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Abstract— Adequate patients’ data have always been critical
for disease assessment. However, large amounts of patient
data are often difficult to collect, especially when patients are
required to complete a series of assessment movements. For
example, assessing the hand motor function of stroke patients
or Parkinson’s patients requires patients to complete a series
of evaluation movements, and it is often difficult for patients
to complete each group of actions multiple times, resulting in a
small amount of data. To solve the problem of insufficient data
quantity, this study proposes a data augmentation method based
on empirical mode decomposition and integrated long short-
term memory neural network (EMD-ILSTM). The method
mainly consists of two parts: one is to decompose the raw signal
by the method of EMD, and the other is to use LSTM for data
augmentation of the decomposed signal. Then, the method is
tested on the public dataset named Ninaweb, and the test results
show that the classification accuracy can be improved by 5.2%
by using the augmented data for classification tasks. Finally,
clinical trials are conducted to verify that after dimensionality
reduction, the augmented data and raw data have smaller intra-
class distances and larger inter-class distances, indicating that
data augmentation is effective.

I. INTRODUCTION

In the era of deep learning, research in many fields has
shown that the larger the dataset, the better the general-
ization performance of the model. When the task involves
the analysis of biomedical signals, such as motion signals,
electromyography signals, etc., more data can also help
doctors better understand patients, so as to better diagnose
the condition and formulate more accurate rehabilitation
strategies. However, obtaining larger data sets is a complex
task and can be an unpleasant experience for patients due
to fatigue, patient limitations or physical impairment. There-
fore, the lack of sufficient data makes analyzing these signals
a challenging task.

Over the past few years, the topic of data augmentation has
attracted many researchers. In the work of [1], the methods of
jittering, scaling, rotating, permutating, magnitude-warping
and time-warping were used to augment Parkinson’s data
recorded by accelerometer sensors, to assess the degree
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of Parkinson’s disease. However, these methods are simple
sequential operations, and the changed signal also loses its
physical characteristics. Kamycki developed a suboptimal
warped time-series generator for generating augmented data,
and proved the effective of this method by the task of time-
series classification [2]. However, it is not sufficient to prove
the validity of augmented data only by classifying tasks.
Haradal proposed generative adversarial networks (GAN)
to enhance electrocardiogram and electroencephalography
datasets [3]. In addition to data augmentation of physio-
logical signals based on GAN [4], [5], LSTM was also
used to augment motion signals for action classification [6]–
[8]. Although these deep learning-based methods can use
augmented signals to improve the task of action recognition,
they require quantitative metrics to evaluate the augmented
data. In this study, in addition to using quantitative metrics
to evaluate the effectiveness of data augmentation, we also
use two tasks to demonstrate the effectiveness of data aug-
mentation. The first task is a gesture classification task, and
the second task is PCA dimensionality reduction.

The main contributions of this work can be concluded as
follows:

1) We propose a data augmentation method based on em-
pirical mode decomposition and integrated long short-
term memory neural network (EMD-ILSTM). In the
method, the raw hand motor signals are decomposed by
EMD, and then the decomposed signals are integrally
augmented by LSTM, and then each channel signal
is combined. Moreover, two metrics of similarity and
difference are used to evaluate the augmented data.

2) The augmentation method is tested on the public dataset
named Ninaweb, and the test results show that the clas-
sification accuracy can be improved by 5.2% than the
benchmark classification results by using the augmented
data for classification tasks.

3) Clinical trials are conducted to verify that the coordinate
positions of the augmented data and the raw data after
dimensionality reduction have the smaller intra-class
distance and larger inter-class distance, which indicates
that the data augmentation method is effective.

