATION
A. Methodology

1) Baseline Accelerators: As shown in Table V, we select
three state-of-the-art CNN accelerators as our baselines: Bit
Fusion [46], Laconic [44], and SparTen [17]. Among them,
the first two are precision-scalable accelerators, and the latter
is a sparse accelerator. To future investigate the efficiency
of the direct combination of high-level sparse dataflow
and low-level bit-flexible multiplier for mixed-precision
sparse computation, we additionally design a naive baseline:
SparTen-mp, as mentioned in Section II-B2. Specifically,
SparTen-mp replaces the fixed-precision MAC with the fusion
unit of Bit Fusion [46] that can achieve one 8bit, four 4bit,
or 16 2bit multiplications in one cycle. To match the peak
bandwidth between computation and data extraction in the
2bit setting, 16 inner-join modules are placed in a CU and
work in parallel, each inner-join operates on a bitmask of
length 32.

2) DNN Benchmark: In order to verify the proposed
Ristretto accelerator, we select six CNN networks trained
on the ImageNet dataset: AlexNet [29], VGG-16 [47],
GoogLeNet [50], Inception-V2 [24], ResNet-18 [22], and
ResNet-50 [22]. Unlike the channel-wise dataflow of Ristretto,
all baseline accelerators are designed for the inner product
of channel vectors so that they do not explicitly support
depthwise convolution in PEs. Therefore we omit the
evaluation of MobileNets [23, 42] in this work. To get
the low-precision sparse models, we use the same uniform
quantization method to quantize each network to 8bit, 4bit,
and 2bit, and further prune the weight and activation without
hurting the accuracy of the quantized models. We also
collect 2/4bit mixed-precision models using EAMIPS [6],
where the bit-width of weight and activation in each layer is
independently chosen from {2,4}.

Table VI: Area breakdown of Ristretto accelerator.

Accelerator Component Area (mm?)
Atomizer 0.001
. Atomputer 0.070
Compute Tile | T 0.128
Accu Buffer 0.496
Input 0.118
Data Buffer Weight 0.302
Output 0.154
Post-Processing Unit 0.023
Others 0.004
Total 1.296

3) Simulation: We use Verilog to implement Ristretto
and the baseline accelerators, and use the Synopsys Design
Compiler to synthesize the RTL with a TSMC 28nm HPC+
standard cell library at S00MHz to obtain the area and power
consumption of the computing units. For SRAM-based on-
chip buffers and register files, we use CACTI-P [34] to model
their area and power consumption. For off-chip DRAM,
we follow the methodology in [16] to get the energy per
access. We develop cycle-accurate simulators for Ristretto
and SparTen to collect the statistics of computation and buffer
access for each workload. For the simulation of Bit Fusion
and Laconic, we refer to their open-source implementations
[1, 2]. The area breakdown of a single-core Ristretto is shown
in Table VI. It contains 32 compute tiles, and each compute
tile has 32 2bit multipliers.

B. Comparison with Bit Fusion

In this experiment, we compare Ristretto with Bit Fusion
in terms of performance and energy consumption. Since each
fusion unit of Bit Fusion contains 16 2bit multipliers, we also
adopt a 2bit atom configuration in Ristretto. To highlight
the contribution of sparsity to the performance gain, we
additionally design a non-sparse Ristretto (named Ristretto-
ns) to match the original design goal of Bit Fusion. For
fair comparison, we follow the methodology in [13] that
constrains all accelerators to have the same number of 2bit
MAC:s. Specifically, Ristretto and Ristretto-ns use a single
core with 32 compute tiles, each compute tile contains 32
2bit multipliers, whereas Bit Fusion employs an 8 x 8 2D
systolic array. In this setting, all three accelerators contain
1024 2bit multipliers. Besides, we allocate the same size of
on-chip buffer to all accelerators.

Figure 12 compares the area-normalized performance of
the three accelerators on the DNN benchmark. On all models,
Ristretto outperforms Bit Fusion by a large margin, with an
average speedup of 8.2x, 7.47x, 7.13%, and 6.73x on 8bit,
4bit, 2bit, and mixed 2/4bit models, respectively. We can see
that the performance of Ristretto-ns is very close to that of Bit
Fusion when sparse computation is disabled. This suggests
that the performance gain of Ristretto over Bit Fusion lies
in the exploiting of sparsity at both value and atom levels.

