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ABSTRACT
In this paper, we consider the task of action anticipation on ego-
centric videos. Previous methods ignore explicit modeling of the
global context relation among past and future actions, which is not
an easy task due to the vacancy of unobserved videos. To solve
this problem, we propose a Multimodal Global Relation Knowledge
Distillation (MGRKD) framework to distill the relation knowledge
learned from full videos to improve the action anticipation task
on partially observed videos. The proposed MGRKD has a teacher-
student learning strategy, where either the teacher or student model
has three branches of global relation graph networks (GRGN) to ex-
plore the pairwise relations between past and future actions based
on three kinds of features (i.e., RGB, motion or object). The teacher
model has a similar architecture with the student model, except that
the teacher model uses true feature of the future video snippet to
build the graph in GRGNwhile the student model uses a progressive
GRU to predict an initialized node representation of future snip-
pet for reasoning on GRGN. Through the teacher-student learning
strategy, the discriminative features and privileged relation knowl-
edge of the past and future actions learned in the teacher model can
be distilled to the student model. We perform experiments on two
egocentric video datasets EPIC-Kitchens and EGTEA Gaze+. The
results show that the proposed framework achieves state-of-the-art
performances.
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Figure 1: (a) Illustration of action anticipation task: predict-
ing the action starting at 𝜏𝑠 by observing a video starting at
𝜏𝑠 − (𝜏𝑜 + 𝜏𝛼 ) and ending at 𝜏𝑠 − 𝜏𝛼 , where 𝜏𝑜 is the length
of observed video and 𝜏𝛼 is the anticipation time gap. (b)
Our main idea: distilling the discriminative features and
global relation knowledge of teacher model learned from
full videos into the student model for action anticipation.
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1 INTRODUCTION
Action anticipation, i.e., predicting an action before it actually begins,
is a fundamental ability for human beings to make decisions when
interacting with the environment. Formally, as shown in Figure 1(a),
this task is defined as predicting the action of a video starting at
time 𝜏𝑠 by observing the video starting at 𝜏𝑠−(𝜏𝑜 +𝜏𝛼 ) and ending at
𝜏𝑠 −𝜏𝛼 , where 𝜏𝑜 is the length of observed video and 𝜏𝛼 is the gap of
anticipation time. The video content after time 𝜏𝑠 −𝜏𝛼 is unavailable
when anticipating. It is worth noting that the observed videos may
have different actions from the unobserved ones. Although this task
is firstly proposed in third-person videos [22, 24, 25, 42], anticipat-
ing an action from egocentric (first-person) videos has also attracted
much attention since it has many real-world applications, such as
autonomous vehicles [1, 31], human-robot interaction [22, 37] and
wearable assistants [19, 40]. For example, the ability of an intelligent
wearable system for predicting what action the wearer will perform
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in the near future is critical to prepare assistance in advance for the
wearer to execute this action. The central challenge of egocentric
action anticipation arises in inferring the future by creating con-
nection between past and future events based on partially observed
videos. However, due to the uncertainty of the future, it is difficult
to directly utilize current advanced action recognition models, such
as Temporal Segment Network [43] and Two-Stream CNNs [39], for
action anticipation. Because most of these methods mainly focus
on capturing the discriminative visual and motion content of the
observed videos which is not sufficient to reason out future actions.

Recently, there are some successful attempts to address the
challenge of egocentric action anticipation. For example, Miech
et al. [32] propose a basic model to predict current action based
on observed videos, and then build a transitional model to predict
future action based on the current action labels. Furnari et al. [9]
utilize two LSTMs to handle disentangled sub-tasks of summarizing
past observations and anticipating future actions based the hidden
vectors learned in the observed videos. Zhang et al. [52] develop [9]
by applying textual pre-training to acquire tacit knowledge to solve
the visual gap problem. Besides, the action is divided into the form
of verb and noun to implement analysis-based prediction. Although
these methods have achieved significant progress in egocentric
action anticipation, they always predict the future action based
on an integrated state vector which represents all the complex in-
formation in the observed videos, such as objects, motions and
the relations among them. This kind of architecture will limit the
anticipation performances because the integrated representation
may ignore a potential strong connection between past and future
actions with long time intervals. For example, if a man has just per-
formed actions of "stand up" and "open fridge", the future action can
be "take eggs", "take fruits", "take milk", etc. Based on the integrated
representation of the primary objects and motions contained in the
observed videos, it is not easy to decide what is the correct future
action. In contrast, if we can identify that the person holds a cup of
coffee, the correct result "take milk" can be easily obtained due to
the strong prior dependency between "coffee" and "milk". This kind
of relation can be captured by globally considering the pairwise
relations between past and future actions.

To this end, we know that comprehensively exploring the global
context relations between past and future actions is important in
action anticipation. Inspired by the success of graph networks in
modeling the structure information [20, 48, 50], it is straightforward
to consider using graph networks to capture the global relations.
However, the vacancy of the unobserved video brings extra diffi-
culties because we can not directly construct the reasoning graph
based on unknown nodes.To solve this problem, we propose an
end-to-end graph-based knowledge distillation framework,
named as Multimodal Global Relation Knowledge Distilla-
tion (MGRKD). As shown in Figure 1(b), our work is designed
to distill the discriminative features and the global context rela-
tion knowledge learned in the full videos to improve the action
anticipation task on partially observed videos.