The remaining parts of this study are organized as follows:
Section II introduces the method of EMD-ILSTM in detail.
Section III exhibits the results of data augmentation and
classification accuracy. Finally, Section IV discusses the
results and concludes the paper.
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II. METHODOLOGY

The framework of the EMD-ILSTM is shown in Fig.1.
First, the joint angle matrix (5m, assuming that the length of
the data is m) of the finger is split into five one-dimensional
signals (m), each signal representing the bending angle of a
finger. Next, each angle signal is artificially decomposed into
7 groups of signals (7m) using EMD. Then the matrix (35m)
of all decomposed signal concatenations is integrally input
to one LSTM network. And the LSTM network outputs the
augmented matrix (35m). Finally, the matrix is divided into 5
groups (7m) corresponding to 5 fingers in turn, and then the
signals of each finger are summed to obtain one-dimensional
data, and the data of the 5 fingers are concatenated into an
augmented matrix (5m).
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Fig. 1. The framework of the EMD-ILSTM.

A. Empirical Mode Decomposition
Empirical mode decomposition (EMD) can decompose

the raw signal into intrinsic mode functions (IMF). The
decomposition results in a set of empirical mode functions
and a residual term, which can represent the trend of the
signal or a fixed value [9]. The raw data will be decomposed
as follows:

X(t) =
n

∑
i=1

IMFi(t)+ rn(t), (1)

where X(t) is raw data, IMFi(t) are intrinsic mode functions
and rn(t) is residue.

B. LSTM
The structure of the LSTM unit is shown in Fig. 2. It

contains two LSTM layers, two fully connected layers (FC)
and one regression layer (RE).
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Fig. 2. The structure of the LSTM unit.

C. Ablation Experiment
The framework of the three ablation tests is shown in Fig.

3. Fig. 3 (a) indicates 5 LSTM units to augment the data
of the bending angles of the 5 fingers respectively, Fig. 3
(b) shows only one LSTM unit to augment the data of the
bending angles of all the 5 fingers, and in Fig. 3 (c) the
motion curves of the 5 fingers are first decomposed by EMD,
and then performed data augmentation by 5 LSTM units.
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Fig. 3. The three frameworks of the ablation experiment.

D. Metrics

To compare the augmentation data effectively, the Spear-
man coefficient (SC) and the Pearson coefficient (PC) are
used as the similarity metric, and the difference percentage
(DP) is used as the difference metric. DP can be written as

DP =
45

∑
i=1

(|DataRawi−DataAugi

DataRawi
|)×100%, (2)

where DataRaw and DataAug are the features of length 45,
consisting of mean value, root mean square, mean absolute
value, average power, average amplitude change, standard
deviation, ratio of difference of quartile and correlation
matrix. The augmentation effect is better when the values
of SC and PC are close to 1 and the value of DP is small.

In addition, to prove the validity of augmentation data, we
use the framework proposed in this study to conduct data
augmentation on DB1 of Ninaweb dataset [10], and add the
augmentation data to the training set. Then we use the sliding
windows to preprocess the data and the length of sliding
window is 400 ms. The types of features we used are mean
absolute value (MAV), variance (VAR), marginal discrete
wavelet transform (mDWT), waveform length (WL) and his-
togram (HIST). The classification methods include k-nearest
neighbors (k-NN), linear discriminant analysis (LDA), muti-
layer perception (MLP), quadratic support vector machine
(QSVM), and linear support vector machine (LSVM). Final-
ly, we compare the classification results with the benchmark
results of the dataset [11].

E. Clinical Trials

To apply the augmentation method of this study to clinical
trials, we use leap motion to collect the data of 4 Parkinson’s
patients in the Chinese Research Rehabilitation Center. The
patients perform 4 kinds of hand movements of the UPDRS
scale, namely finger tapping, finger group flexion, pronation-
supination movements of hands and postural tremor of the
hands. Each movement is repeated 10 times. Then the
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raw data and augmented data of 4 patients are reduced
to 2 dimensions using PCA, and the data of 4 subjects
are plotted. This research was reviewed and approved by
the Ethics Committee of the China Rehabilitation Research
Center (approval number: 2021-108-1). Each subject signed
a written informed consent prior to enrollment.

