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ABSTRACT
Video domain adaptation aims to transfer knowledge from labeled
source videos to unlabeled target videos. Existing video domain
adaptation methods require full access to the source videos to re-
duce the domain gap between the source and target videos, which
are impractical in real scenarios where the source videos are not
available with concerns in transmission efficiency or privacy issues.
To address this problem, in this paper, we propose to solve a source-
free domain adaptation task for videos where only a pre-trained
source model and unlabeled target videos are available for learn-
ing a multimodal video classification model. Existing source-free
domain adaptation methods cannot be directly applied to this task,
since videos always suffer from domain discrepancy along both
the multimodal and temporal aspects, which brings difficulties in
domain adaptation especially when the source data are unavail-
able. In this paper, we propose a Multimodal and Temporal Relative
Alignment Network (MTRAN) to deal with the above challenges.
To explicitly imitate the domain shifts contained in the multimodal
information and the temporal dynamics of the source and target
videos, we divide the target videos into two splits according to the
self-entropy values of the classification results. The low-entropy
videos are deemed to be source-like while the high-entropy videos
are deemed to be target-like. Then, we adopt a self-entropy-guided
MixUp strategy to generate synthetic samples and hypothetical sam-
ples as instance-level based on source-like and target-like videos,
and push each synthetic sample to be similar with the correspond-
ing hypothetical sample that is slightly closer to the source-like
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Figure 1: Illustration of the source-free multimodal video
domain adaptation. Only a pre-trained source model and un-
labeled target videos are available for target model learning.

videos than the synthetic sample by multimodal and temporal rela-
tive alignment schemes. We evaluate the proposed model on four
public video datasets. The results show that our model outperforms
existing state-of-the-art methods.
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1 INTRODUCTION
With the rapid development of social media and digital devices,
automatic video analysis technology is urgently required to help
better browse, search and recommend the video data. Recently, deep
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neural networks have gained outstanding performances in multiple
video analysis tasks, such as video classification [11, 33, 41, 44] and
action recognition [5, 9, 15, 31, 36], due to their effectiveness in
supervised learning with large-scale labeled data. However, the
performance of deep neural networks will suffer from a serious
degradation when the data of test environment (i.e., target domain)
have a large distribution discrepancy with the training environ-
ment (i.e., source domain). Although people can annotate sufficient
video data to fine-tune the model learned on the source domain for
improving the performance on the target domain, it is impractical
in the real-world application as this strategy is time-consuming
and labor-intensive. As an alternative, unsupervised video domain
adaptation methods [6, 19, 26, 27, 32] are increasingly attracting
the attention of researchers, which aim to diminish the distribution
gap between the labeled source domain and the unlabeled target do-
main to generalize the model learned on the source data to perform
well on the target data.

However, both the source and target data are required to train the
model for unsupervised video domain adaptation, which increases
the cost of storage and transmission between different platforms.
Moreover, in some application scenarios, the source and target
data cannot be uniformly stored or processed due to privacy issue.
Therefore, developing an unsupervised domain adaptation method
without using source data has a high practical value. Recently, re-
searchers have tried to solve the Source-Free Domain Adaptation
(SFDA) task, which aims to transfer a prediction model pre-trained
on a source domain to an unlabeled target domain without using
source data during adaptation process. Chidlovskii et al. [8] propose
the idea of SFDA and set a basic framework of pre-training and fine-
tuning. Furthermore, Liang et al. [25] propose an improved method
with Source Hypothesis Transfer, which fixes the pre-trained clas-
sifier and fine-tunes feature extraction modules for adaptation.
However, these methods are developed only for images while the
video-based SFDA task is not well studied so far.

Compared with image-based SFDA methods, the video-based
SFDA task as shown in Figure 1 has at least two exclusive challenges.
(1) Videos always contain multimodal information, such as visual
appearances, motion patterns, and audio signals. The domain shifts
in different modalities are always diverse, which result in challenges
for capturing the multimodal complementarity when adapting the
model. For example, the motion modality is more domain-invariant
for action recognition [19, 27] in a changing background compared
with the vision modality which contains more domain-specific
semantic information of both the action performer and the context.
Therefore, it is important to comprehensively consider the domain
shifts between source and target videos for different modalities in
the video-based SFDA task. Although the multimodal alignment
schemes have been widely studied in conventional video domain
adaptation methods [19, 26, 27, 29], the existing methods are not
suitable for the video-based SFDA task since they cannot explicitly
eliminate the multimodal domain discrepancies when the source
videos are absent. (2) Different from images, videos suffer from
the domain discrepancy along both spatial and temporal aspects,
which bring more difficulties in domain adaptation. Conventional
image-based SFDA methods [8, 24, 25] cannot achieve long-term
temporal alignment between the source and target video domains,
and thus cannot effectively address the video-based SFDA task.

