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Abstract—Deep convection can cause a variety of severe 

weather conditions such as thunderstorms, strong winds, and 

heavy rainfall. Satellite observations provide all-weather and 

multi-directional observations, facilitating the timely 

detection of such weather systems, which is crucial to saving 

lives and property. However, previous methods based on 

channel feature extraction and threshold filtering did not 

make full use of information in satellite images, which led to 

limitations on such complex problems as strong convection 

detection. In this study, we propose a novel framework of a 

deep learning-based model Convection-UNet to detect 

convection. We use channel 4 to 7 of FY-4B GHI that we select 

according to the microphysical properties of convection as 

input and radar reflectivity as label. We combine the detailed 

training time and test time data augmentation strategies and 

build a deep neural network to automatically extract spatial 

context features and achieve end-to-end learning. Results 

show that the performance of our method far exceeds the 

previous channel extraction combined with threshold filtering 

methods such as BT and BTD at least 0.24 on F1-measure. 

We also show that our channel selection and data 

augmentation strategies are of great significance to detect 

convection. 
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I. INTRODUCTION 

The disaster weather caused by strong convection is 
always characterized by strong destruction, wide 
distribution, and rapid development, and is usually 
accompanied by severe weather events such as tornadoes 
heavy rainfall and flash flood, which poses a serious threat 
to human life and property safety[1–3]. Therefore, the 
detection of severe convective weather has attracted 
extensive attention. Meteorological satellite observation is a 
top-down observation method. Meteorological satellites can 
generate images with high spatial and temporal resolution 
through receiving and measuring the radiation of the earth 
and its atmosphere and achieve all-weather and multi-
directional meteorological observations. Thus, satellite 
observations become a powerful tool for detecting 
convection in areas with weak meteorological support such 
as complex terrain, no man’s land and the upper 
atmosphere[4,5]. 

Over the past few decades, the detection of severe 
convection based on satellite imagery was mainly based on 
the spectral channel threshold method, that is, based on the 
microphysical properties of severe convection, the 
corresponding features are extracted from the spectral 

channel, and the threshold is set to achieve the detection of 
convection. Maddox[6] used the brightness temperature of 
the infrared channel (10.7μm) to detect the strong 
convective regions. Since the cloud top in the strong 
convective regions is high and the temperature is low, 
convective clouds appear bright white in the infrared 
imagery and are in strong contrast with the non-convective 
region. This method can be used day and night. However, 
the detection method with a single channel has limitations. 
Subsequent studies showed multi-channel methods are 
better. BTD (Brightness Temperature Difference)[7] used 
the brightness temperature difference between water vapor 
and infrared imagery to explore cloud top features and 
detect convection. SATCAST (Satellite Convection 
Analysis and Tracking)[8] proposed the “interest fields” for 
assessing growing cumulus by integrating the channel 
features and time trends of convection. UWCI (University 
of Wisconsin Convective Initiation)[9] proposed to use box 
averaging to calculate the average cooling rate of cloud tops 
in infrared channels, and established a convection 
forecasting system based on the cooling rate of cloud tops 
and cloud types, thus effectively integrating spatial 
information. The threshold selection method is usually 
based on different terrain, season, and historical data of 
previous severe convective weather[10].  

The methods mentioned above can effectively 
incorporate the microphysical properties of convection and 
have good practical significance. However, the satellite data 
we used in this paper is the Geo High-speed Imager (GHI) 
of Fengyun 4B, which contains only 7 channels (shown in 
Table 1), lacks water vapor channels and part of infrared 
channels, resulting in less spectral information that can be 
used to identify convection. On the other hand, considering 
the complex and changeable characteristics of convective 
clouds, the traditional multi-channel threshold detection 
methods are limited by the feature extraction method and 
threshold selection strategy, which lead to the bottleneck of 
detection effect. 

In recent years, deep learning has shined in computer 
vision tasks due to its powerful feature-extracting ability, 
which had attracted extensive attention from academic 
research[11]. Some meteorologists tried to use a deep neural 
network to detect and forecast convection. Lee et al.[12] 
proposed an Encoder-Decoder two-stage detection model 
based on visible and infrared channels. The visible channel 
was used to reflect the optical thickness of the cloud, while 
the infrared channel reflected the temperature of the cloud 
top. Under the condition of ensuring the recall rate, the 
detection results were greatly improved and had better 
interpretability. Kim et al.[13] used Convolutional Neural 



 

Network (CNN) to detect overshooting tops. They first 
selected satellite images of visible and infrared channels of 
fixed size as input according to the usual size of 
overshooting tops, then used CNN to extract features and 
classify them. Compared with the threshold method and 
random forest method[14], it could significantly improve 
precision and recall. Lee et al.[15] extended Kim et al. 's 
method by adding more infrared channels as input, and tried 
2D-CNN and 3D-CNN to fuse visible channel and infrared 
channel data, respectively, and achieved better detection 
results. 