The proposed MGRKD adopts a teacher-student learning strat-
egy. The student model is designed to simulate the real inference
environment, where only the observed videos are available for ac-
tion anticipation. We build three branches of global relation graph
networks (GRGN) to explore the pairwise relations between the

past and future actions. Each GRGN uses one of three kinds of fea-
tures (i.e., RGB, motion or object) to create the input graph, where
the node represents the feature of a video snippet and the edge
denotes the relation between two video snippets. For the conve-
nience of graph reasoning, a progressive GRU network is adopted
to predict an initialized representation of future video snippet. With
the GRGN, we can reason out the discriminative feature of the fu-
ture snippet, which will be further used to predict future action
class. Moreover, the predicted results obtained by three branches of
GRGNs are combined by late fusion strategy to exploit the comple-
mentarity of different kinds of features. The teacher model has a
similar architecture with the student model, except that the true
feature of the unobserved video snippet is used to build the graph.
The teacher model practically solves an easier task of action recog-
nition based on full videos. Through the teacher-student learning
strategy, the discriminative features and privileged relation knowl-
edge of the past and future actions learned in the teacher model
can be distilled to the student model during train phase. At test
phase, only the student model is retained to anticipate the future
action.We conduct experiments on two large-scale egocentric video
datasets, EPIC-Kitchens [5] and EGTEA Gaze+ [26]. The results
demonstrate that the proposed method achieves the state-of-the-art
performances on the action anticipation task.

In summary, the main contributions of this work are three-fold:

• We propose to model the global pairwise relations between
past and future actions with graph networks, which can effec-
tively capture useful dependencies with long time intervals
for action anticipation.
• We design a novel multimodal global relation knowledge
distillation framework to distill the discriminative features
and global context relations learned from the full videos to
improve the action anticipation on partially observed videos.
To the best of our knowledge, this is the first work of relation
distillation in the action anticipation task.
• We evaluate the proposed MGRKD on two large-scale ego-
centric video datasets (i.e., EPIC-Kitchens [5] and EGTEA
Gaze+ [26]). Extensive experimental results demonstrate that
the proposed method achieves state-of-the-art performances.

2 RELATEDWORK
Egocentric Action Anticipation. The task of action anticipation
aims at predicting an action before it actually begins [9, 11]. This
definition distinguishes the anticipation task from early action
recognition [15, 21, 45]. Compared with action anticipation in third-
person vision [22, 24, 25, 42], fewer works focus on the egocentric
action anticipation task [7, 32]. Miech et al. [32] propose a model
based on Markov processing to establish transition relation be-
tween past and future actions. Furnari et al. [7] consider the action
anticipation as a multi-label classification problem since the the
future action is uncertain, and study the design of loss functions.
As an improvement, Camporese et al. [2] extend the idea of label
smoothing by extracting semantics from the target labels and distill
the semantic information into the model during training. Furnari et
al. [9] utilize two LSTMs to handle disentangled sub-tasks of sum-
marizing past observations and anticipating future actions based
the hidden vectors learned in the observed videos. In order to bridge



visual gap between past and future, Zhang et al. [52] adopt multi-
modal information, including both visual features of videos and
sequential text instructions of actions, to perform action antici-
pation via integrating intuition and analysis. Liu et al. [27] find
that hand movement reveals critical information about the future
activity in egocentric vision, and propose to jointly predict the
egocentric hand motion, interaction hotspots and future action. Qi
et al. [36] propose a self-regulated learning framework to regulate
model consecutively to produce representation that emphasizes
the novel information in the frame of the current time-stamp in
contrast to previously observed content. Wu et al. [47] decompose
the action anticipation into a series of future feature predictions
by using contrastive learning to pick the correct future states from
the given observed video features and future true features. Most
existing methods use an integrated state vector to capture all the
complex information in the observed videos, which may limit the
anticipation performances. In contrast, our method explores the
global context relations between past and future actions.
Graph Convolutional Networks. After proposed in [20], graph
convolution networks have shown convincing successes in model-
ing relations and have been widely applied in multiple computer
vision and multimedia tasks, such as zero/few-shot image clas-
sification [3, 18, 46], visual question answering [33] and visual
captioning [49]. Similarly, many works have been proposed to an-
alyze videos [10, 12, 16, 34, 35, 44, 51, 53]. For example, Zeng et
al. [51] propose to use GCNs to model the relation of video clips to
further improve the localization accuracy. Pan et al. [34] propose a
spatio-temporal graph to model the interactions of objects detected
in video to improve the captioning performance. To the best of our
knowledge, we are the first to apply GCNs in action anticipation
task to explore the relations among past and future actions.
Knowledge Distillation. Knowledge distillation is first proposed
in [14] to distill the knowledge from a large model into a small
model by minimizing the KL divergence between their logits distri-
butions. Due to its simplicity and effectiveness, knowledge distilla-
tion has been widely used in model compression [23, 29, 41]. Laterly,
Lopez-Paz et al. [28] generalize distillation to incorporate privileged
information, which is available during training but not accessible
during testing. Gupta et al. [13] treat the extra modality as the
privileged information for cross-modal distillation. Zhou et al. [54]
propose to use image-text matching model to distill word-region
alignment information for image captioning. Pan et al. [34] pro-
pose to distill object interaction information from a spatio-temporal
graph for video captioning. Camporese et al. [2] generalize the label
smoothing idea by extrapolating semantic priors from the action
labels. The work more related to ours is [45], where full video is re-
garded as privileged information to be distilled into the early action
prediction model. It is worth noting that this method only distills
the features from full video. Differently, our method can distill the
global context relations between past and future actions learned in
full video to improve the performance of action anticipation task.