To this end, in this paper, we propose to solve a challenging
Source-Free Multimodal Video Domain Adaptation (SFMVDA) task,
which aims at diminishing the multimodal and temporal domain
shifts between the source and target videos without accessing the
source videos. To solve the SFMVDA task, we propose a Multi-
modal and Temporal Relative Alignment Network (MTRAN)
to flexibly imitate the domain shift along both the multimodal and
temporal aspects by a self-entropy-guided sample synthesis mecha-
nism and explicitly reduce the domain shift by a relative alignment
scheme. Specifically, to learn an effective classifier that can be eas-
ily transferred to the target domain, in the pre-training step, we
utilize labeled source videos to learn a classification model which
consists of a feature encoder and a classifier. The encoder is de-
signed as multiple video transformer layers and a fully-connected
fusion layer to extract the multimodal information and the tem-
poral dynamics from videos. The classifier is simply implemented
as a conventional fully-connected layer with Softmax output. In
the adaptation step, to explicitly imitate the domain shifts con-
tained in the multimodal information and the temporal dynam-
ics of the source and target video domains, we divide the target
videos into two splits according to the self-entropy values of the
classification results obtained from the source classifier. The low-
entropy (i.e., high-confidence) videos are deemed to be source-like
under the source hypothesis [25] while the high-entropy (i.e., low-
confidence) videos are deemed to be target-like. Then, we adopt
a self-entropy-guided MixUp strategy to generate two kinds of
samples at instance-level, i.e., synthetic samples and hypothetical
samples, where the later are slightly closer to source distribution
than the former. To reduce the domain shift, we push each synthetic
sample to be similar to the hypothetical sample by multimodal and
temporal relative alignment schemes. We conduct extensive ex-
periments on four public video datasets, UCF–HMDB𝑠𝑚𝑎𝑙𝑙 [16],
UCF–Olympic [35], UCF–HMDB𝑓 𝑢𝑙𝑙 [6] and EPIC-Kitchens [9].
The results demonstrate that the proposed MTRAN achieves the
state-of-the-art performance on the SFMVDA task.

The contributions of this work can be summarized in three-fold:
• We propose to solve a challenging Source-Free Multimodal
Video Domain Adaptation (SFMVDA) task, which aims to
transfer a multimodal video classification model pre-trained
on a labeled source domain to an unlabeled target domain
without accessing any source videos in adaptation process.

• To solve the SFMVDA task, we propose a Multimodal and
Temporal Relative Alignment Network (MTRAN) to explic-
itly imitate and diminish the video domain shifts along the
multimodal and temporal aspects by synthesizing hybrid
samples based on source-like and target-like videos and align-
ing the representation of each synthetic sample towards the
source distribution.

• We demonstrate the effectiveness of the proposed model on
four public video datasets. The results show that our model
outperforms recent state-of-the-art baselines.

2 RELATEDWORK
2.1 Video Domain Adaptation
Domain adaptation aims at learning a model on labeled samples
from a source domain to generalize well on a target domain that has
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a large distribution discrepancy with the source domain [21, 42, 43].
To solve the video domain adaptation task, several multimodal and
temporal alignment schemes have been developed. Qi et al. [29]
propose a covariant multimodal attention with hybrid domain con-
straints to comprehensively learn multimodal domain-invariant
features. Munro et al. [27] propose to learn RGB and optical flow fea-
tures in a self-supervised manner to solve the multimodal domain
adaptation. Kim et al. [19] simultaneously regularize cross-modal
and cross-domain feature representations by leveraging contrastive
learning technique. Song et al. [32] propose a spatio-temporal con-
trastive adaptation framework to conduct clip-level and video-level
representation alignment. However, these methods are not suitable
for the SFMVDA task where the source videos are absent.

2.2 Source-Free Domain Adaptation
Different from conventional domain adaptation methods, Source-
Free Domain Adaptation (SFDA) approaches can only use unlabeled
target data and a model pre-trained on the source data during adap-
tation. Chidlovskii et al. [8] propose the idea of SFDA and set a
basic framework of pre-training and fine-tuning. Based on this
framework, Liang et al. [25] propose an improved method with
Source Hypothesis Transfer, which fixes the pre-trained classifier
and fine-tunes feature extraction modules at the adaptation stage.
Li et al. [24] propose a model adaptation method by iteratively gen-
erating the source-style examples and updating the model. Huang
et al. [14] design a historical contrastive learning framework by
constraining the embeddings that are generated by the currently
adapted model and the historical models. However, these methods
are all developed only for image-based SFDA task. In contrast, we
propose a multimodal and temporal relative alignment network to
reduce the video domain shift for the SFMVDA task.

2.3 Sample MixUp
MixUp strategy [45] was initially proposed to improve the gen-
eralization of neural networks by training the model on virtual
examples constructed as convex combinations of samples. Berth-
elot et al. [3] apply Mixup for semi-supervised learning by mixing
both labeled examples and unlabeled examples with pseudo labels.
Kalantidis et al. [17] applyMixUp for contrastive learning bymixing
hard negative samples at the feature level. Recently, MixUp has been
successfully applied in domain adaptation task. Xu et al. [40] apply
source and target domain MixUp to guarantee domain-invariance
in a continuous latent space and guide the domain discriminator in
judging the samples’ difference between different domains. Sahoo et
al [30] propose a background mixing scheme for source and target
videos for contrastive learning to leverage action semantics shared
across both domains. However, these methods are only designed for
conventional domain adaptation tasks where the source data are
available. In this work, we propose a self-entropy-guided MixUp
strategy to synthesize samples for diminishing the domain shifts
without using source data.

3 METHODOLOGY
In Source-Free Multimodal Video Domain Adaptation (SFMVDA)
task, we are given 𝑁𝑠 labeled video samples {𝒙𝑖𝑠 , 𝑦𝑖𝑠 }

𝑁𝑠

𝑖=1 from the
source domain D𝑠 , where 𝒙𝑖𝑠 denotes a multimodal video sample

and 𝑦𝑖𝑠 is the corresponding class label. In addition, we also have 𝑁𝑡
unlabeled video samples {𝒙𝑖𝑠 }

𝑁𝑡

𝑖=1 from the target domain D𝑡 . The
videos from source and target domains share the same label space
but belong to different data distributions. The goal of SFMVDA
is to learn a multimodal video classification model M𝑡 based on
unlabeled target videos with the help of a model M𝑠 pre-trained
on labeled source videos. It is worth noting that we can only access
target videos D𝑡 = {𝒙𝑖𝑠 }

𝑁𝑡

𝑖=1 and the source model M𝑠 during the
adaptation step of the SFMVDA task.