Based on the above analysis, we propose a deep 
convolutional neural network architecture named 
Convection-UNet to detect convection from FY-4B GHI 
data. We first select four channels as the input according to 
the microphysical properties of convection, then use the 
UNet[16] architecture to construct our Convection-UNet for 
pixel-level convection detection. Our Convection-UNet 
also contains a strong data augmentation strategy and uses 
radar reflectivity as label. The experimental results show 
that (1) our deep learning method has a significant 
improvement compared with the previous spectral channel 
threshold methods, (2) the input channels selected for the 
microphysical mechanism and data augmentation also play 
an important role.  

The remainder of this paper proceeds as follows. Section 
Ⅱ introduces the satellite data and the radar data used for 
model input and label respectively. Section Ⅲ describes our 
network architecture and training strategy. Section Ⅳ 
analyzes the experimental results in detail. Finally, we 
present the main conclusions of this study in Section Ⅴ. 

II. DATA 

A. Satellite data: Fengyun-4B 

Fengyun-4B (FY-4B in short) is the second satellite in 
China's Fengyun-4 geostationary meteorological satellite 
series, which was successfully launched on June 3, 2021. 
The Geo High-speed Imager (GHI) installed on the satellite 
achieved the first observation with a spatial resolution of 
250m and a time interval of 1min, which improved the 
ability of warning and forecasting of small and medium 
scale severe weather disasters[17,18]. Table 1 shows the 
specification of FY-4B GHI. 

However, there is overlap between channels (for 
example, channels 1 to 4 are all visible channels, and the 
difference between these channels is very small), and the 
excessive input leads to high time consumption of data 
processing. On the other hand, channel selection should be 
highly correlated with convection to make full use of the 
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potential of automatic feature extraction of CNN. Therefore, 
it is a very important task to select appropriate channels as 
the input of CNN. Convective clouds are usually 
characterized by thick, high cloud tops, low surface 
temperature at the cloud tops, and small ice particles with 
strong updrafts[19–21]. For FY-4B GHI data, these 
methods[19–21] and NASA’s quick guide on convection1 lead 
us to construct the following combination of features to 
describe convection: 0.64μm reflectivity (to measure the 
optical thickness of the cloud), 1.38μm/1.6μm (to measure 
the phase of the cloud, the larger the value, the more likely 
the cloud is to behave as ice particles, otherwise it will 
appear as water clouds), 10.8μm brightness temperature (to 
measure the height of the cloud top). Considering that the 
deep neural network can automatically extract features, we 
use DN values of 0.64μm, 1.38μm, 1.6μm and 10.8μm 
(corresponding to channels 4 to 7 in GHI) as input to 
automatically learn the complex features of convection 
through the network. All image resolutions are 2km 
(corresponding to 1000 × 900 pixels per image). 

 
Figure 1. Image of FY-4B GHI at 0:00 UTC on July 1, 2022 (Channel 4 

to 7 from top left to bottom right). 

B. Radar data 

The convection initiation determined by the threshold of 
radar reflectivity factor ≥ 35dBZ can be used to forecast the 

Table 1. The specification of FY-4B GHI. 

Channel Wavelength (μm) Spatial resolution (km) Main application 

1 0.45-0.75 0.25 Land surface, vegetation 

2 0.445-0.495 0.5 Small molecule aerosol, true color synthesis 

3 0.52-0.57 0.5 Aerosol, true color synthesis 

4 0.62-0.67 0.5 Aerosol, true color synthesis 

5 1.371-1.386 0.5 Cirrus 

6 1.58-1.64 0.5 Low cloud/snow identification, water cloud/ice cloud identification 

7 10.3-12.5 2 Clouds or surface temperature 



 

occurrences of severe weather events caused by convection 
in advance[22]. We use this standard as the identification 
criterion of convection and collect the national radar mosaic 
of China Central Meteorological Observatory at the 
corresponding time of satellite data. The frequency of the 
radar mosaic is 6 minutes, while the spatial resolution is 
about 4km. The radar coverage mainly covers most of the 
land and sea near the inland in China. We first process the 
radar mosaic, including clutter elimination, geographic 
information extraction, and projection transformation, to 
obtain the radar reflectivity results that match the satellite 
imagery in time and space, then generate pixel-level 
convection/non-convection binary supervision labels 
according to whether the reflectivity is ≥ 35dBZ. 

