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Abstract: Various noises restrict magnetic particle imaging (MPI) to achieve higher resolution and sensitivity in practice. In this study, 

we proposed a self-supervised learning method to denoise MPI signals. The deep learning-based architecture consisted with four 

encoder’s blocks (EcBs) and four decoder’s blocks (DcBs). This model was trained with limited data of MPI magnetization signals to 

efficiently suppress noise related features by directly learning from the noisy signals. Simulated experiments showed that the self-

supervised method could reduce the noise interference in MPI signals and eventually improve image quality. 
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I. Introduction 
Magnetic particle imaging (MPI) signal is contaminated by 

various noises that originated from many sources [1], 

including the thermal noise of the receive coil, harmonic 

interference from the non-linear electronic components, etc. 

These factors reduce the signal-to-noise ratio of the 

measured particle signal and system matrix, which will 

eventually worse the reconstructed image quality both in x-

space and system matrix algorithms. 

Deep learning has shown its superior in denoising tasks to 

traditional methods [2, 3]. However, the common 

supervised denoisers required massive noisy-clean pairs 

and it would be a challenge in MPI. To overcome this 

limitation, we introduce a self-supervised network, which 

is commonly used in image denoising tasks [4, 5]. By 

utilizing the consistency of MPI signal and the randomness 

of noise in different periods, the approach achieves noise 

suppression by measuring the MPI signal of two periods 
[𝑢1, 𝑢2]. The self-supervised network aims to minimize 

the following empirical risk: 

arg min 𝐸𝑢1
𝐸(𝑢2|𝑢1)𝐿(𝑓𝜃(𝑢1), 𝑢2)         (1) 

where 𝑓𝜃(∙) denotes the denoising method with parameter 

𝜃. 𝐿 is the loss function.  

II. Methods 

II.I. Neural Network Architecture 
Fig. 1 shows an encoder-decoder network as a frame. The 

input MPI signal 𝑢 is mapped to an 𝐶 × 𝑁 feature map then 

processed by four encoder’s blocks (EcBs) and four 

decoder’s blocks (DcBs). Each EcB sequentially connects 

a down-sampling layer, a dropout layer, a parametric 

rectified linear unit (PReLU), and three resblocks. The 

feature map obtained 𝑖𝑡ℎ resblock is: 

𝐹𝑖(𝑋𝑖−1) = 𝑊𝑖2 ∗ max(0, 𝑊𝑖1 ∗ 𝑋𝑖−1 + 𝐵𝑖1) + 𝑋𝑖−1 + 𝐵𝑖2

 (2) 

where 𝑊𝑖1, 𝐵𝑖1, 𝑊𝑖2, 𝐵𝑖2 represent the filters and biases of 

two convolutional layers respectively. * denotes the 

convolution operation. And each DcB is consisted of and 

up-sampling layer, a concatenation operation, two 

convolution layers and a PReLU. The feature map is 

mapped to the signal space by an up-sampling layer.  

 

Figure 1: Architecture of designed self-supervised neural 

network. It is mainly composed of four encoder’s blocks (EcBs) 

and four decoder’s blocks (DcBs). The input to the network is 

the one periods MPI signal with the size 1 × 𝑁0. Feature 

dimensions are described.  

Considering that mean squared error loss leads to smoother 

results and limit noise suppression capabilities, mean 

absolute error is used as part of loss function: 

𝐿𝑟𝑒𝑔 = 𝐿1(𝑓𝜃(𝑢1), 𝑢2) = ‖𝑓𝜃(𝑢1) − 𝑢2‖1     (3) 

In addition, we use prior knowledge of signals as the 
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regularization term to improve denoising performance. We 

utilized the special similarity in a scan period signal by 

matching the changing trend of the signal. We fine tune the 

learning direction of the network: 

        lim
∆𝑡→0

𝑢𝑡+∆𝑡−𝑢𝑡

∆𝑡
= lim

∆𝑡→0

𝑢𝑇−𝑡+∆𝑡−𝑢𝑇−𝑡

∆𝑡
     (4) 

𝐿𝐺𝐷 = ∑ 𝑢′
𝑡 − 𝑢′

𝑇−𝑡𝑡𝜖(0,𝑇 2⁄ ]      (5) 

Then, total various loss was added to improve signal 

smoothness: 

𝐿𝑇𝑉 = ∑ |𝑢𝑡+1 − 𝑢𝑡|𝑡∈[0,𝑇)       (6) 

So the total loss function is: 

𝐿 = 𝐿𝑟𝑒𝑔 + 𝛼𝐿𝐺𝐷 + 𝛽𝐿𝑇𝑉       (7) 

where 𝛼 and 𝛽 are the hyper-parameters. 

II.II. Numerical Experiments 
To evaluate our method, we performed simulations based 

on two main MPI reconstruction methods: x-space 

reconstruction and system function reconstruction. The 

diameter of the magnetic nanoparticle is set to 30 nm. 

Magnetic field gradients of (0.4, 0.4) T/m/ 𝜇0  were 

generated along (x, y) directions. In x-space reconstruction, 

we used Cartesian trajectory with frequencies 25 kHz and 

0.5 kHz for scanning the field of view (FOV). In system 

function reconstruction, the Lissajous trajectory was used 

with frequencies 25kHz and 24.75kHz. The sampling 

frequency is 2.475MHz. The size of the FOV was set to 

101 × 101. 

For x-space reconstruction, we generate a dataset of 10000 

MPI images with different particle distributions: 8000 

images as the training set, 1000 images as the validation set, 

and 1000 images as the test set. The batch size, the learning 

rate, 𝛼, and 𝛽 are set to 4, 1e-4, 0.05 and 0.01, respectively. 