III. RESULTS

A. EMD

Figure 4 exhibits the EMD decomposition curves, the blue
one is the raw curve, the last red curve is the residue, and
the remaining red ones are the decomposed IMF. There are
6 IMF and 1 residue signals.

Fig. 4. The raw signal and its EMD signals.

B. LSTM

In this study, the first 50% of the data are used for training
and the last 50% for testing. At each time step of the input
sequence, the LSTM network learns to predict the value of
the next time step. When training the signals decomposed by
EMD, the training set is copied 5 times and connected before
training. More detailed parameters of the training process are
shown in Tab. I.

TABLE I: PARAMETERS OF LSTM

Parameter Value

Solver Adam
MaxEpochs 300

InitialLearnRate 0.005
LearnRateDropPeriod 100
LearnRateDropFactor 0.2

numHiddenUnits 200

C. Data augmentation results

The results of augmentation under four different frame-
works are shown in Fig. 5. Fig. 5 (a)-(c) correspond to the
three frameworks in Fig. 3, respectively, and Fig. 5 (d) is the
augmentation result based on EMD-ILSTM. A more detailed
comparison is shown in Tab. II. The red text in Tab. II
indicates that the augmentation effect in Fig. 5 (d) is the
best, and the raw curve is basically restored.

TABLE II: COMPARISON OF DATA AUGMENTATION
EFFECTS OF FOUR FRAMEWORKS

Framework Spearman Pearson DP

a 0.9325 0.9923 16.9
b 0.9937 0.9929 6.78
c 0.9410 0.9954 12.6
d 0.9948 0.9994 4.15

D. Classification Result
In Fig. 6, the left column of the same color represents

the classification accuracy before data augmentation, and the
right column represents the classification accuracy of the data
after augmentation. The classification accuracy of training
with additional augmented data is higher than the benchmark
classification results. After calculation, the average classifi-
cation accuracy is improved by 5.2%.

E. Clinical Trails
Figure 7 shows the snapshot of the experiment. The patient

places his hand 30 cm above the leap motion and completes
4 hand movements of the UPDRS scale. We collect the
data from the patients and augment the data by the method
proposed by this study. Then these data are extracted to
form features with length 45, and the coordinate positions
of the features after PCA (default parameters in MATLAB)
are shown in Fig. 8. Four different colored dots represent
4 subjects with different degrees of disease. Circles and
five-pointed stars represent raw data and augmented data,
respectively. It can be seen that the augmented data is very
close to the raw data, and farther from other patients’ data
points, indicating that the augmentation data is effective.

Leap Motion

Subject Display Interface

Fig. 7. The clinical trail.

-6 -4 -2 0 2 4 6 8

Component 1

-4

-3

-2

-1

0

1

2

3

4

5

C
om

po
ne

nt
 2

Fig. 8. Data distribution of four subjects after PCA.
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a b c d

Fig. 5. The results of augmentation under four different frameworks.

Fig. 6. The accuracy of the classification.

IV. DISCUSSION AND CONCLUSION

As can be seen from Fig. 4, EMD decomposes complex
signals into simple multi-channel signals. The data aug-
mentation effect of these simple signals is better than that
shown in Fig. 5(a), as exhibited in Fig. 5(c). By integrally
inputting the motion data of all fingers into one LSTM unit
for training, the neural network can find the motion rules
of 5 fingers on the whole, so the augmented data is closer
to the original data, as shown in Fig. 5(b). Combining the
advantages of EMD and integrated LSTM, the proposed
EMD-ILSTM method works best, as shown in Fig. 5(d).

This study proposes a data augmentation method called
EMD-ILSTM, which can augment time-series signals effi-
ciently. We use the method to perform a classification test
on DB1 of the Ninaweb dataset, and the results show that ad-
ditionally using the augmented data for classification, under
the same feature and classification method, the classification
accuracy is 5.2% higher than the benchmark classification
results. In addition, the results of clinical trials also show
that the augmented data has smaller intra-class distance and
larger inter-class distance, which indicates that our proposed
data augmentation method is effective.
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