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ABSTRACT 

 
In this paper, we call the pattern classification problem that 
consists in assigning a category label to a long audio signal 
based on its semantic content as Generic Audio Document 
Categorization (GADC). A novel generative model is 
proposed to describe the generic audio document categories 
and solve the GADC problem. This model is a four-level 
hierarchical model in which two latent variables “audio 
topic” and “audio word” are introduced in addition to the 
two observed variables category and audio feature. We 
present an iterative learning algorithm including two 
Expectation-Maximization (EM) cycles to estimate the 
model parameters and give a discriminative document 
weighting procedure to make the model more discriminative. 
Subsequently, the distribution of “audio topic” in the well-
trained model is utilized to represent each generic audio 
document category. This is same with some bag-of-word 
methods. However, our method is advanced since it does 
not require quantizing the continuous audio features to a 
vocabulary of “audio words”. Finally, experiment results 
show the effectiveness of our approach. 
 

Index Terms—Audio content analysis, generic audio 
document categorization, generative model
 

1. INTRODUCTION 
 
In audio content analysis, the objective of solving many 
problems is to automatically categorize a long audio signal 
into several pre-defined categories. These problems include 
musical genre classification (MGC) [1-3], audio-based 
video classification (ABVC) [4] and even spoken language 
identification (LID) [5]. They share a lot in common: they 
all focus on one kind of long audio signals which are called 
as audio documents (AD), such as music and spoken 
documents. All their goals are to categorize an AD based on 
its semantic content. Moreover, the category of an AD is 
almost unrelated to its length. In this paper, we collectively 
call these problems as Generic Audio Document 
Categorization (GADC). 

GADC is a pattern classification problem that consists 
in assigning a predefine category label to a generic AD 
based on its semantic content. We emphasize the use of the 

word “generic” as the goal is to cope with a wide variety of 
categories using the same framework. 

The state of the art audio classification methods can be 
roughly divided into two categories. The first category is the 
acoustic modeling, where acoustic features are modeled by 
popular models/classifiers [1-2, 4]. The second category is 
the “audio word” modeling, where an audio signal is 
transcribed by unsupervised clustering or phoneme 
recognizers and the scoring is performed on “audio word” 
strings, e.g., bag-of-word method for MGC [3] and parallel 
phoneme recognizer followed by vector space modeling 
(PPR-VSM) for LID [5]. 

Despite many reported successes, the above methods 
have some shortcomings when being applied in GADC. It’s 
hard to directly model the acoustic features to categorize 
generic AD. The “audio word” modeling methods need a 
vocabulary of “audio words”. However, its unsupervised 
construction may be unable to take AD categories into 
account, and supervised training of “audio word” 
recognizers need extra labeling and learning works. 

In this paper, we propose a four-level hierarchical 
generative probabilistic model to categorize generic AD, in 
which two latent variables “audio topic” (AT) and “audio 
word” (AW) are used. This model doesn’t need construction 
of a vocabulary of AW. We present an iterative learning 
algorithm including two Expectation-Maximization (EM) 
cycles to train the proposed model and a procedure of 
discriminative document weighting (DDW) to make the 
model more discriminative. 

The paper is organized as follows: Section 2 formulates 
the GADC problem. Our model is represented in Section 3. 
In Section 4, the experiments were performed to evaluate 
our approach. Finally, we summarize our work in Section 5. 
 

2. PROBLEM FORMULATION 
 
In this section, we formulate the GADC problem. We are 
given a labeled training set of M ADs {(d1, l1), (d2, l2), …, 
(dM, lM)} in this problem. Here, each di is an input AD, 
which consists of Ni feature vectors j

ix , and li L={1, …, C} 
is the corresponding category label. These ADs can be 
music signals, audio tracks of videos or spoken utterances, 
and class labels can be musical/video genres or languages 
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respectively. In the testing stage, we need assign a category 
label to an unknown AD q based on its semantic content. 

Now we are ready to show the details of our model and 
how we learn its parameters. 

 
Fig. 1. Flow chart of the algorithm. 

3. PROPOSED MODEL 
 
Fig. 1 is a summary of our algorithm in both learning and 
categorization. The goal of learning is to achieve a model 
that best represents the distribution of feature vectors in 
each category. An iterative model learning procedure 
including two EM cycles and a DDW procedure is used to 
train the model. In categorization stage, a folding-in 
procedure is utilized to represent the unknown AD with the 
trained model, and the obtained mixing coefficients are then 
used to classify the test AD. 
 