3 PROPOSED APPROACH
3.1 Framework Overview
The egocentric action anticipation task, as defined in [8, 9], aims to
predict the action label 𝑦 of a video starting at time 𝜏𝑠 by observing
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Figure 2: An overview of the proposed Multimodal Global
Relation Knowledge Distillation (MGRKD). 𝒓𝑖 , 𝒎𝑖 and 𝒐𝑖 are
input RGB, motion and object features. GRGN is the pro-
posed global relation graph network. In either the student
model or the teacher model, results predicted by the classi-
fiers based the outputs of three GRGNs are combined by late
fusion strategy to anticipate the future action.

the video starting at 𝜏𝑠 − (𝜏𝑜 +𝜏𝛼 ) and ending at 𝜏𝑠 −𝜏𝛼 , where 𝜏𝑜 is
the length of observed video and 𝜏𝛼 is the time gap for anticipation.
For simplicity, as in [9], we segment the video into snippets, where
each of them has 𝛿 seconds. With this scheme, we get 𝑙 video
snippets {𝑉1,𝑉2, . . . ,𝑉𝑙 } during time [𝜏𝑠 −(𝜏𝑜 +𝜏𝛼 ), 𝜏𝑠 −𝜏𝛼 ] and 𝑎−1
video snippets {𝑉𝑙+1,𝑉𝑙+2, . . . ,𝑉𝑙+𝑎−1} during the anticipation gap
[𝜏𝑠 −𝜏𝛼 , 𝜏𝑠 ]. Moreover, we use𝑉𝑙+𝑎 to denote the video snippet after
𝜏𝑠 that need to be anticipated. The challenge of this task lies largely
in that {𝑉𝑙+1,𝑉𝑙+2, . . . ,𝑉𝑙+𝑎} are unavailable when anticipating.

To comprehensively capture the important visual content (e.g.,
objects and motions) contained in the videos, we extract three kinds
of features including RGB feature, motion feature and object feature
to construct our framework for action anticipation. As in [8, 9], for
each video snippet 𝑉𝑖 , we extract RGB features {𝒓1, 𝒓2, . . . , 𝒓𝑙 } via
pretrained spatial CNNs, motion features {𝒎1,𝒎2, . . . ,𝒎𝑙 } via mo-
tion CNNs which can process optical flow information, and object
features {𝒐1, 𝒐2, . . . , 𝒐𝑙 } via a pretrained object detector. More de-
tails of the feature extraction networks are illustrated in Section 4.2.

After obtaining the three kinds of features, as shown in Figure 2,
we build a multi-modal knowledge distillation framework which
implements a teacher-student learning strategy. Either the teacher
model or the student model has three branches. Each branch is a
Global Relation Graph Network (GRGN) which explores the global
context relations between the past and future actions based on one
kind of features (i.e., RGB, motion or object). For the student model,
only observed video snippets are available to build the relation
graph. Therefore, we initialize the nodes of future video snippets
by a progressive GRU. With the GRGN, we can reason out the
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Figure 3: An overview of the proposed Global Relation Graph Network (GRGN). Here we show an example that the observed
video has 3 snippets and the unobserved video has 2 snippets. 𝒇𝑖 denotes one of the three kinds of modality features, i.e., 𝒓𝑖 ,𝒎𝑖

or 𝒐𝑖 . In student model, a progressive GRU initializes the representations of future video snippets {𝒇4,𝒇5} based on 𝒇1, 𝒇2 and 𝒇3.
In contrast, the representations of the full video {𝒇1,𝒇2, . . . ,𝒇5} are all available for the teacher model. The GRGN, consisting
of Node Representation (NR) Module, Relation Representation (RR) Module and a 𝑀-layer GCNs, is proposed to reason out
discriminative features bymodeling global relations between past and future actions.With the knowledge distillation strategy,
the privileged relation knowledge learned from the full video can be propagated to the student model.

discriminative feature of the future snippet, which will be further
used to predict the action class. Moreover, we adopt a late fusion
strategy to combine the predicted results obtained by different kinds
of features to exploit the complementarity of different modalities.
The teacher model has a similar architecture with the student model,
except that the true feature of future video snippet is used to build
the relation graph. Under the teacher-student knowledge distillation
strategy, the privileged relation knowledge of the past and future
actions learned in the teacher model can be propagated to the
student model during train phase. At test phase, only the student
model is retained to anticipate the future action.

Figure 3 elaborates the GRGN on one of the three kinds of fea-
tures. More details of the GRGN will be introduced in Section 3.2.
The optimization strategy in a teacher-student knowledge distilla-
tion manner is introduced in Section 3.3.

3.2 Global Relation Graph Network
Since egocentric video usually changes quickly with the movement
of the actor, there exists a clear gap between past and future video
snippets making it hard for long-time reasoning in action anticipa-
tion task. In our work, the GRGN is designed to infer the feature of
the future snippet with the consideration of global relations among
observed and unobserved video snippets.

For simplicity, we use 𝒇𝑖 to denote the feature of one of the
three modalities (i.e., 𝒓𝑖 , 𝒎𝑖 or 𝒐𝑖 ) for the observed video snippet.
For the unobserved snippet, the feature is defined as 𝒇𝑖 , which is
computed in different ways in the teacher model and the student
model. After obtaining the representations of all video snippets,
the key step of the GRGN is to represent video snippets as a graph

structure with discriminative node features and reasonable node
relations. We denote the graph by G 𝑓 = (V 𝑓 , E 𝑓 ), whereV 𝑓 is a
set of 𝑙 + 𝑎 nodes corresponding to 𝑙 observed video snippets and 𝑎
unobserved snippets. The 𝑒 𝑓 (𝑖, 𝑗) ∈ E 𝑓 denotes the weight of the
edge connecting the 𝑖-th node and the 𝑗-th node. Here, 𝑓 ∈ {𝑟,𝑚, 𝑜}
represents the index of the feature modality. The details for building
the graph G 𝑓 and reasoning on it are introduced as follows.