3.1 Network Architecture
To solve the SFMVDA task, we follow the previous SFDA methods
with source hypothesis [23, 25] to use the same network architec-
ture for the source model and the target model. The parameters of
the target model are initialized by the the pre-trained parameters of
the source model. Moreover, the parameters of the last classification
layer are fixed during the adaptation step, which aims to align the
representations of the target videos towards the source distribution
so that the domain shift is reduced. Here, we introduce the network
architecture which is employed for both source and target models.

Front-end I3D Network. Given the success of video classifica-
tion by CNNs [18], we follow a popularly used way of processing
videos through I3D [5] architecture. In addition, to comprehensively
capture the important multimodal information, we extract two
kinds of features including RGB feature and motion feature. Specif-
ically, for a video input 𝒙 , we first segment it into 𝑇 equal-length
clips. Thenwe use the I3D network to extract the RGB features𝑿𝑟 =
[𝒓1, 𝒓2, . . . , 𝒓𝑇 ]⊤ and motion features𝑿𝑚 = [𝒎1,𝒎2, . . . ,𝒎𝑇 ]⊤ for
all video clips, where 𝒓𝑖 ,𝒎𝑖 ∈ R𝑑 and 𝑿𝑟 ,𝑿𝑚 ∈ R𝑇×𝑑 . Here, we
omit the domain index 𝑠 or 𝑡 for simplicity since the source and
target models share the same network architecture.

Multi-layer Transformer. In order to fully explore the tempo-
ral relations between different video clips, we adopt transformer
layers with self-attention module inspired by the Video Vision
Transformer (ViViT) [1]. Since the video inputs are represented
by multimodal features, we build a two-branch transformer archi-
tecture to encode the RGB and motion representations. Since the
motion branch has the same architecture as the RGB branch with
different parameters, we detail the network architecture of the RGB
branch for simplicity. The RGB branch consists of a sequence of 𝐿
transformer layers. Each transformer layer is comprised of a Self-
Attention (SA) [39] layer, multiple Normalization (LN) [2] layers
and Feed-Forward Blocks (FFB) as follows:

𝒁𝑙𝑟 = LN(SA𝑙𝑟 (𝑿𝑙𝑟 ) + 𝑿𝑙𝑟 ), 𝑿𝑙+1𝑟 = LN(FFB𝑙𝑟 (𝒁𝑙𝑟 ) + 𝒁𝑙𝑟 ), (1)

where 𝑙 = 0, 1, . . . , 𝐿 − 1 is the index of the transformer layer. The
input embedding 𝑿0

𝑟 ∈ R𝑇×𝑑 of the first transformer layer is 𝑿𝑟 .
FFB consists of two linear projections separated by a non-linearity
activation function ReLU [12] and the dimensions are fixed to 𝑑 for
all hidden layers. The Self-Attention layer is defined as follows:

𝑨 = Softmax(𝑸𝑲⊤
√
𝑑

), SA(𝑿 ) = 𝑨𝑽 , (2)

where 𝑿 ∈ R𝑇×𝑑 is the input embedding of a transformer layer.
Queries 𝑸 = 𝑿𝑾𝑞 , keys 𝑲 = 𝑿𝑾𝑘 , and values 𝑽 = 𝑿𝑾 𝑣 are
obtained by three linear projections with trainable parameters𝑾𝑞 ,
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Figure 2: Overview of the proposed Multimodal and Temporal Relative Alignment Network (MTRAN). For simplicity, we only
show the learning process on the target domain, where the MTRAN is initialized with parameters pre-trained on the source
domain. The multi-layer transformer and the multimodal fusion layer are trainable for adaptation on the target domain while
the front-end I3D and the classification layer are fixed. The self-entropy-guided sample synthesis (SEGS) is adopted to generate
a synthetic sample (with RGB and motion features of �̃�𝑟 and �̃�𝑚) by mixing source-like and target-like videos based on the
features obtained before the multi-layer transformer with a factor of _. The hypothetical sample (with encoded RGB, motion
and fused features of 𝒇𝑟 , 𝒇𝑚 and 𝒇 , and temporal relation matrices of �̂�𝑟 and �̂�𝑚) is generated based on the multimodal features
and temporal relations obtained after the multi-layer transformer with another mixing factor of ` > _. The multimodal
relative alignment (MRA) and temporal relative alignment (TRA) are adopted to explicitly diminish the domain shift along
both multimodal and temporal aspects by constraining the distance between the synthetic sample and the hypothetical sample.

𝑾𝑘 and 𝑾 𝑣 ∈ R𝑑×𝑑 . In such manner, the pairwise relations be-
tween video clips are explicitly captured in the attention weights
𝑨. Note that the parameters of the SA modules are different in the
𝐿 transformer layers.

After obtaining the output 𝑿𝐿𝑟 from the last transformer layer,
we perform temporal mean-pooling to compute the video-level
visual representation of the RGB modality:

𝒇𝑟 =
1
𝑇

𝑇∑︁
𝑖=1

𝑿𝐿𝑟,𝑖 , (3)

where 𝑿𝐿
𝑟,𝑖

denotes the 𝑖-th row of 𝑿𝐿𝑟 . Next, we can obtain the
video-level representation 𝒇𝑚 of the motion modality 𝑿𝑚 via the
motion branch based on the same transformer architecture as the
RGB branch with different network parameters.

Multimodal Fusion Layer. To comprehensively model the mul-
timodal information, we apply a fully-connected layer to fuse the
features of different modalities as follows:

𝒇 = 𝜎
(
𝑾 𝑓 (𝒇𝑟 ⊙ 𝒇𝑚) + 𝒃 𝑓

)
, (4)

where ⊙ denotes the vector concatenation operation and 𝜎 is the
activation function ReLU.𝑾 𝑓 and 𝒃 𝑓 are trainable parameters.

Classification Layer. Finally, a fully-connected layer followed
with Softmax activation function is applied for video classification:

�̂� = 𝜙 (𝑾𝑐𝒇 + 𝒃𝑐 ), (5)

where 𝜙 is a Softmax function.𝑾𝑐 and 𝒃𝑐 are trainable parameters.