M Bit Fusion M Ristretto-ns I Ristretto

16
_§'14
o 12
g1[) 8.2 7.13
(%5} : T
5 g 7.47 6.73
&
= 6
E 4
o
= 2

0 Inl Emf EES Emf EmS Eaf EmS EmS EES EES EES EnS EmE EmS Emf Eef Emd EmS EmS Emf ERR EmR Emd EmS EER EER ERER W

8b 4b 2b mix 8b 4b 2b mix 8b 4b 2b mix 8 4b 2b mix 8> 4b 2b mix 8 4b 2b mix 8b 4b 2b mix

AlexNet

VGG-16

GoogleNet

Inception-V2 ResNet-18 ResNet-50 Geomean

Figure 12: Comparison of performance between Ristretto and Bit Fusion. All results are normalized to Bit Fusion.

c
o 1.2
=
E‘ 1 = 7 B B = -]
2
2 0.8
/<]
© 0.6
& 0.42
= 0.4 |
o YU OEZ 0.26 0.28 W Others
c
% 0.2 B B Off-Chip Buffer
.g 0 | | [| | | B On-Chip Buffer
@ 5$§5$§5$§5$§ B Compute Unit
£ 2 g 2 2
5 RN T - R B A N
z CEBcEEsE 8§ 3

o e P o o

EE 58858 88°%

[~ © [~ [~

a vector inner product of length 16.

Figure 14 shows the results of inference performance.
Ristretto outperforms Laconic in all settings, with an average
speedup of 3.58x%, 4.18%, 6.12x, and 5.69x on 8bit, 4bit,
2bit, and mixed 2/4bit models, respectively. It can be noticed
that the speedup increases as the quantization bit-width
narrows. As detailed in Section II-B2, due to the inefficiency
of broadcast-based dataflow and SIMD-based inner product
computation, Laconic cannot fully take advantage of value-
level sparsity to improve performance. However, thanks to the

00
o
=
o
N
o
3
>

Figure 13: Comparison of energy consumption between
Ristretto and Bit Fusion. All results are normalized to Bit
Fusion.

Figure 13 shows the average energy consumption of three
accelerators under different bit-width. Due to the use of
compression format, the energy consumption of both on-
chip and off-chip buffer accesses in Ristretto is significantly
reduced. The energy consumption under 8bit, 4bit, 2bit, and
mixed 2/4bit are 41.84%, 32.29%, 33.33%, and 26.16% of
Bit Fusion, respectively.

C. Comparison with Laconic

This experiment compares Ristretto with Laconic. Since
booth encoding is applied to remove zero bits, both weights
and activations in Laconic are represented as sequences of
shift offsets, converting conventional MACs to exponent
additions followed by decoding-based accumulation. For
fair comparison, we follow the methodology in [44] that
configures Ristretto and Laconic to use the same compute
area and on-chip buffer size. In this case, Ristretto contains
32 compute tiles, each compute tile consists of 16 2bit
multipliers. Laconic has a 6 x 8 PE array, each PE calculates

massive data reuse in the condensed streaming computation,
Ristretto can achieve much higher resource utilization. From
Figure 15, it is clear that Ristretto is more prone to benefit
from the increased sparsity. Figure 16 shows the comparison
of energy consumption. Since both feature maps and filters
are stored and communicated in the dense format in Laconic,
the energy consumption of Ristretto caused by on-chip and
off-chip buffer accesses is much lower.

D. Comparison with SparTen and SparTen-mp

In this part, we compare Ristretto with SparTen and
SparTen-mp. Since SparTen and Ristretto use 8bit and 2bit
multipliers respectively, we constrain all three accelerators to
have the same peak BitOps/cycle for fair comparison. In this
setting, Ristretto contains 32 compute tiles, each tile includes
16 2bit multipliers. Both SparTen and SparTen-mp use 32
CUs. It is worth noting that there is no on-chip global data
buffer in SparTen accelerator, and feature maps and filters in
compute units are directly loaded from the off-chip DRAM.
To study the performance difference caused by computing
units rather than memory hierarchy, we add data buffers to
SparTen and SparTen-mp, and constrain all three accelerators
to use the same size of on-chip data buffer.