3.2.1 Node Representation Module. Here, we introduce how to
initialize feature representations {𝒇𝑙+1,𝒇𝑙+2, . . . ,𝒇𝑙+𝑎} of unobserved
video snippets for the student model by a progressive GRU [4]. For
the teacher model, it is much simpler because all graph nodes can be
directly represented with the true features. In student model, given
the feature 𝒇𝑖 of the 𝑖-th observed video snippet, the progressive
GRU produces the feature 𝒇𝑖+1 of the next unobserved snippet as
follows:

𝒉𝑖+1 = GRU(𝒇𝑖 ,𝒉𝑖 )

𝒇𝑖+1 = 𝜎 (𝜑 (𝒉𝑖+1) + 𝒇𝑖 )
(1)

where 𝒉𝑖 is the hidden state of GRU, 𝜑 (·) is a transformation layer
and 𝜎 (·) is a nonlinear activation function ReLU. Here, we use a
shortcut connection between 𝜑 (𝒉𝑖+1) and 𝒇𝑖 as in [47] to make the
progressive GRU aware of the feature difference between two snip-
pets. During anticipation process, we iteratively input the predicted
𝒇𝑖 into the progressive GRU for initializing the feature 𝒇𝑖+1 of the
next snippet.

To effectively predict the correct future action, the temporal
information of video snippets are also important because they
can provide temporal structure of the past actions. So we input



the features {𝒇1,𝒇2, . . . ,𝒇𝑙 ,𝒇𝑙+1,𝒇𝑙+2, . . . ,𝒇𝑙+𝑎} of all snippets into bi-
direction two-layer GRUs to capture more sequential structure fea-
tures. The encoded forward hidden states in the last GRU layer are
represented as {−→𝒉 𝑓

1 ,
−→
𝒉
𝑓

2 , . . . ,
−→
𝒉
𝑓

𝑙+𝑎} and the backward hidden states
are represented as {←−𝒉 𝑓

1 ,
←−
𝒉
𝑓

2 , . . . ,
←−
𝒉
𝑓

𝑙+𝑎}. The
−→
𝒉
𝑓

𝑖
or ←−𝒉 𝑓

𝑖
∈ R𝑝 𝑓

and 𝑝 𝑓 is the dimension of the hidden states. 𝑓 ∈ {𝑟,𝑚, 𝑜} is the
modality index. Then we combine the latent vector representations
𝒉
𝑓

𝑖
= [−→𝒉 𝑓

𝑖
;←−𝒉 𝑓

𝑖
] ∈ R2𝑝 𝑓 to obtain representation of each graph

node.

3.2.2 Relation Representation Module. We use pairwise similarities
of node features to compute the node relations. Specifically, the
weight of the edge between the 𝑖-th node and the 𝑗-th node is
defined as follows:

𝑒 𝑓 (𝑖, 𝑗) = 𝜙 𝑓 (𝒉𝑓
𝑖
)⊤𝜓 𝑓 (𝒉𝑓

𝑗
), (2)

where 𝜙 𝑓 (·) and 𝜓 𝑓 (·) represent two transformation functions
of node features. The 𝜙 𝑓 and 𝜓 𝑓 are defined as 𝜙 𝑓 (𝒙) = 𝑾

𝑓

1 𝒙

and 𝜓 𝑓 (𝒙) = 𝑾
𝑓

2 𝒙 , where 𝑾 𝑓

1 and 𝑾
𝑓

2 are trainable parameters
with the dimension of 2𝑝 𝑓 × 2𝑝 𝑓 . Subsequently, we use 𝑨𝑓 ∈
R(𝑙+𝑎)×(𝑙+𝑎) to denote the adjacent matrix associated to G 𝑓 . Each
entry of 𝑨𝑓 is computed from 𝑒 𝑓 (𝑖, 𝑗) with a row-wise normaliza-
tion:

𝑨𝑓 (𝑖, 𝑗) =
exp

(
𝑒 𝑓 (𝑖, 𝑗)

)∑𝑙+𝑎
𝑗=1 exp

(
𝑒 𝑓 (𝑖, 𝑗)

) . (3)

3.2.3 Reasoning on Graph. For reasoning on the graph, we perform
𝑀-layer graph convolutional networks (GCNs) [20] to update the
node representations of past video snippets and infer the node
representation of future snippet to be anticipated. Specifically, the
message passing operation in the𝑚-th GCN layer is conducted as
follows:

𝑿
𝑓
𝑚 = 𝜎 (𝑨𝑓 𝑿

𝑓

𝑚−1𝑾
𝑓
𝑚) + 𝑿

𝑓

𝑚−1 (4)

where 𝑿 𝑓
𝑚 ∈ R(𝑙+𝑎)×𝑑

𝑓
𝑚 is the hidden features of all nodes in the𝑚-

th GCN layer and 𝑑 𝑓𝑚 is the dimension of the hidden feature. 𝑿 𝑓

0 ∈
R(𝑙+𝑎)×2𝑝 𝑓 is initialized as [𝒉𝑓1 ;𝒉𝑓2 ; . . . ;𝒉𝑓

𝑙+𝑎].𝑾
𝑓
𝑚 ∈ R𝑑

𝑓

𝑚−1×𝑑
𝑓
𝑚 is a

trainable weight matrix and 𝑑 𝑓
𝑚−1 is the dimension of the hidden

feature in the (𝑚−1)-th GCN layer. For each layer, 𝜎 is a nonlinear
activation function ReLU. In addition, we use a shortcut connection
in each GCN layer to more effectively train the GCN networks and
obtain more stable reasoning results.