3.2 Source-free Domain-invariant Multimodal
Video Representation Learning

To transfer a pre-trained source modelM𝑠 to the target domain, we
can follow source hypothesis transfer methods [13, 25] to update
the feature encoding module of the source model on the target
domain by implicitly aligning the representations of the target
samples towards the source domain while fixing the classification
layer. Specifically, an information maximization loss is adopted to
make the target samples to be well discriminated by the source
classifier (hypothesis), which is defined as follows:

L𝑖𝑚 = −
∑︁

𝒙𝑡 ∈D𝑡

𝐻 (�̂�𝑡 ) +
𝐾∑︁
𝑘=1

𝑝𝑘 log𝑝𝑘 , (6)

where 𝐻 (�̂�𝑡 ) = −�̂�⊤𝑡 log �̂�𝑡 is the self-entropy of the prediction
result �̂�𝑡 for the target sample 𝒙𝑡 , and 𝑝𝑘 =

∑
𝒙𝑡 ∈D𝑡

�̂�𝑡 (𝑘) is the
mean probability of the 𝑘-th class over all target samples. Here 𝐾
is the total number of classes. By minimizing the self-entropy of
each target sample, i.e. the first term of L𝑖𝑚 , the results predicted
using the domain-shared classifier will be close to one-hot labels.
By minimizing the negative entropy of mean prediction results over
different classes, i.e. the second term ofL𝑖𝑚 , we can keep the global
diversity of the prediction results on the target domain.



Relative Alignment Network for Source-Free Multimodal Video Domain Adaptation MM ’22, October 10–14, 2022, Lisbon, Portugal

Relative Alignment

Target-like sampleSource-like sample

Synthetic sample Hypothetical sample

Source space Target space

Figure 3: Illustration of the proposed idea of relative align-
ment. The discrepancy between the source and target do-
mains is explicitly reduced by pushing the synthetic sample
(�̃� ) towards the hypothetical sample (𝒇 ), which is slightly
closer to the source distribution.

Whereas, simply using the previous source hypothesis transfer
scheme cannot well align the representations of target samples to
eliminate the domain shit between source and target videos due to
the multimodal characteristics and the temporal dynamics of the
videos. Therefore, as show in Figure 2, we propose a self-entropy-
guided MixUp scheme to imitate the domain shift between the
source and target video domains, and then explicitly diminish the
domain shift along both multimodal and temporal aspects.

More specifically, we divide the target videos into two splits
according to the self-entropy values of the classification results
predicted by the source classifier. Under the source hypothesis [25],
the high-confidence (i.e., low-entropy) videos tend to be source-
like since their features are more likely to be consistent with the
feature space of the source domain, while the low-confidence (i.e.,
high-entropy) ones are inclined to be target-like since their features
are far from the source distribution. To explicitly eliminate the
domain shift between source and target videos, a straightforward
way is to push the target-like videos towards the source-like videos
by updating the feature encoder. However, directly minimizing
the feature distances between these two kinds of videos will lose
the discriminative information, and thus lead to inferior perfor-
mance, since the source-like and target-like videos are unlabeled
and they may belong to different classes. In this work, we adopt
a self-entropy-guided MixUp scheme to synthesize new samples
based on the source-like and target-like videos. Meanwhile, we con-
strain the representation of each synthetic sample to be similar to a
hypothetical sample that is slightly closer to the source-like videos
than the synthetic sample along both multimodal and temporal
aspects by multimodal relative alignment and temporal relative
alignment schemes. The details of the self-entropy-guided sample
synthesis, the multimodal relative alignment, and the temporal
relative alignment are illustrated as follows.

3.2.1 Self-entropy-guided Sample Synthesis. To find the source-
like and target-like videos for explicitly imitating the domain shift
between source and target domains, we divide the target videos
into two equal splits according to the self-entropy values (i.e.,
𝐻 (�̂�𝑡 ) = −�̂�⊤𝑡 log �̂�𝑡 ) of the classification results (i.e., �̂�𝑡 ) predicted
by the source classifier. We use Dℎ𝑖𝑔ℎ

𝑡 to denote the sample set
with high-confidence (low self-entropy) values andD𝑙𝑜𝑤

𝑡 to denote
the sample set with low-confidence (high self-entropy) values, and

D𝑡 = Dℎ𝑖𝑔ℎ
𝑡 ∪ D𝑙𝑜𝑤

𝑡 . Then we employ a feature-level MixUp strat-
egy to obtain the synthetic samples on target domain by a convex
combination of the RGB and motion features as follows:

�̃�𝑟 = _𝑿
ℎ𝑖𝑔ℎ
𝑟 + (1 − _)𝑿𝑙𝑜𝑤𝑟 , �̃�𝑚 = _𝑿

ℎ𝑖𝑔ℎ
𝑚 + (1 − _)𝑿𝑙𝑜𝑤𝑚 , (7)

where (𝑿ℎ𝑖𝑔ℎ𝑟 ,𝑿
ℎ𝑖𝑔ℎ
𝑚 ) and (𝑿𝑙𝑜𝑤𝑟 ,𝑿𝑙𝑜𝑤𝑚 ) correspond to the RGB

and motion features of the videos sampled from Dℎ𝑖𝑔ℎ
𝑡 and D𝑙𝑜𝑤

𝑡 ,
respectively. _ is a mixing factor which is sampled from Beta
distribution _′ ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛼) with a unification operation _ =

max(𝜙 (_′, 1−_′)), where 𝜙 is Softmax function. Here, 𝛼 is a hyper-
parameter. This operation ensures that the synthetic sample is closer
to the high-confidence sample than the low-confidence sample. We
use D̃𝑡 = {(�̃�𝑟 , �̃�𝑚)} to denote the set of all synthetic videos.