For system function reconstruction, we obtain 10201 signal 

data using a simulated system matrix: 8160 data for training, 

1020 data for validating, and 1021 for testing. 

II.III. Evaluation metrics and implementation 

We verify the effectiveness of our method from the signals 

denoising results and the reconstructed image results. In 

terms of signals, signal-to-noise ratio (SNR) is used to 

evaluate the denoising ability of the method, root mean 

square error (RMSE) quantify the similarity of signals.  

SNR = 10 log10
∑ 𝑢(𝑡)2𝑇

𝑡=0

∑ (𝑢(𝑡)−𝑢(𝑡))2𝑇
𝑡=0

 (8) 

𝑅𝑀𝑆𝐸 = √
1

𝑇
∑ (𝑢(𝑡) − 𝑢̃(𝑡))

2𝑇
𝑡=0  (9) 

where 𝑢(𝑡) and 𝑢̃(𝑡) are denoised signal and clean signal, 

respectively. 𝑇 means the length of the signal. 

In terms of constructed images, we use peak signal to noise 

ratio (PSNR) and structure similarity index measure (SSIM) 

to evaluate the quality of image denoising and the similarity 

with the true value, respectively. 

SSIM(X, Y) =
(2𝜇𝑋𝜇𝑌+𝑐1)(𝜎𝑋𝑌+𝑐2)

(𝜇𝑋
2 +𝜇𝑌

2+𝑐1)(𝜎𝑋
2 +𝜎𝑌

2+𝑐2)
 (10) 

PSNR(X, Y) = 10 log10
(𝑚𝑎𝑥𝑋)2

∑ ∑ (𝑋(𝑚,𝑛)−𝑌(𝑚,𝑛))
2𝑁

𝑛=0
𝑀
𝑚=0

(11) 

where X is the clean image and Y is the reconstructed 

image. 𝜇𝑋 , 𝜇𝑌 ,  𝜎𝑋  and 𝜎𝑌  are the mean and standard 

deviation of image X and Y, respectively. 𝜎𝑋𝑌  Is the 

covariance of X and Y. 𝑐1 and 𝑐2 are the constants set to 

0.01 and 0.03. 𝑚𝑎𝑥𝑋 means the maximum pixel value of 

image X. M and N indicate the rows and columns of the 

image. 

III. Results and discussion 

III.I Comparison 
Table 1 summarizes the evaluation results of signal 

denoising for Gaussian noise with SNR=5dB and 

corresponding imaging quality after x-space reconstruction. 

And Table 2 shows the comparison results for Gaussian 

noise with SNR=15dB and harmonic interference with 

SIR=5dB. The comparison example of signal denoising and 

the reconstructed image using x-space algorithm is shown 

in Fig. 2. To evaluate the de-noising performance of the 

proposed framework, we compared it with two self-

supervised denoisers: Noise2Noise (N2N) [4] and 

Recorrupted-to-Recorrupted (R2R) [6]. 

We evaluate the methods from the results of signal de-

noising and image reconstruction. The quantitative results 

are shown in Table 1. It can be seen that our method 

performs more adapted to MPI signal denoising tasks than 

other self-supervised methods. In addition, with the noise 

distribution becoming more complex, the performance of 

R2R drops rapidly, and our methods keep a stable state. 

Table 1: Quantitative results of different methods for Gaussian 

noise with SNR=5dB. 

 Signal Denoising Reconstructed Image 

SNR RMSE SSIM PSNR 

Noisy 5.00 128.27 0.39 21.13 

N2N[4] 16.53 34.17 0.87 28.30 

R2R[6] 11.68 60.50 0.69 24.90 

Proposed 20.97 20.95 0.95 31.66 

 

Table 2: Quantitative results of different methods for Gaussian 

noise with SNR=15dB and harmonic interference with SIR=5dB. 

 Signal Denoising Reconstructed Image 

SNR RMSE SSIM PSNR 

Noisy 6.20 116.33 0.47 22.58 

N2N[4] 17.48 30.92 0.89 29.06 

R2R[6] 8.83 88.04 0.55 23.23 

Proposed 22.72 16.59 0.94 31.46 
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Figure 2: The comparison of denoised signal and the 

corresponding reconstructed x-space image. 

Table 3 shows the denoising results on system matrix. The 

3𝑟𝑑  and 7𝑡ℎ  harmonic components of the system matrix 

before and after denoising is shown in Fig. 3. The harmonic 

data was reshape to 101 × 101, which same as the image 

size. It can be seen that the self-supervised method reduces 

the noise in system matrix. Even in high frequency where 

the proportion of noise component is higher, the method 

can still achieve noise suppressed. 

Table 3: Quantitative results of proposed self-supervised 

network in system matrix reconstruction. 

 Signal Denoising Reconstructed Image 

SNR RMSE SSIM PSNR 

Noisy 4.99 105.25 0.96 38.13 

Proposed 19.17 20.61 0.99 43.90 

Figure 3: The visualization for two harmonic components. 

IV. Conclusions 
In this work, we developed a self-supervised approach for 
denoising MPI signals for x-space and system matrix 
reconstructions. The proposed method minimizes the 
average deviation and uses the prior information of MPI 
signals, realizing the learning of signal pattern from noisy 
data. Our method shows that we can take the advantages of 
learning based method in denoising tasks while reduced the 
dependence on high quality MPI signal. Moreover, our 
method has the potential to alleviates the time consumption 
caused by multiple measurements of the system matrix. 
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