After the above graph convolution operations, the representa-
tion of each node is updated by message passing from neighbor-
hood nodes. More discriminative feature of the future video snippet
will also be obtained. To perform action anticipation based on the
updated node representations 𝑿𝑀

𝑓
of the graph, we apply a fully-

connected layer with Softmax activation function:

�̂�𝑓 = Softmax(𝑾 𝑓
𝑐 𝑿

𝑓

𝑀
(𝑙 + 𝑎) + 𝒃 𝑓𝑐 ), 𝑓 ∈ {𝑟,𝑚, 𝑜} (5)

where𝑾 𝑓
𝑐 and 𝒃 𝑓𝑐 are trainable parameters. 𝑿 𝑓

𝑀
(𝑙 +𝑎) is the (𝑙 +𝑎)-

th row of 𝑿 𝑓

𝑀
, which denotes the representation of future video

snippet.

3.3 Optimization
The optimization of the proposed method has two stages. The
teacher model is firstly trained to converge on all training videos,
before being used to guide the learning of the student model. Details
of the teacher model learning and the student model learning are
illustrated as follows.

3.3.1 Teacher Model Learning. The teacher model has a similar
architecture with the student model. The only difference of them
is that the teacher model directly uses the true features of the
future video snippets to build the graph. More specifically, without
applying progressive GRU for initializing the node representations,
we directly use {𝒇1,𝒇2, . . . ,𝒇𝑙+𝑎} including features of the observed
and future video snippets to construct the graph G 𝑓 introduced in
Section 3.2. To this end, the action class is much easier to predict
since the future video snippets are available and the teacher model
is practically an action recognition model based on both observed
and unobserved video snippets.

We use Cross Entropy loss to optimize the teacher model:

L𝑇CE (𝒚, �̂�𝑇 ) = −𝒚
⊤ log �̂�𝑇 , (6)

where 𝒚 is a one-hot vector of the ground-truth, and �̂�𝑇 is the
probability vector of different action classes predicted by the teacher
model. Since our model is based on three kinds of modalities as
shown in Figure 2, we first individually train the three GRGNs of
different modalities and then synchronously train them based on
fused prediction �̂� obtained by the late fusion strategy.

3.3.2 Student Model Learning. For the teacher model, since the
future video snippets are available, it can conveniently learn the
relation knowledge between past and future actions. In this part,
our target is to make the student model produce consistent global
context relations with the pretrained teacher model, even when
the future video snippets are unavailable, so that the privileged
relation knowledge between past and future actions learned by
the teacher model can be distilled to the student model. Under the
constraint of such privileged relation knowledge, the student model
will obtain more discriminative features of future video snippets by
effectively propagating useful feature information from past video
snippets. Specifically, we adopt a cross entropy loss, a progressive
GRU loss and two knowledge distillation losses to optimize the
student model:

L = L𝑆
CE (𝒚, �̂�𝑆 ) + 𝜆0LPG + 𝜆1LRKD + 𝜆2LDKD, (7)

where 𝜆0, 𝜆1 and 𝜆2 are hyper-parameters for balancing different
losses. �̂�𝑆 is the probability vector of different action classes pre-
dicted by the student model. 𝒚 is a smoothed action label vector [2]
of the groundtruth action class. It is used to not only penalize the
error related to the correct action class but also the error related
to other similar actions. Here, the similarities between actions are
calculated as semantic similarities based on word embeddings of
actions obtained by the pretrained word2vector model as in [2].
The remaining items of Eq. (7) are introduced as follows.
Progressive GRU Loss. To optimize the progressive GRU intro-
duced in Section 3.2.1 to efficiently initialize the representations
of unobserved video snippets for student model, we adopt a mean



squared error loss between the preliminary feature 𝒇𝑖 of the unob-
served snippet predicted by the progressive GRU and the ground-
truth feature 𝒇𝑖 as follows:

LPG =
∑

𝒇 ∈{𝒓,𝒎,𝒐 }

𝑙+𝑎∑
𝑖=𝑙+1

∥𝒇𝑖 − 𝒇𝑖 ∥2 . (8)

RelationKnowledgeDistillation Loss.Weadopt a relation knowl-
edge distillation loss to align the relation matrices of graph nodes
computed in the teacher model and the student model. Specifically,
for each of the three kinds of features (i.e., 𝑓 ∈ {𝑟,𝑚, 𝑜}), we use𝑨𝑓

𝑆
,

as defined in Eq.(3), to denote the relation matrix calculated in the
student model, and use 𝑨𝑓

𝑇
to denote the relation matrix calculated

in the teacher model. The relation knowledge distillation loss is
defined as the KL divergence between these two relation matrices:

LRKD = −
∑

𝑓 ∈{𝑟,𝑚,𝑜 }

𝑙+𝑎∑
𝑖, 𝑗=1

𝐴
𝑓

𝑆
(𝑖, 𝑗) log

(𝐴𝑓

𝑇
(𝑖, 𝑗)

𝐴
𝑓

𝑆
(𝑖, 𝑗)

)
. (9)

Discriminative KnowledgeDistillation Loss. To further ensure
that the inferred feature of the unobserved video snippet in the
student model is discriminative enough for action anticipation, we
adopt a discriminative knowledge distillation loss as follows:

LDKD =
∑

𝑓 ∈{𝑟,𝑚,𝑜 }
∥𝑿 𝑓

𝑀,𝑆
− 𝑿 𝑓

𝑀,𝑇
∥2𝐹 , (10)

where 𝑿 𝑓

𝑀,𝑇
and 𝑿 𝑓

𝑀,𝑆
are the outputs of M-layer GCNs of teacher

and student model. ∥ · ∥𝐹 is the Frobenius norm of matrix.