3.2.2 Multimodal Relative Alignment. To explicitly diminish the
multimodal domain shift between the source and target video do-
mains, we need to push the synthetic samples towards the source-
like distribution. However, directly pushing the synthetic samples
to be close to the source-like videos may deteriorate the discrim-
inative information since the synthetic samples may contain the
information of a class that is different from the source-like videos.

In this work, as shown in Figure 3, we use MixUp strategy to
synthesize a hypothetical sample that is slightly closer to the source-
like videos in the video-level feature space than the synthetic sam-
ple, and then constrain the synthetic sample to be close to the hy-
pothetical sample. Different from previous MixUp strategies which
mix samples as a form of data augmentation [45] to improve the
model performance, we propose to use the Mixup strategy to gen-
erate the learning target for explicitly diminishing the domain
discrepancy.

Specifically, for a synthetic sample (�̃�𝑟 , �̃�𝑚), we re-scale the
mixing factor in Eq. (7) by a temperature factor 𝜏 to generate the
encoded RGB, motion, and fused features of the corresponding
hypothetical sample as follows:

` = max
(
𝜙 ( _

′

𝜏
,
1 − _′
𝜏

)
)
, 𝒇𝑟 = `𝒇

ℎ𝑖𝑔ℎ
𝑟 + (1 − `)𝒇 𝑙𝑜𝑤𝑟 ,

𝒇𝑚 = `𝒇
ℎ𝑖𝑔ℎ
𝑚 + (1 − `)𝒇 𝑙𝑜𝑤𝑚 , 𝒇 = `𝒇ℎ𝑖𝑔ℎ + (1 − `)𝒇 𝑙𝑜𝑤 ,

(8)

where (𝒇ℎ𝑖𝑔ℎ𝑟 ,𝒇
ℎ𝑖𝑔ℎ
𝑚 ,𝒇ℎ𝑖𝑔ℎ) and (𝒇 𝑙𝑜𝑤𝑟 ,𝒇 𝑙𝑜𝑤𝑚 ,𝒇 𝑙𝑜𝑤) correspond to

the encoded RGB, motion, and fused features calculated according
to Eq. (3) and Eq. (4) for the source-like sample (𝑿ℎ𝑖𝑔ℎ𝑟 ,𝑿

ℎ𝑖𝑔ℎ
𝑚 ) and

the target-like sample (𝑿𝑙𝑜𝑤𝑟 ,𝑿𝑙𝑜𝑤𝑚 ). 𝜙 is a Softmax function. By
setting 𝜏 < 1, we can ensure ` > _ with the same input _′, and
thus generate a hypothetical sample that is closer to the source-like
distribution than the corresponding synthetic sample.

Then, we constrain the synthetic sample (�̃�𝑟 , �̃�𝑚) to be close
to the hypothetical sample with regard to the encoded video-level
RGB, motion and fused features as follows:

L𝑚𝑟𝑎 =
∑︁

(�̃�𝑟 ,�̃�𝑚) ∈D̃𝑡

(∥�̃�𝑟 − 𝒇𝑟 ∥2 + ∥�̃�𝑚 − 𝒇𝑚 ∥2 + ∥�̃� − 𝒇 ∥2), (9)

where �̃�𝑟 �̃�𝑚 , and �̃� are the encoded RGB, motion and fused features
calculated according to Eq. (3) and Eq. (4) based on the synthetic
sample (�̃�𝑟 , �̃�𝑚). With this constraint, the whole video feature
encoder can learn to explicitly reduce the domain shift.
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3.2.3 Temporal Relative Alignment. Besides considering the mul-
timodal domain shift between source and target video domains,
reducing the domain shift along the temporal aspect is also very
important to solve the SFMVDA task. Therefore, we propose a tem-
poral relative alignment scheme to diminish the temporal domain
shift, which uses a similar idea of constraining the representations
of the synthetic sample and the hypothetical sample as in the mul-
timodal relative alignment. Different from the multimodal relative
alignment which mainly constrains the encoded video-level fea-
tures, this module focuses on the temporal relations among encoded
clip-level features.

Specifically, we generate the relation matrices among the en-
coded clip-level RGB and motion features for the hypothetical sam-
ple by mixing the high-confidence and low-confidence samples as
follows:

�̂�
𝑙
𝑟 = `𝑨

𝑙,ℎ𝑖𝑔ℎ
𝑟 + (1 − `)𝑨𝑙,𝑙𝑜𝑤𝑟 , �̂�

𝑙
𝑚 = `𝑨

𝑙,ℎ𝑖𝑔ℎ
𝑚 + (1 − `)𝑨𝑙,𝑙𝑜𝑤𝑚 ,

(10)
where 𝑙 is the index of the transformer layer. (𝑨𝑙,ℎ𝑖𝑔ℎ𝑟 ,𝑨

𝑙,ℎ𝑖𝑔ℎ
𝑚 ) and

(𝑨𝑙,𝑙𝑜𝑤𝑟 ,𝑨𝑙,𝑙𝑜𝑤𝑚 ) are relation matrices of the encoded clip-level RGB
and motion features in the 𝑙-th transformer layer calculated accord-
ing to Eq. (2) for the high-confidence sample (𝑿ℎ𝑖𝑔ℎ𝑟 ,𝑿

ℎ𝑖𝑔ℎ
𝑚 ) and

the low-confidence sample (𝑿𝑙𝑜𝑤𝑟 ,𝑿𝑙𝑜𝑤𝑚 ), respectively.
Then, we constrain the synthetic sample (�̃�𝑟 , �̃�𝑚) to be close to

the hypothetical sample with regard to the temporal relation matri-
ces of encoded clip-level RGB and motion features by minimizing
Kullback–Leibler divergence as follows:

L𝑡𝑟𝑎 =
∑︁

(�̃�𝑟 ,�̃�𝑚) ∈D̃𝑡

𝐿∑︁
𝑙=1

(�̃�𝑙𝑟 log
�̂�
𝑙
𝑟

�̃�
𝑙
𝑟

+ �̃�
𝑙
𝑚 log

�̂�
𝑙
𝑚

�̃�
𝑙
𝑚

), (11)

where �̃�𝑙𝑟 and �̃�
𝑙
𝑚 are the relation matrices of the 𝑙-th transformer

layer calculated with Eq. (2) for the synthetic sample (�̃�𝑟 , �̃�𝑚).