Figure 17 shows the area-normalized performance of three
accelerators. Ristretto can consistently achieve the highest
performance on all models. Compared to SparTen, the average
speedup of Ristretto on 2bit, 4bit, 8bit, and mixed 2/4bit

M Laconic M Ristretto

Normalized Speedup
O P N W Pk 0o NN

| || ‘| || 418||
3.58
III‘I‘I‘I‘I‘I‘I I I‘I‘I I Ill‘l I I‘I‘II

6.12
5.69

8b 4b 2b mix 8b 4b 2b mix 8b 4b 2b mix 8b 4b 2b mix 8b 4b 2b mix 8b 4b 2b mix 8 4b 2b mix

AlexNet VGG-16 GoogleNet

Inception-V2

ResNet-18 ResNet-50 Geomean

Figure 14: Comparison of performance between Ristretto and Laconic. All results are normalized to Laconic.

— /W = 0/ W a/o

11

Speedup

1 -

0 01 02 03 04 05 06 07 08 09

Atom Sparsity

Figure 15: Performance of Ristretto with respect to different
levels of atom sparsity. To precisely control the sparsity, this
result is measured on the randomly generated sparse tensors
using one compute tile.

5 1.2
a
£ 1 = -— -— —
2
S 0.8
© 06 0.59
& 048 03z M Others
L 04 0.34 -)
s - |] Off-Chip Buffer
-USJ‘ 0.2 I i I I I B On-Chip Buffer
TE“ 0 M Compute Unit
= = Qo L o g o L Q
o c B c b c b c B
=4 g ¢ g ¢ g ¢ g o

LI - I A

8b 4b 2b mix

Figure 16: Comparison of energy consumption between
Ristretto and Laconic.

models are 8.54x, 7.70x, 3.01x, and 8.25x respectively.
For 4bit, 2bit, and mixed 2/4bit inference, the speedup of
Ristretto over SparTen is significant. The reason lies in the
constant throughput of SparTen’s sparse dataflow, where only
one non-zero pair of weight and activation can be extracted
for calculation in each cycle, as detailed in Section II-B2.
As expected, SparTen-mp can achieve a higher average
performance than SparTen thanks to the bit-flexible multiplier
and increased ability of non-zero data matching. However,
due to the significant area overhead introduced by parallel
inner-joins in each CU, Ristretto still outperforms SparTen-
mp by a large margin.

E. Effectiveness of Load Balancing

In this experiment, we compare the proposed load balanc-
ing method (named “w/a balancing”) with two baselines, i.e.,
“no balancing” and “w balancing.” The no-balancing method
continuously allocates input feature maps and corresponding
kernels to compute tiles cyclically without considering the
statistics of workloads. The w balancing method is also
greedy-based. Unlike w/a balancing, w balancing groups
input feature maps according to the number of non-zero
weight atoms in their corresponding kernels. Figure 18
visualizes the balancing results of layer conv3_2 in 4bit
ResNet-18, where 128 input feature maps and 32 filters are
allocated to 32 compute tiles. It is clear that the difference
in the number of workloads under w/a balancing is minimal.

Note that SparTen [17] employs a similar w balancing
method to allocate filters to different CUs. However, we find
that the improvement of w balancing over no balancing is
negligible in Ristretto. The main reason is that the latency of
Ristretto is closely related to the number of non-zero atoms
in both weight and activation, making it more sensitive to
either of the two. In contrast, the latency of a CU in SparTen
is not directly related to the number of non-zero weights in
the weight vector, so the statistic of the offline weights is a
good proxy metric for load balancing.

M SparTen M SparTen-mp

10

8

6

Normalized Speedup

Ristretto

8.54
770 8.25

4 3.01
Ll L L
NN oD

8b 4b 2b mix 8b 4b 2b mix 8b 4b 2b mix 8b 4b 2b mix 8b 4b 2b mix 8b 4b 2b mix 8b 4b 2b mix

AlexNet VGG-16 GoogleNet

Inception-V2

ResNet-18 ResNet-50 Geomean

Figure 17: Comparison of performance between Ristretto, SparTen, and SparTen-mp. All results are normalized to SparTen.