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
EPIC-Kitchens Dataset. This dataset [5] consists of 55 hours of
videos collected by 32 participants when they are performing ac-
tivities in their native kitchen environments. This dataset contains
39,596 video segments with annotated action labels for training
and 11,003 segments for testing. There are 125 unique verb classes
and 352 unique noun classes in total, while the number of action
categories is 2,513. We split the training set of EPIC-Kitchens into
training and validation sets by choosing 232 untrimmed videos for
training and 40 videos for validation as in [9], resulting in 23,493
segments for training and 4,979 segments for validation.
EGTEA Gaze+ Dataset. The EGTEA Gaze+ [26] dataset contains
10,325 annotated video segments. The annotations have 106 unique
action categories. Methods are evaluated on the EGTEA Gaze+ by
reporting the average performance of the three splits provided by
the authors [26], where each split has 8299 segments for training
and 2022 for validation.
Metrics. As in previous works [8, 9, 52], we utilize the metrics of
Top-1 Accuracy and Top-5 Accuracy to evaluate our model and
compare it with other methods. Moreover, since actions in the EPIC-
Kitchens dataset are annotated in the format of (verb, noun) pairs,
we also report the anticipation results of predicted verbs and nouns.

4.2 Implementation Details
Similar to the work [9], we employ three kinds of features (i.e., RGB,
motion and object features) in the experiments of EPIC-Kitchens

Table 1: Anticipation results on S1 test set of EPIC-Kitchens.

Methods Top-1 Accuracy (%) Top-5 Accuracy (%)
Verb Noun Action Verb Noun Action

DMR [42] 26.53 10.43 01.27 73.30 28.86 07.17
2SCNN [5] 29.76 15.15 04.32 76.03 38.56 15.21
ATSN [5] 31.81 16.22 06.00 76.56 42.15 28.21
MCE [7] 27.92 16.09 10.76 73.59 39.32 25.28
ED [11] 29.35 16.07 08.08 74.49 38.83 18.19
Miech et al. [32] 30.74 16.47 09.74 76.21 42.72 25.44
RULSTM [9] 33.04 22.78 14.39 79.55 50.95 33.73
Liu et al. [27] 34.99 20.86 14.04 77.05 46.45 31.29
SRL [36] 34.89 22.84 14.24 79.59 52.03 34.61
KDLM [2] 35.04 23.03 14.43 79.56 52.90 34.99
ImagineRnn [47] 35.44 22.79 14.66 79.72 52.09 34.98
Sener et al. [38] 37.90 24.10 16.60 79.70 54.00 36.10
MGRKD 38.70 25.20 16.98 79.15 53.44 37.12

dataset. On EGTEAGaze+ dataset, previous methods [9, 17, 30] only
use two kinds of features (i.e., RGB and motion features) since no
object annotations are given. We also use these two kinds features
as in [9] for fair comparison. The duration 𝜏𝑜 of observed video
is set to 2.5 seconds and the time gap 𝜏𝛼 for anticipating is set
to 1 second. We segment the video in snippets with the length of
𝛿 = 0.25 seconds. Therefore, the total number of observed video
snippets is 𝑙 = 11 and the total number of unobserved video snippets
is 𝑎 = 4. Here, each video snippet is represented by its first frame.
The dimension of the hidden state vector in progressive GRU is set
to 1024, 1024 and 352 for the RGB branch, motion branch and object
branch, respectively. The dimension of the hidden state vector in
bi-GRUs is set to 512, 512 and 176 for three branches. The number
of GCN layers in the GRGN is set to 3. The dimension of the node
representations is set to 1024 in RGB GRGN, 1024 in motion GRGN
and 352 in object GRGN, respectively. In the loss function of the
student model illustrated in Eq. (7), the balance weight 𝜆0, 𝜆1 and 𝜆2
are set to 5, 0.1 and 5, respectively . We employ stochastic gradient
descent optimizer with a learning rate of 0.01 and momentum of
0.9. The training batch size is 128. All the models are trained for
150 epochs and the model performs best on validation set is used
for evaluation on testing set.

4.3 Comparison with State-of-the-Arts
EPIC-Kitchens. On this dataset, we compare our model with fol-
lowing competitive methods: DMR [42], 2SCNN [5], ATSN [5],
MCE [7], ED [11], Miech et al. [32], RULSTM [9], RU+IAI [52], Liu
et al. [27], SRL [36], KDLM [2] and ImagineRnn [47]. As in exist-
ing works [8, 9], we report the results on both the seen test set
(S1), where the test videos may have scenes appear in the training
videos, and the unseen test (S2), where the test videos do not have
the same scenes with the training videos. It is worth noting that
Liu et al. [27] use interaction hotspots and hand trajectory features
in action anticipation. Since most of existing methods use RGB,
motion and object features, we report the results without using
hotspots and hand trajectory in [27] for fair comparison. As show
in Table 1, our MGRKD outperforms all other methods by a signif-
icant margin on the S1 set. Moreover, on the S2 set as shown in
Table 2, our MGRKD also achieves competitive results. The results



Table 2: Anticipation results on S2 test set of EPIC-Kitchens.