3.3 Optimization
To solve the SFMVDA task, we first pre-train the network on labeled
source videos. Then, we abandon the source videos and adapt the
pre-trained model on unlabeled target videos.

3.3.1 Source Model Learning. As illustrated in Section 3.1, the
adopted network has two branches of Transformers, a fully-connected
fusion layer, and a classification layer. We train the source model
M𝑠 based on the labeled source videos by minimizing the cross-
entropy loss as follows:

L𝑠𝑟𝑐 = −
∑︁

(𝒙𝑠 ,𝑦𝑠 ) ∈D𝑠

𝒚⊤𝑠 log �̂�𝑠 , (12)

where𝒚𝑠 is the one-hot vector of the ground-truth class label, and �̂�𝑠
is the probability vector of the prediction result computed according
to Eq. (5) based on the video sample 𝒙𝑠 .

3.3.2 TargetModel Learning. Weupdate the transformer layers and
the fully-connected fusion layer of the pre-trained source model on
the unlabeled target videos with the following objective function:

L𝑡𝑎𝑟𝑔𝑒𝑡 = L𝑖𝑚 + _1L𝑠𝑠 + _2L𝑚𝑟𝑎 + _3L𝑡𝑟𝑎, (13)

where coefficients _1, _2 and _3 are balance hyper-parameters. L𝑖𝑚
is the information maximization loss illustrated in Eq. (6).L𝑚𝑟𝑎 and

L𝑡𝑟𝑎 are the multimodal relative alignment loss and the temporal
relative alignment loss which are introduced in Section 3.2.2 and
Section 3.2.3, respectively. L𝑠𝑠 is a self-supervised pseudo labeling
loss which will be introduced as follows.

Self-Supervised Loss. To ensure the discriminative ability of
the model, we assign pseudo labels to unlabeled target videos by
weighted clustering. First, we calculate the centroid of each class
in the target domain with a probability-weighted manner [4], i.e.
𝒑𝑘 =

∑
𝒙𝑡 ∈D𝑡

�̂�𝑡 (𝑘)𝒇 𝑡∑
𝒙𝑡 ∈D𝑡

�̂�𝑡 (𝑘)
, where �̂�𝑡 (𝑘) is the predicted probability of the

𝑘-th class for the video 𝒙𝑡 , and𝒇 𝑡 is the corresponding fused feature
computed according to Eq. (4). Then we calculate the cosine simi-
larity scores between the feature 𝒇 𝑡 and the centroids {𝒑𝑖 }𝐾𝑖=1 of all
classes, and the pseudo label𝒚𝑡 is obtained by the nearest classifica-
tion. Finally, the obtained pseudo labels are used to train the model
by minimizing the cross-entropy loss L𝑠𝑠 = −∑

𝒙𝑡 ∈D𝑡
𝒚⊤𝑡 log �̂�𝑡 .

4 EXPERIMENTS
4.1 Datasets
We evaluate our approach on the following four video domain
adaptation datasets.

UCF–Olympic and UCF–HMDB𝑠𝑚𝑎𝑙𝑙 . UCF–Olympic [16] has
6 shared classes from UCF101 dataset [33] and Olympic dataset [28].
We use the 7:3 train-test split as in [34], which results into 432/168
train/test action videos for the UCF domain and 260/55 train/test
action videos for the Olympic domain. UCF–HMDB𝑠𝑚𝑎𝑙𝑙 [34] has
5 shared classes from UCF101 dataset and HMDB51 dataset [22],
which contains 432/168 train/test action videos for the UCF domain
and 482/189 train/test action videos for the HMDB domain.

UCF–HMDB𝑓 𝑢𝑙𝑙 . This dataset is collected by Chen et al. [6]
for studying video domain adaptation as an extended version of
UCF–HMDB𝑠𝑚𝑎𝑙𝑙 . UCF–HMDB𝑓 𝑢𝑙𝑙 has 3209 videos with 12 action
classes. All the videos come from the original UCF101 dataset and
HMDB dataset, which sample the overlapping 12 classes. We follow
the split provided by the authors [6], which results into 1438/571
train/test action videos for UCF domain and 840/360 train/test ac-
tion videos for HMDB domain.

EPIC-Kitchens. EPIC-Kitchens [9] is a fine-grained action recog-
nition dataset collected under the first person view in kitchen scenes.
As in the previous work [27, 32], we conduct experiments on three
domain partitions (D1, D2, and D3) for the 8 largest action classes.
We follow the train/test split used in [27], which contains 2495/313
train/test action videos on D1, 1543/417 train/test action videos on
D2, and 3897/1030 train/test action videos on D3.

4.2 Implementation Details
Following previous work [6, 7, 32], we use I3D [5] architecture pre-
trained on ImageNet [10] and Kinetics datasets [5] as the backbone
to extract features from the last pooling layer for each video clip.
Each video clip consists of 16 uniformly sampled frames which are
resized to 224x224 pixels. The number of clips 𝑇 is set to 5. The
dimension of the hidden state vector is set to 1024 for all transformer
layers in two branches of the transformer layers. The dimension
of the fused multimodal feature is also set to 1024. The number of
transformer layers is set to 6. The dropout layer with rate 0.3 is used
after each fully-connected layer except the last classification layer
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Table 1: Results on UCF–Olympic and UCF–HMDB𝑠𝑚𝑎𝑙𝑙
datasets.