C. Data processing 

For the above four input satellite channels and matched 
radar supervision labels, we selected a total of 1508 images 
matched between July 1-7, 11-17, and 21-27, 2022 as the 
training set, and 111 images matched between June 11-17, 
2022 as the test set. Before sending the data to the network, 
we processed the training satellite images as follows: 
1. Mark abnormal areas: First, mark the pixels where the 

solar zenith angle is greater than 80°, then mark the 
pixels corresponding to the invalid area of radar (blue 
area of the second row in figure 2), The former 
operation avoids the influence of the abnormal value 
caused by the extreme solar zenith angle on the satellite 
imagery, while the latter process ensures that all 
satellite imagery pixels used for training have accurate 
labels based on radar reflectivity. 

2. Numerical transformation: For the solar reflection 
channel (channel 4 to 6), the normalized reflectivity 
(the reflectivity divided by the cosine of the solar zenith 
angle) was calculated to replace the DN value. For the 
solar radiation channel (channel 7), the brightness 
temperature value is used instead of the DN value. 

3. Normalization: the 1% and 99% quantiles of each 
channel in the training set were counted. Then the data 
is truncated and normalized to [0,1] to exclude possible 
outliers in satellite imagery.  

Since there are always abnormal areas in the original 
1000×900 pixel satellite images with 2km resolution, 
resulting in missing labels or abnormal data, it is necessary 

to cut them into small-size images. In this paper, we 
randomly crop 40 128×128 pixel images containing 
convection pixels but not any abnormal pixels from original 
images to better balance positive and negative samples and 
ensure the integrity of labels. We use the normalized values 
mentioned above as input to the model.  

III. METHOD 

A. Model 

UNet[16] is a U-shaped end-to-end semantic 
segmentation network, which consists of a contracting path 
and an expansive path. The contracting path is equivalent to 
the Encoder to extract features and down-sampling images, 
while the expansive path is equivalent to the Decoder to 
automatically achieve pixel-level classification of original 
images through up-sampling and feature fusion which 
combines up-sampling results with the origin feature map 
from the contracting path at the same stage. We use bilinear 
interpolation for up-sampling to reduce the number of 
parameters and avoid overfitting. In the output phase, after 
the last convolution, the model is followed by a Sigmoid 
layer to predict the confidence score of convection. 

 
Figure 3. Convection-UNet network architecture.  

B. Data augmentation 

Data augmentation is an important part of model 
training. We follow nnUNet's[23] data augmentation strategy 
and divide data augmentation into training time 
augmentation and test time augmentation. Training time 
augmentation includes random flipping with a probability 
of 0.5, randomly adjusting image brightness and contrast 

   

Figure 2. Schematic diagram of radar image analysis at 00:00 UTC time on July 1, 2022. The left figure shows the original 6-minute national radar 
mosaic. It should be noted some radar reflectivity values in Tibet, Xinjiang, and other regions in the left figure are blank not because the dBZ of these 
regions is less than 10, but because they are not covered by radar (the red areas in the middle figure indicate radar coverage areas, corresponding to the 
left figure). After the geographic information is analyzed from the radar mosaic and the projection transformation is carried out, the radar label at the 
corresponding time of the satellite data can be obtained (shown in the right figure, the red area is the radar reflectivity ≥ 35dBZ, while the yellow area is 
the auxiliary added national and provincial boundaries). 



 

with a probability of 0.2, and randomly adding Gaussian 
noise and Gaussian blur with a probability of 0.2. Test time 
augmentation includes flip-weighted prediction and 
Gaussian smoothing prediction. Flip-weighted prediction 
can capture the spatial features of all directions 
comprehensively and obtain more robust prediction results 
by weighting the prediction results of various random flips 
of the image with equal weights. Gaussian smoothing 
prediction aims to better predict the category of pixels in the 
image boundary region. Considering that the original image 
is 1000×900 but the model input is 128×128, it is necessary 
to use a sliding window for prediction. However, the 
boundary pixels of the window usually lack spatial context 
information, resulting in poor prediction ability. Gaussian 
smoothing prediction uses partially overlapping sliding 
windows. We set the window size to 128×128, and the stride 
to 64, thus, each pixel will only be covered by one or two 
sliding windows. For the overlapping part in the sliding 
windows, the weighted prediction is adopted by 

, where  is the 

weighted prediction of pixel x,   represents the 

pixel x in the sliding window X, w is the weight of pixel x in 
sliding window X and obeys two-dimensional Gaussian 
distribution. The higher the weight near the middle, the 
lower the weight near the boundary. 

C. Loss function 

We use Dice Loss[24] (shown in Equation (1)) as loss 
function to train our model. 

  (1) 

where  is the ground-truth of convection,  is the 

confidence score of convection. Compared with binary 
cross-entropy loss, dice loss can better handle the 
imbalanced problem, which is more suitable for the task of 
convection detection (usually the number of convection 
pixels is far less than the number of non-convection pixels). 