Methods Top-1 Accuracy (%) Top-5 Accuracy (%)
Verb Noun Action Verb Noun Action

DMR [42] 24.79 08.12 00.55 64.76 20.19 04.39
2SCNN [5] 25.23 09.97 02.29 68.66 27.38 09.35
ATSN [5] 25.30 10.41 02.39 68.32 29.50 06.63
MCE [7] 21.27 09.90 05.57 63.33 25.50 15.71
ED [11] 22.52 07.81 02.65 62.65 21.42 07.57
Miech et al. [32] 28.37 12.43 07.24 69.96 32.20 19.29
RULSTM [9] 27.01 15.19 08.16 69.55 34.38 21.10
RU-IAI [52] 27.89 14.89 08.57 70.06 35.51 21.41
Liu et al. [27] 28.27 14.07 08.64 70.67 34.35 22.91
SRL [36] 27.42 15.47 08.88 71.90 36.80 22.06
KDLM [2] 29.29 15.33 08.81 70.71 36.63 21.34
ImagineRnn [47] 29.33 15.50 09.25 70.67 35.78 22.19
Sener et al. [38] 29.50 16.50 10.10 70.10 37.80 23.40
MGRKD 29.26 16.59 10.38 70.78 37.32 23.05

Table 3: Top-5 accuracy (%) results on EGTEAGaze+ with dif-
ferent values of the anticipation time gap.

Methods Top-5 Action Accuracy @ Anticipation Time 𝜏𝛼
2.0 1.75 1.5 1.25 1.0 0.75 0.5 0.25

DMR [42] - - - - 55.70 - - -
ATSN [5] - - - - 40.53 - - -
MCE [7] - - - - 56.29 - - -
ED [11] 45.03 46.22 46.86 48.36 50.22 51.86 49.99 49.17
FN [6] 54.06 54.94 56.75 58.34 60.12 62.03 63.96 66.45
RL [30] 55.18 56.31 58.22 60.35 62.56 64.65 67.35 70.42
EL [17] 55.62 57.56 59.77 61.58 64.62 66.89 69.60 72.38
rulstm [9] 56.82 59.13 61.42 63.53 66.40 68.41 71.84 74.28
ImagineRnn [47] - - - - 66.71 68.54 72.32 74.59
KDLM [2] 59.99 62.02 63.95 66.47 68.74 72.16 75.21 78.11
SRL [36] 59.69 61.79 64.93 66.45 70.67 73.49 78.02 82.61
MGRKD 60.86 63.43 65.24 67.66 70.86 74.32 77.49 79.61

of our method on action anticipation are better than other models.
For Verb anticipation, though the proposed MGRKD can not out-
perform the ImagineRnn [47] on the metrics of Top-1 and Top-5
accuracy, we consistently achieve competitive results among all
the compared methods on all metrics. The comparison results in
Table 1 and 2 demonstrate the effectiveness of proposed model.
EGTEA Gaze+. As in existing works [9], we report Top-5 accuracy
results of action anticipation for comparison. Moreover, we also
evaluate ourmodel with different anticipation time gaps (i.e,𝜏𝛼 is set
to {2.0, 1.75, . . . , 0.25}). As shown in Table 3, the proposed MGRKD
outperforms all the other methods on all time gaps, except when
𝜏𝛼 = {0.5, 0.25}. It is worth noting that our MGRKD consistently
achieves better performances than SRL when 𝜏𝛼 is larger than 0.5,
which demonstrates that our model is more effective in capturing
the dependencies with long time intervals for action anticipation.

4.4 Ablation Studies
We conduct ablation studies in this part to further illustrate the
effectiveness of our method. The results on EPIC-Kitchens dataset
are reported on validation set and the results on EGTEA Gaze+
dataset are reported as the average performance of three splits.
Knowledge Distillation Strategy. To evaluate the effectiveness
of the knowledge distillation strategy in our MGRKD, we consider

Table 4: Ablation studies of distillation strategy on two
datasets. The Top-1/5 Accuracies (Acc@1/5) of action antici-
pation with 𝜏𝛼 = 1 are reported.

Methods EPIC-Kitchens EGTEA Gaze+
Acc@1 Acc@5 Acc@1 Acc@5

Teacher 23.23 44.97 49.98 82.52
Student w/o KD 15.52 34.98 36.69 69.24
Student w/o DKD 16.81 36.38 36.83 69.88
Student w/o RKD 15.97 35.79 36.78 69.68
Student (MGRKD) 17.22 37.99 37.80 70.86

Table 5: Ablation studies of modality fusion on two datasets.
The Top-1/5 Accuracies (Acc@1/5) of action anticipation
with 𝜏𝛼 = 1 are reported.