Methods U→O O→U U→H H→U
Source model 96.30 94.17 97.33 96.83
SHOT [25] 98.14 97.92 99.33 99.47
3C-GAN [24] 96.30 96.25 98.33 99.47
SFDA [20] 98.14 97.92 98.00 99.33
HCL [14] 96.30 96.67 99.33 99.47
MTRAN 98.14 98.33 100 100

Table 2: Results on UCF–HMDB𝑓 𝑢𝑙𝑙 dataset.

Methods U→H H→U
Source model 81.11 86.87
SHOT [25] 89.72 91.77
3C-GAN [24] 90.83 92.12
SFDA [20] 90.28 92.47
HCL [14] 90.56 92.99
MTRAN 92.22 95.27

Table 3: Results on EPIC-Kitchens dataset.

Methods D1→D2 D1→D3 D2→D3 D2→D1 D3→D1 D3→D2 Mean
Source model 40.53 48.93 45.15 43.77 51.12 36.21 44.29
SHOT [25] 40.77 49.03 45.34 44.09 53.99 36.45 44.95
3C-GAN [24] 41.01 49.90 45.44 44.73 54.32 36.69 45.35
SFDA [20] 41.25 49.81 45.15 44.41 54.95 37.17 45.46
HCL [14] 41.49 50.19 45.72 45.05 55.60 36.93 45.83
MTRAN 42.21 52.33 46.12 46.33 58.15 38.13 47.21

during training. The hyper-parameter 𝛼 in the Beta distribution for
synthesizing samples is set to 0.85. The temperature parameter 𝜏
in Eq. (8) is set to 0.9. The coefficients _1, _2 and _3 in Eq. (13) are
set to 3, 1 and 0.05 on all datasets except the EPIC-Kitchens dataset
where the three coefficients are set to 0.5, 0.05 and 0.05, respectively.
We employ stochastic gradient descent optimizer with a learning
rate of 0.01 and momentum of 0.9. The training batch size is 128,
and the number of training epochs is 50.

4.3 Comparison with State-of-the-art Methods
Since there are no methods that can be directly used to solve the
SFMVDA task, we mainly compare the proposed MTRAN model
with state-of-the-art SFDA approaches: SHOT [25], 3C-GAN [24],
SFDA [20], and HCL [14]. Since these methods are all developed for
image-based SFDA, for a fair comparison, we replace the backbone
of them with the same network architecture in our method.

UCF–Olympic and UCF–HMDB𝑠𝑚𝑎𝑙𝑙 . On these two datasets,
as shown in the Table 1, the proposed MTRAN is competitive with
other state-of-the-art methods under the U→O setting with the
accuracy of 98.14. In addition, MTRAN outperforms all other meth-
ods under the O→U, U→H and H→U settings with the accuracies
of 98.33, 100 and 100, respectively.

UCF–HMDB𝑓 𝑢𝑙𝑙 . Compared with the previous two datasets,
this dataset has much larger domain discrepancy, and thus is more
effective for evaluating different methods in solving the SFMVDA
task. As shown in Table 2, compared with state-of-the-art SFDA
methods, our MTRAN achieves much better performances under
the U→H and H→U settings with improvements of 1.66% and
2.28%, respectively. Because our method can explicitly diminish

Table 4: Ablation studies on UCF–HMDB𝑓 𝑢𝑙𝑙 dataset.

Methods U→H H→U
MTRAN w/o RA 89.72 91.77
MTRAN w/o TRA 91.11 94.05
MTRAN w/o MRA 91.66 94.39
MTRAN 92.22 95.27

Table 5: Ablation studies on EPIC-Kitchens dataset.

Methods D1→D2 D1→D3 D2→D3 D2→D1 D3→D1 D3→D2 Mean
MTRAN w/o RA 40.77 49.03 45.34 44.09 53.99 36.45 44.95
MTRAN w/o TRA 41.49 51.65 45.83 45.37 56.87 37.41 46.44
MTRAN w/o MRA 41.97 51.75 45.92 45.69 57.51 37.65 46.75
MTRAN 42.21 52.33 46.12 46.33 58.15 38.13 47.21

the domain shifts contained in the multimodal information and the
temporal dynamics of the source and target video domains.

EPIC-Kitchens. As shown in Table 3, all methods cannot achieve
high accuracy since the EPIC-Kitchens dataset is more challenging
than other three datasets. Our MTRAN obtains the best accuracy
results on all six domain adaptation tasks. Under the D1→D3 and
D3→D1 settings, our MTRAN achieves much better performances
than HCL with improvements of 2.14% and 2.55%, respectively. The
mean accuracy of our MTRAN on six domain adaptation tasks is
47.21%, which achieves an improvement of 1.38% when compared
with the second best method HCL.

4.4 Ablation Study
In this section, we conduct ablation studies on the UCF–HMDB𝑓 𝑢𝑙𝑙
and EPIC-Kitchens datasets by analyzing several variants of the
MTRAN to further evaluate the effectiveness of the proposed mul-
timodal and temporal relative alignment schemes. Specifically, we
use MTRAN w/o RA to denote the model without using both multi-
modal relative alignment and temporal relative alignment schemes
as illustrated in Eq. (9) and Eq. (11), use MTRAN w/o MRA to
denote the model without using multimodal relative alignment
scheme, and use MTRAN w/o TRA to denote the model without
using temporal relative alignment scheme. As shown in Table 4,
using either the multimodal relative alignment or the temporal
relative alignment schemes can improve the performance on the
UCF–HMDB𝑓 𝑢𝑙𝑙 dataset. Moreover, when using both these schemes,
the performance of our MTRAN can be further improved. From the
ablation study results on the EPIC-Kitchens dataset as shown in
Table 5, we can obtain the same conclusion about the effectiveness
of the multimodal and temporal relative alignment schemes.