3.1. Model Structure 
 
Now we turn to a description of the proposed generative 
model, whose graphical representation is shown in Fig. 2. 
This model is a latent variable model for co-occurrence data 
which associates an unobserved AT variable t T = t1,…, tT 
and an unobserved AW variable w W = w1,…, wK with 
each observation, where T<<K. An observation is the 
occurrence of a feature vector in a particular category.  

It is easier to understand the model by going through 
the generative process for obtaining a feature vector in a 
specific category. First, let us introduce the following 
probabilities: P(c) is used to denote the probability of 

observing a particular category c, P(t|c) denotes the 
conditional probability of a specific AT t conditioned on the 
category variable c, P(w|t) denotes the conditional 
probability of a specific AW w conditioned on the 
unobserved AT variable t, and finally P(x|w) denotes the 
conditional probability of a specific feature vector x 
conditioned on the unobserved AW variable w. Using these 
definitions, one may define a generative model by the 
following scheme: 

Select a category c with probability P(c),  
Pick a latent AT t with probability P(t|c), 
Pick a latent AW w with probability P(w|t), 
Generate a feature vector x with probability P(x|w). 

 
Fig. 2. Graphical representation of the proposed model. 

As a result, one obtains an observation pair (c, x), while 
the latent AT variable t and latent AW variable w is 
discarded. Translating the data generation process into a 
joint probability model results in the expression: 

t w
wxPtwPctPcPxcP )|()|()|()(),(          (1) 

It’s important to note that the conditional probabilities 
P(t|c) and P(w|t) obeys multinomial distribution, and they 
are discrete probability distributions. But the conditional 
probability P(x|w) is continuous probability distributions 
and can be chosen to various distributions based on the 
specific problem. For example, we can directly model it by 
Gaussian distribution, or more complex, the ASM n-grams 
[5]. In this paper, we choose Gaussian distribution with 
diagonal covariance for the reason of simplicity and low 
computational cost. Let (x|w) and (x|w) denote the mean 
vector and diagonal covariance matrix of Gaussian P(x|w) 
respectively. 

In general we do not need to learn the prior P(c) from 
the training data since the prior is more a property of the 
way the training data was collected than of the real world 
frequencies.  
 
3.2. Model Learning 
 
At the beginning of model learning, for getting rid of the 
influence of the different number of ADs in each category 
and the different number of feature vectors in each AD, we 
need to weight the feature vectors of training ADs. The 
weight of a feature vector j

ix is defined as follow: 

ik ll ki

ij
i dweightdlength

dweight
xn
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)()(                      (2) 

where  is a constant, length(di) is the number of feature 
vectors belonged to di, and weight(di) is the weight of di, 
which is set to 1 in this stage. 
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After feature weighting, we use the EM algorithm to 
maximize likelihood in the presence of latent variables. 
Firstly, we fix the parameters P(w|t) and P(t|c) and consider 
the optimization with respect to the parameters (x|w) and 

(x|w) governing the Gaussian distribution P(x|w). This is 
easily maximized using EM algorithm (EM 1 in Fig. 1): 

The E step is given by 

w
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where c(x) represents the category of the AD containing 
feature x, and  

t
xctPtwPxcwP ))(|()|())(|(                          (4) 

The M step is given by 
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Next we fix the parameters of P(x|w) and consider the 
optimization with respect to the parameters P(w|t) and P(t|c). 
At the beginning, we can count up the co-occurrence of 
category and AW by 
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where ),|( cxwP j
i  is computed by equation (3). Then we 

can use EM algorithm to learn the parameters P(w|t) and 
P(t|c) and maximize the likelihood (EM 2 in Fig. 2). 

The E step is given by 

t
ctPtwP

ctPtwP
wctP

)|()|(
)|()|(),|(                                (9) 

The M step is given by 
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These two EM cycles are implemented alternately and 
they yield valid EM algorithm in which the likelihood never 
decreases. This procedure is presented in the up dashed 
frame in Fig. 1. 
 
3.3. Categorization decision 
 
After model parameters estimation, we can use the AT 
distribution conditioned on a category to represent this 
category, which means the parameter P(t|c) is feature vector 
of category c. Given a unseen AD q, P(t|q) is computed by 
running EM algorithm in a similar manner to that used in 
learning, but only P(t|q) are updated and other parameters 
are kept fixed. Then, the intersection of P(t|c) and P(t|q) is 

computed to determine the similarity of AD q and category 
c, which is given by 

t
ctPqtPcqsim ))|(),|(min(),(                     (12) 

The categorization decision is made by choosing a 
category which has the biggest similarity with test AD. 
 