= no balancing =—— w balancing

3500

w/a balancing

3000

2500

2000

1500

1000

Number of Non-zero Atoms (A+W)

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30

Compute Tile Index

Figure 18: Visualization of load balancing results under
different methods.

W Atomputer M Atomizer M 1b W 2b ™ 3b
c
o 4 1.4
= 3.51 ©
‘g 35 334 c 1.2
[y}
32 3 E 1
s S
8 25 € 08
g 2 S 06
o 1.5 g 04
2 0.81 =V
2 ! 0.67 g 0.2
5 05 I i 5 o
< ° 8 NSRRI) o
1b 2b 3b 1b 2b 3b g v ‘b@@
Area Power (9?‘0
(a) (b)

Figure 19: (a) Comparison of area and power consumption
of compute units under different atom granularity. (b)
Comparison of average performance on DNN benchmark
under different bit-width.

FE Impact of Atom Granularity

By default, Ristretto is designed under the 2bit granularity.
In this experiment, we examine the impact of atom granularity
on performance. We choose three atom configurations: 1bit,
2bit, and 3bit. For fair comparison, we constraint the
Atomputers in all settings to have similar BitOps/cycle.
Specifically, we configure all three accelerator to use 32
compute tiles. The numbers of multipliers in 1bit, 2bit, and
3bit Atomputers are 64, 16, and 7, respectively.

Figure 19a shows the area and power consumption of
compute units in three accelerators. Compared to the 2bit
Ristretto, the 1bit variant consumes 3.34x and 3.51x area
and power. The reason is twofold. First, the range of shift
offset is {0,1,2,3,4,5,6,7} under 1bit granularity, which
leads to a much larger shift unit for each 1bit multiplication in
the Atomputer. Second, the increased number of accumulate
registers accounts for a large portion of the area and power
consumption. Although the 3bit variant consumes the least
area and power, it suffers from the resource underutilization,
especially for 2bit and 4bit models. Figure 19b shows the area-
normalized performance on the DNN benchmark. Overall, the
2bit Ristretto can achieve the highest average performance.

VI. CONCLUSION

This paper presents Ristretto, an atomized processing ar-
chitecture that can exploit both dual-sided sparsity and mixed-
precision for CNN inference. By leveraging hierarchical data
reuse, the low-level mixed-precision multiplication and high-
level sparse convolution can be unified into a shared dataflow
and efficiently performed through a condensed streaming
computation. Extensive evaluations show that Ristretto con-
sistently outperforms three state-of-the-art CNN accelerators.
One limitation of Ristretto is that it currently only targets low-
precision CNN inference. Since the deep learning community

has witnessed great success in Transformer and GNN based
algorithms, how to extend Ristretto to support the most recent
algorithms and large-scale training is critical to the practical
value. We leave this for future work.

ACKNOWLEDGMENT

This work was supported in part by National Natural Sci-
ence Foundation of China (Grant No.61972242). The authors
would like to thank the support from Biren Technology.

REFERENCES

[1] “Dnnsim,” https://github.com/isakedo/DNNsim.

[2] “Simulator for bitfusion,” https://github.com/hsharma35/

bitfusion.

[3] J. Albericio, A. Delmads, P. Judd, S. Sharify, G. O’Leary,

R. Genov, and A. Moshovos, “Bit-pragmatic deep

neural network computing,” in Proceedings of the

50th Annual IEEE/ACM International Symposium on

Microarchitecture, 2017, pp. 382-394.

J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E.

Jerger, and A. Moshovos, “Cnvlutin: Ineffectual-neuron-

free deep neural network computing,” ACM SIGARCH

Computer Architecture News, vol. 44, no. 3, pp. 1-13,

2016.

M. Alwani, H. Chen, M. Ferdman, and P. Milder,

“Fused-layer cnn accelerators,” in 2016 49th Annual

IEEE/ACM International Symposium on Microarchitec-

ture (MICRO). 1EEE, 2016, pp. 1-12.

Z. Cai and N. Vasconcelos, “Rethinking differentiable

search for mixed-precision neural networks,” in Pro-

ceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2020, pp. 2349-2358.

V. Camus, L. Mei, C. Enz, and M. Verhelst, “Re-

view and benchmarking of precision-scalable multiply-

accumulate unit architectures for embedded neural-
network processing,” IEEE Journal on Emerging and

Selected Topics in Circuits and Systems, vol. 9, no. 4,

pp- 697-711, 2019.

Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss:

An energy-efficient reconfigurable accelerator for deep

convolutional neural networks,” IEEE journal of solid-

state circuits, vol. 52, no. 1, pp. 127-138, 2016.

Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang,

L. Li, T. Chen, Z. Xu, N. Sun et al., “Dadiannao: A

machine-learning supercomputer,” in 2014 47th Annual

IEEE/ACM International Symposium on Microarchitec-

ture. 1EEE, 2014, pp. 609-622.

A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun,

“Very deep convolutional networks for text classification,”

arXiv preprint arXiv:1606.01781, 2016.

[11] H. Cui, V. Radosavljevic, F.-C. Chou, T.-H. Lin,
T. Nguyen, T.-K. Huang, J. Schneider, and N. Djuric,
“Multimodal trajectory predictions for autonomous
driving using deep convolutional networks,” in 2019

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 2090-2096.

A. Delmas Lascorz, P. Judd, D. M. Stuart, Z. Pou-
los, M. Mahmoud, S. Sharify, M. Nikolic, K. Siu,
and A. Moshovos, “Bit-tactical: A software/hardware
approach to exploiting value and bit sparsity in neu-
ral networks,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019,
pp. 749-763.

C. Deng, Y. Sui, S. Liao, X. Qian, and B. Yuan,
“Gospa: An energy-efficient high-performance globally
optimized sparse convolutional neural network accel-
erator,” in 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). 1EEE,
2021, pp. 1110-1123.

A. T. Elthakeb, P. Pilligundla, F. Mireshghallah, A. Yaz-
danbakhsh, and H. Esmaeilzadeh, “Releq: A reinforce-
ment learning approach for deep quantization of neural
networks,” arXiv preprint arXiv:1811.01704, 2018.

Y. Fu, Y. Zhao, Q. Yu, C. Li, and Y. Lin, “2-in-
1 accelerator: Enabling random precision switch for
winning both adversarial robustness and efficiency,”
in MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, 2021, pp. 225-237.

M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis,
“Tetris: Scalable and efficient neural network accelera-
tion with 3d memory,” in Proceedings of the Twenty-
Second International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, 2017, pp. 751-764.

A. Gondimalla, N. Chesnut, M. Thottethodi, and T. Vi-
jaykumar, “Sparten: A sparse tensor accelerator for
convolutional neural networks,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on
Microarchitecture, 2019, pp. 151-165.

S. Gupta, A. Agrawal, K. Gopalakrishnan, and
P. Narayanan, “Deep learning with limited numerical
precision,” in International conference on machine
learning. PMLR, 2015, pp. 1737-1746.

S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A.
Horowitz, and W. J. Dally, “Eie: Efficient inference
engine on compressed deep neural network,” ACM
SIGARCH Computer Architecture News, vol. 44, no. 3,
pp. 243-254, 2016.

——, “Eie: Efficient inference engine on compressed
deep neural network,” ACM SIGARCH Computer Ar-
chitecture News, vol. 44, no. 3, pp. 243-254, 2016.

S. Han, H. Mao, and W. J. Dally, “Deep compression:
Compressing deep neural networks with pruning, trained
quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual
learning for image recognition,” in Proceedings of

https://github.com/isakedo/DNNsim
https://github.com/hsharma35/bitfusion
https://github.com/hsharma35/bitfusion

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

the IEEE conference on computer vision and pattern
recognition, 2016, pp. 770-778.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,
W. Wang, T. Weyand, M. Andreetto, and H. Adam,
“Mobilenets: Efficient convolutional neural networks
for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

S. Ioffe and C. Szegedy, “Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift,” in International conference on machine
learning. PMLR, 2015, pp. 448-456.

Q. Jin, L. Yang, and Z. Liao, “Adabits: Neural network
quantization with adaptive bit-widths,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 2146-2156.

N. P. Jouppi, C. Young, N. Patil, D. Patterson,
G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers et al., “In-datacenter performance analysis
of a tensor processing unit,” in Proceedings of the
44th annual international symposium on computer
architecture, 2017, pp. 1-12.

P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt,
and A. Moshovos, “Stripes: Bit-serial deep neural
network computing,” in 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MI-
CRO). IEEE, 2016, pp. 1-12.