4.5 Further Remarks
4.5.1 Impact of Relative Alignment. Different from conventional
MixUp strategies which are always used as a data augmentation
strategy, we adopt the relative alignment based on MixUp to reduce
the domain shift by constraining the distance between the syn-
thetic samples and hypothetical samples. In this section, we apply
several different designs instead of relative alignment schemes to
further illustrate the effectiveness of MTRAN. Specifically, M-MMD
denotes the scheme which directly aligns the multimodal features
of target-like and source-like samples with MMD loss [37] instead
of using the proposed multimodal relative alignment. MT-Absolute
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Table 6: Results of different alignment schemes on
UCF–HMDB𝑓 𝑢𝑙𝑙 dataset.

Methods U→H H→U
Source model 81.11 86.87
M-MMD 78.06 84.94
MT-Absolute 90.00 88.61
MT-Mix 89.72 90.17
MTRAN 92.22 95.27

Table 7: Results of different alignment schemes on EPIC-
Kitchens dataset.

Methods D1→D2 D1→D3 D2→D3 D2→D1 D3→D1 D3→D2 Mean
Source model 40.53 48.93 45.15 43.77 51.12 36.21 44.29
M-MMD 38.85 40.48 41.55 42.81 49.84 31.42 40.83
MT-Absolute 41.01 51.46 45.63 45.05 55.91 37.17 46.04
MT-Mix 41.15 51.26 45.44 44.73 56.23 35.97 45.80
MTRAN 42.21 52.33 46.12 46.33 58.15 38.13 47.21

denotes the scheme which directly pushes the synthetic samples
to be close to the source-like samples with regard to multimodal
features and temporal relations. MT-Mix denotes using MixUp as a
data augmentation strategy without considering the domain align-
ment, i.e., learning to predict mixed pseudo labels of the synthetic
samples. As shown in Table 6 and Table 7, M-MMD cannot perform
well in the SFMVDA task, since directly aligning the source-like
and target-like samples will push source-like samples away from
the source distribution. Moreover, although the MT-Absolute can
decrease the domain shift to a certain extent, it performs much
worse than our model since it will lose the discriminative informa-
tion of target-like samples. In addition, we can also see that MT-Mix
achieves better performances compared with the source model. The
reason is that the MixUp strategy can transfer knowledge between
source-like and target-like samples, which is helpful for learning
domain-invariant features. Finally, our MTRAN performs better
than all the variant models on both the UCF–HMDB𝑓 𝑢𝑙𝑙 and EPIC-
Kitchens datasets, which shows the effectiveness of the proposed
multimodal and temporal relative alignment schemes.

4.5.2 Visualization. In this section, we show the t-SNE [38] visual-
ization of the fused features obtained before the last classification
layer of the MTRAN model on the UCF–HMDB𝑓 𝑢𝑙𝑙 dataset. Note
that the source videos are not used for training the target model and
they are just used for illustrating the effectiveness in reducing the
domain shift. In Figure 4, we visualize the features before and after
the multimodal and temporal relative alignment under the settings
of U→H and H→U on the UCF–HMDB𝑓 𝑢𝑙𝑙 dataset. We can see
that the aligned features are better fitted to the source distribution,
which shows the effectiveness of the proposed multimodal and
temporal relative alignment scheme.

4.5.3 Parameter Sensitivity Analysis. We conductmore experiments
to analyze the sensitivity of hyper-parameters _1, _2 and _3 in
Eq. (13) on the UCF–HMDB𝑓 𝑢𝑙𝑙 dataset. As shown in Figure 5, too
large or too small _1 will reduce the accuracy. Differently, the im-
pact of _2 and _3 is relatively small, which balances the multimodal
relative alignment loss and temporal relative alignment loss.

Before Alignment After Alignment

U
H

H
U

Figure 4: t-SNE visualization of video features on
UCF–HMDB𝑓 𝑢𝑙𝑙 dataset produced by our MTRAN be-
fore and after relative alignment. The red points denote
source samples and blue points denote target samples.

89

90

91

92

93

94

95

96

2.6 2.8 3 3.2 3.4

A
cc

u
ra

cy

λ1

U→H H→U

89

90

91

92

93

94

95

96

0.6 0.8 1 1.2 1.4

A
cc

u
ra

cy

λ2

U→H H→U

89

90

91

92

93

94

95

96

0.01 0.03 0.05 0.07 0.09

A
cc

u
ra

cy

λ3

U→H H→UU H H U U H H U U H H U

Figure 5: Effect of the hyper-parameters _1, _2 and _3 on
UCF–HMDB𝑓 𝑢𝑙𝑙 dataset.

5 CONCLUSION
In this paper, we propose aMultimodal and Temporal Relative Align-
ment Network (MTRAN) to solve the Source-FreeMultimodal Video
Domain Adaptation (SFMVDA) task in which only a pre-trained
source model and unlabeled target videos are available for learning
the multimodal video classification model. The proposed MTRAN
consists of front-end I3D networks, modality-specific multi-layer
transformers, a multimodal fusion layer and a classification layer.
The MTRAN is firstly pre-trained on labeled source videos. Then,
it is updated on unlabeled target videos with the front-end I3D
networks and the classification layer fixed. To diminish the do-
main shift along multimodal and temporal aspects, we adopt a
self-entropy-guided MixUp strategy to synthesize hybrid samples
based on source-like and target-like videos, and push each syn-
thetic sample to be similar to a hypothetical sample that is slightly
closer to the source distribution by multimodal and temporal rel-
ative alignment. Extensive experimental results demonstrate the
effectiveness of the proposed method. In future work, we would
like to extend our MTRAN to other applications, such as video
segmentation and video retrieval.
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