3.4. Discriminative document weighting 
 
As mentioned above, we assume the weights of all training 
ADs equal to 1.0, which means each AD has the same 
influence to the model training. However, since the training 
ADs with same category can not equally represent their 
category’s character, it’s not proper to set their weights 
equally. To improve the model’s discriminative power, we 
use the following steps to obtain better weights: 

1) Set weight(di) = 1.0 for i = 1, …, M. 
2) Perform the above training process and categorization 

task over all the training ADs. If the error rate is less 
than a predefined value or some stopping condition is 
satisfied, the training is completed, else proceed. 

3) If di can not be right classified, then compute the 
posterior probability: 
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where di can not be right classified. Then go to 2). 
It’s important to note that smart choice of parameter  is 

important. We find that good results can be given when the 
parameter  is set to 1 with about 5 iterations. 
 

4. EXPERIMENTS 
 
In order to evaluate the performance of our model on 
GADC problem, we make experiments on MGC and ABVC 
in this paper, and Gaussian mixture model (GMM) with 
diagonal covariance matrices are applied to be the baseline 
method. In these experiments, the GMM has 100 or 200 
components and the number of AWs in our model is set to 
1000 or 2000. This setting makes the evaluation fair, 
because there are almost 10 classes in each experiment and 
the total number of the GMM’s components is between 
1000 and 2000. 

In our experiment, all the ADs are first down-sampled at 
16 kHz and 16 bits/sample, and then divided into frames of 
25 ms with 50% overlap. A 28-dimensional feature vector, 
which includes short-time energy (STE), zero-crossing rate 
(ZCR), the first 14 (except the 0th) MFCC and its first-order 
derivatives, are extracted from each audio frame. In order to 
reduce the computational complexity, we choose to group 
audio frames into longer temporal audio segments by a 
sliding window of 1-s with 0.5-s overlap. At each window 
position, the mean and standard deviation of the frame-
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based features (56-dim) are obtained and used to represent the corresponding one-second-long audio segment. 

 
Fig. 3. Categorization Performance: (a) MGC for D1; (b) MGC for D2; (c) ABVC. 

4.1. Music Genre Classification 
 
For the experiments of MGC, two different data sets have 
been used. The first dataset (D1) is collected by G. 
Tzanetakis [1] and consists of ten classes 1 . The second 
dataset (D2) was downloaded from the website of the 
ISMIR contest in 2004 [6]. It is classified into six genres2. 
For D1, a 5-fold cross validation has been used. For D2, we 
use its training songs to train our model, and its 
development songs are used for evaluation. The results are 
given in Fig. 3 (a) and (b) respectively. 

The results show evidently that the proposed method 
outperforms the baseline method and the DDW procedure 
improves the performance. Our method also performs well 
in comparison with other published methods. On D1, 
Holzapfel et al. [2] reported an accuracy of 74%, while our 
former work [3] reported 81.5%. On D2, the winner of the 
ISMIR’04 Audio Description contest reached an accuracy 
of 84.07% and Holzapfel et al. [2] reported an accuracy of 
83.5%, while our former work [3] reported 84.4%. 
 
4.2. Audio-based Video Classification 
 
For the experiments of ABVC, we collected video 
sequences of TV programs containing six classes3 , each 
class includes 46, 14, 64, 30, 40, 106 video sequences 
respectively. They vary in duration from 5 minutes to 1 hour 
and are collected from different Chinese TV channels on 
different dates to ensure the variety. To evaluate the 
proposed method, audio tracks are extracted from these 
video sequences and a 2-fold cross validation is used. The 
results are given in Fig. 3 (c). 

The experiment results show that our method works well 
on ABVC and outperforms the baseline method. 
 

5. CONCLUSION 

                                                 
1 Blues, Classical, Country, Disco, Hip Hop, Jazz, Metal, Pop, Reggae, 
Rock 
2 Classical, Electronic, Jazz, Metal/Punk, Rock/Pop, World 
3 News, Sports (basketball matches), TV plays, Variety shows, Talk shows, 
Music videos 

 
In this paper, we present a four-level hierarchical generative 
model to solve the GADC problem. This model doesn’t 
require obtaining a vocabulary of AWs, while it is trained 
by an iterative learning algorithm and a DDW procedure. 

Owing to limited space, this paper don’t investigate how 
categorization performance is affected by the various 
parameters comprehensively, there is a need to perform 
more experiments in future work. 
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