D. Kim, J. Ahn, and S. Yoo, ‘“Zena: Zero-aware neural
network accelerator,” IEEE Design & Test, vol. 35,
no. 1, pp. 39-46, 2017.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Im-
agenet classification with deep convolutional neural
networks,” Advances in neural information processing
systems, vol. 25, 2012.

H. Kwon, A. Samajdar, and T. Krishna, “Maeri: En-
abling flexible dataflow mapping over dnn accelerators
via reconfigurable interconnects,” ACM SIGPLAN No-
tices, vol. 53, no. 2, pp. 461475, 2018.

J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J.
Yoo, “Unpu: An energy-efficient deep neural network
accelerator with fully variable weight bit precision,”
IEEE Journal of Solid-State Circuits, vol. 54, no. 1, pp.
173-185, 2018.

F. Li, G. Li, Z. Mo, X. He, and J. Cheng, “Fsa: A
fine-grained systolic accelerator for sparse cnns,” IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 11, pp. 3589-3600,
2020.

H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P.
Graf, “Pruning filters for efficient convnets,” arXiv
preprint arXiv:1608.08710, 2016.

S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P.
Jouppi, “Cacti-p: Architecture-level modeling for sram-
based structures with advanced leakage reduction tech-
niques,” in 2011 IEEE/ACM International Conference

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

[44]

[45]

on Computer-Aided Design (ICCAD).
694-701.

Q. Lou, F. Guo, L. Liu, M. Kim, and L. Jiang, “Autoq:
Automated kernel-wise neural network quantization,”
arXiv preprint arXiv:1902.05690, 2019.

H. Lu, X. Wei, N. Lin, G. Yan, and X. Li, “Tetris: re-
architecting convolutional neural network computation
for machine learning accelerators,” in 2018 IEEE/ACM
International Conference on Computer-Aided Design
(ICCAD). IEEE, 2018, pp. 1-8.

C. McCool, T. Perez, and B. Upcroft, “Mixtures
of lightweight deep convolutional neural networks:
Applied to agricultural robotics,” IEEE Robotics and
Automation Letters, vol. 2, no. 3, pp. 1344-1351, 2017.
V. Nair and G. E. Hinton, “Rectified linear units improve
restricted boltzmann machines,” in Icml, 2010.

A. Parashar, M. Rhu, A. Mukkara, A. Puglielli,
R. Venkatesan, B. Khailany, J. Emer, S. W. Keckler,
and W. J. Dally, “Scnn: An accelerator for compressed-
sparse convolutional neural networks,” ACM SIGARCH
Computer Architecture News, vol. 45, no. 2, pp. 27-40,
2017.

E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan,
D. Das, B. Kaul, and T. Krishna, “Sigma: A sparse and
irregular gemm accelerator with flexible interconnects
for dnn training,” in 2020 IEEE International Sym-
posium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 58-70.

S. Ryu, H. Kim, W. Yi, and J.-J. Kim, “Bitblade: Area
and energy-efficient precision-scalable neural network
accelerator with bitwise summation,” in Proceedings of
the 56th Annual Design Automation Conference 2019,
2019, pp. 1-6.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L.-C. Chen, “Mobilenetv2: Inverted residuals and linear
bottlenecks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp.
4510-4520.

Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer,
M. Fojtik, N. Jiang, B. Keller, A. Klinefelter, N. Pinck-
ney, P. Raina et al., “Simba: Scaling deep-learning
inference with multi-chip-module-based architecture,”
in Proceedings of the 52nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, 2019, pp.
14-27.

S. Sharify, A. D. Lascorz, M. Mahmoud, M. Nikolic,
K. Siu, D. M. Stuart, Z. Poulos, and A. Moshovos,
“Laconic deep learning inference acceleration,” in 2019
ACM/IEEE 46th Annual International Symposium on
Computer Architecture (ISCA). 1EEE, 2019, pp. 304—
317.

S. Sharify, A. D. Lascorz, K. Siu, P. Judd, and
A. Moshovos, “Loom: Exploiting weight and activation
precisions to accelerate convolutional neural networks,”

IEEE, 2011, pp.

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

in 2018 55th ACM/ESDA/IEEE Design Automation
Conference (DAC). 1EEE, 2018, pp. 1-6.