Methods EPIC-Kitchens EGTEA Gaze+
Acc@1 Acc@5 Acc@1 Acc@5

RGB 14.88 33.42 36.91 69.89
Motion 09.53 22.69 15.78 43.34
Object 11.93 31.42 - -
MGRKD 17.22 37.99 37.80 70.86

several variants of our model learned with different loss functions.
Specifically, as shown in Table 4, the Student w/o KD denotes the
student model trained without both the Relation Knowledge Dis-
tillation loss and the Discriminative Knowledge Distillation loss
illustrated in Eq. (9) and (10). The Student w/o DKD denotes the
model trained without the Discriminative Knowledge Distillation
loss. The Student w/o RKD denotes the model trained without the
Relation Knowledge Distillation loss. The Teacher model uses true
features of future video snippets for action recognition, which per-
forms as an upper-bound of all student models. The experimental
results show that the student model without knowledge distillation
learning strategy can not perform well in action anticipation. More-
over, the RKD loss is very effective to improve the student model.
Although the DKD loss can distill discriminative features from the
teacher model to the student model, it achieves less improvements
for action anticipation compared with RKD. These results further
demonstrate the effectiveness of the proposed MGRKD. It is worth
noting that, comparing student model with student w/o KD, the im-
provements on EGTEA Gaze+ dataset are not as significant as those
on EPIC-Kitchens (i.e., +1.62% on EGTEA Gaze+ versus +3.01% on
EPIC-Kitchens with respect to Top-5 Accuracy). Because EGTEA
Gaze+ has fewer action categories compared with EPIC-Kitchens
(106 actions versus 2,513 actions), which always results in fewer
actions (e.g., 1 or 2 actions) in the observed videos. Therefore, ex-
ploring global relations between past and future actions on EGTEA
Gaze+ has less impact on action anticipation.
Modality Fusion Strategy. Table 5 shows ablation studies on the
modality fusion strategy. We evaluate the performances of our
model using only one kind of features, i.e., RGB, motion or object.
As shown, results of our full model are significantly better than the
ones using only a single modality. We can conclude that considering
the complementarity among different modalities is very important.



Table 6: Ablation studies of node representation module on
two datasets. The Top-1/5 Accuracies (Acc@1/5) of action an-
ticipation with 𝜏𝛼 = 1 are reported.

Methods EPIC-Kitchens EGTEA Gaze+
Acc@1 Acc@5 Acc@1 Acc@5

MGRKD w/o PG 15.47 34.88 35.18 67.59
MGRKD w/o Bi-GRUS 14.84 34.86 32.96 65.13
MGRKD 17.22 37.99 37.80 70.86
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Figure 4: Comparison of the teacher model (T-F) and the stu-
dent model (S) in action anticipation on EPIC-Kitchens.

Node Representation Analysis. Table 6 shows ablation studies
on the node representation module illustrated in Section 3.2.1. We
evaluate two variants of the proposed node representation, MGRKD
w/o PG and MGRKD w/o Bi-GRUs. The MGRKD w/o PG denotes
the model simply using zero-vectors as the initialized node rep-
resentations of future video snippets. The MGRKD w/o Bi-GRUs
denotes the model removing the Bi-direction GRUs introduced in
Section 3.2.1. As shown, MGRKD performs significantly better than
MGRKD w/o PG and MGRKD w/o GRU, which demonstrates the
effectiveness of the proposed node representation scheme.

4.5 Further Remarks
Comparison between Teacher and Student Model. As illus-
trated in Section 3.3, the student model solves the action anticipa-
tion task, while the teacher model practically solves an easier task
of action recognition. In our MGRKD, the major role of the teacher
model is to provide the privileged relation knowledge between the
past and future actions for the student model. Therefore, if the
teacher model can provide extremely useful knowledge to solve the
action anticipation task, an interesting question is raised: whether
the teacher model can tackle the action anticipation task by itself
? To answer this question, we directly apply the teacher model (it
has been well trained on the action recognition task) to the action
anticipation task by replacing the node feature of the future video
snippet in the GRGN with the feature initialized by the progressive
GRU. We denote this variant of the teacher model as T-F. As shown
in Figure 4, the variant teacher model (T-F) performs worse than
the student model (S), which demonstrates the necessity of the
designed teacher-student learning strategy in our MGRKD.
Qualitative Results. In our model, the global relation graph net-
works (GRGN) illustrated in Section 3.2 are built to infer the dis-
criminative feature of future video by globally considering pairwise
relations between past and future actions. Figure 5 shows some
examples of past actions that have distinguished edges (the edges
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Figure 5: Qualitative example of past actions that have dis-
tinguished edges with the future action. 𝑟 denotes the GRGN
with RGB features, 𝑚 denotes the GRGN with motion fea-
tures, 𝑜 denotes the GRGN with object features.

with large weights in the GRGN) with the future action. Specif-
ically, taking the top part of Figure 5 as an example, our model
focuses on "pick up lighter" in the GRGN with RGB features and
the GRGN with object features. In the GRGN with motion features,
the action "open drawer" provides more important information to
anticipate the future action "open drawer". This relation knowledge
is important to anticipate the correct action.

5 CONCLUSION
In this paper, we propose a Multimodal Global Relation Knowl-
edge Distillation (MGRKD) framework which implement a teacher-
student learning strategy for action anticipation. Either the teacher
or student model consists of three branches of global relation graph
networks (GRGN) which can explore the pairwise relations between
the past and future actions based on three kinds of features (i.e.,
RGB, motion or object). The student model builds a relation graph
based on the observed video snippets to reason out discriminative
feature of future snippet, which will be further used to predict
action class. The predicted results of different GRGNs are fused
together to improve the performance. The teacher model has a simi-
lar architecture with student model, except that the true features of
the unobserved video snippets are used to build the relation graph.
Extensive experimental results demonstrate the effectiveness of the
proposed method.
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