H. Sharma, J. Park, N. Suda, L. Lai, B. Chau,
V. Chandra, and H. Esmaeilzadeh, “Bit fusion: Bit-level
dynamically composable architecture for accelerating
deep neural network,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture
(ISCA). 1EEE, 2018, pp. 764-775.

K. Simonyan and A. Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,”
arXiv preprint arXiv:1409.1556, 2014.

Z. Song, B. Fu, F. Wu, Z. Jiang, L. Jiang, N. Jing, and
X. Liang, “Drq: dynamic region-based quantization for
deep neural network acceleration,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer
Architecture (ISCA). 1EEE, 2020, pp. 1010-1021.

X. Sun, R. Panda, C.-F. R. Chen, A. Oliva, R. Feris, and
K. Saenko, “Dynamic network quantization for efficient
video inference,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021,
pp. 7375-7385.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Ra-
binovich, “Going deeper with convolutions,” in Pro-
ceedings of the IEEE conference on computer vision
and pattern recognition, 2015, pp. 1-9.

F. Tung and G. Mori, “Deep neural network compres-
sion by in-parallel pruning-quantization,” IEEE trans-
actions on pattern analysis and machine intelligence,
vol. 42, no. 3, pp. 568-579, 2018.

M. Van Baalen, C. Louizos, M. Nagel, R. A. Amjad,
Y. Wang, T. Blankevoort, and M. Welling, “Bayesian
bits: Unifying quantization and pruning,” Advances
in neural information processing systems, vol. 33, pp.
5741-5752, 2020.

K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Hagq:

[54]

[55]

[56]

[57]

(58]

[59]

Hardware-aware automated quantization with mixed
precision,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019, pp.
8612-8620.

T. Wang, K. Wang, H. Cai, J. Lin, Z. Liu, H. Wang,
Y. Lin, and S. Han, “Apq: Joint search for network
architecture, pruning and quantization policy,” in Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 2078-2087.
Y. Wang, Y. Lu, and T. Blankevoort, “Differentiable
joint pruning and quantization for hardware efficiency,”
in European Conference on Computer Vision. Springer,
2020, pp. 259-277.

Z. Yuan, Y. Liu, J. Yue, Y. Yang, J. Wang, X. Feng,
J. Zhao, X. Li, and H. Yang, “Sticker: An energy-
efficient multi-sparsity compatible accelerator for convo-
lutional neural networks in 65-nm cmos,” IEEE Journal
of Solid-State Circuits, vol. 55, no. 2, pp. 465477,
2019.

J.-F. Zhang, C.-E. Lee, C. Liu, Y. S. Shao, S. W.
Keckler, and Z. Zhang, “Snap: An efficient sparse
neural acceleration processor for unstructured sparse
deep neural network inference,” IEEE Journal of Solid-
State Circuits, vol. 56, no. 2, pp. 636-647, 2020.

S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li,
Q. Guo, T. Chen, and Y. Chen, “Cambricon-x: An
accelerator for sparse neural networks,” in 2016 49th
Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO). 1EEE, 2016, pp. 1-12.

X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C. Wang,
X. Zhou, L. Li, T. Chen, and Y. Chen, “Cambricon-
s: Addressing irregularity in sparse neural networks
through a cooperative software/hardware approach,” in
2018 51st Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). IEEE, 2018, pp. 15—
28.

	Introduction
	Background and Motivation
	Accelerating CNN: Sparsity and Mixed Precision
	Challenge on Accelerator Design
	Orthogonal Design Spaces
	Inefficiency of Direct Combination

	Condensed Streaming Computation
	Integer Multiplication as 1D Convolution
	A Unified Framework

	Ristretto Architecture
	Overview
	Compression Format and Buffer Organization
	Compute Tile Microarchitecture
	Atomizer
	Atomputer
	Atomulator
	Accumulate Buffer

	Support for 16/32bit Inference
	Load Balancing

	Evaluation
	Methodology
	Baseline Accelerators
	DNN Benchmark
	Simulation

	Comparison with Bit Fusion
	Comparison with Laconic
	Comparison with SparTen and SparTen-mp
	Effectiveness of Load Balancing
	Impact of Atom Granularity

	Conclusion