D. Experiment setting 

The training and testing process of the model is as 
follows: in the training stage, we take the augmented results 
of 128×128 satellite images as input and send them to the 
network for training. We trained by Adam[25] with a 
minibatch size of 64 images, learning rate of 0.001, weight 
decay of 0.0001. Our model was trained and tested on 2  
NVIDIA GTX 1080Ti GPUs. We trained for 200 epochs 
and saved the checkpoint for testing. In the test phase, we 
use the test time augmentation. After obtaining the 
confidence score through sigmoid function, we use 0.5 as 
the threshold to classify the convection. 

IV. RESULTS 

We use precision, recall and F1-measure as metrics to 
evaluate our model on test set, where precision is used to 
measure false positives, recall is used to measure missed 
detection and F1-measure is the overall evaluation of 
precision and recall. These metrics are calculated by 
Equation (2-4).  

  (2) 

  (3) 

  (4) 

where TP, FP and FN represent the number of hits, false 
alarms and misses. 

We compared two spectral channel threshold methods, 
BT and BTD. BT[6] uses the brightness temperature of 
10.8μm channel as the criterion for judging convection. We 
select three thresholds: 210K, 220K, and 230K, define the 
brightness temperature value less than the corresponding 
threshold as convection. BTD[7,26] uses the brightness 
temperature difference between water vapor (such as 
6.25μm) and infrared imagery as the criterion for 
convection. Since FY-4B GHI does not have 6.25μm 
channel, we use the 6.25μm channel from FY-4B Advanced 
Geosynchronous Radiation Imager (AGRI) at the 
corresponding time for evaluation. We also select three 
thresholds: 0K, -5K, and -10K, and define pixels with 
channel difference greater than the corresponding threshold 
as convection. 

Table 2. Comparison of different methods for convection detection. 

It can be seen from Table 2 that our Convection-UNet 
exceeds the detection methods based on channel threshold 
by a great advantage, and is at least 0.24 higher than the BT 
and BTD on F1-measure. We believe that the performance 
of our method is improved mainly for two reasons: the 
increased number of channels and the design of end-to-end 
network architecture. The former provides more abundant 
data information, while the latter makes full use of the 
spatial context of satellite data. The integration of spatial 
information is intuitive in theory because the convection 
cloud usually presents a lumpy shape locally. The accuracy 
of previous methods based on the channel characteristics of 
a single pixel is limited since these methods ignore the 
information of the surrounding pixels. In addition, the 
network builds the feature extraction and threshold 
classification into an end-to-end architecture, which can 
automatically learn to construct the mapping of features and 
thresholds. However, in traditional methods such as BT and 
BTD, feature extraction and threshold classification are 
processed separately, which leads to a large semantic gap, 
so it is hard to deal with such a complex weather system as 
convection by using these methods. 

We perform training time augmentation and test time 
augmentation for satellite images to improve the robustness 
of the model and avoid overfitting. The detailed results are 
shown in Table 3. When neither training time nor test time 
data augmentation is used, the F1-measure on the test set is 
0.4663. After adding training time augmentation or test time 
augmentation, F1-measure is slightly increased to 0.4721 

Method Precision Recall F1-measure 

BT < 210K 0.2273 0.2453 0.2360 

BT < 220K 0.1483 0.4785 0.2264 

BT < 230K 0.0955 0.6920 0.1679 

BTD > 0K 0.4164 0.0171 0.0329 

BTD > -5K 0.1547 0.5622 0.2426 

BTD > -10K 0.0936 0.7634 0.1668 

Convection-UNet (Ours) 0.4581 0.5293 0.4911 



 

and 0.4768 respectively. Finally, when adding both training 
time augmentation and test time augmentation, F1-measure 
rises to 0.4911. It can be seen that the effect of training time 
augmentation and test time augmentation is relatively 
obvious. Training time augmentation helps the model learn 
more data representation, enhance model robustness and 
avoid overfitting, while the flip-weighted prediction and 
Gaussian smoothing prediction in test time augmentation 
are similar to model ensemble, which can eliminate some 
uncertainties and abnormal predictions. 

Table 3. Comparison of different data augmentation results. 

In our method, we select channel 4 to 7 in GHI as the 
original input according to the microphysical properties of 
convection. We also conduct an ablation experiment to 
illustrate the influence of channel selection. Results in Table 
4 show that the inputs of these four channels are 
indispensable. Compared with using four channels as input, 
the model obtained by reducing any channel as input is 
significantly worse. The model with relatively better 
performance is the removal of the channel 5 (using channels 
4, 6, 7 as input), and the F1-measure obtained is 0.4676, 
0.0235 lower than the original input. The worst performance 
is the removal of the channel 4, as a result, the F1-measure 
is only 0.4002, 0.0909 lower than the original input. This 
may be due to the partial overlap between the observation 
of channel 5 and channel 4. The observation of channel 5 on 
low clouds is poor and the amount of information is 
insufficient, resulting in a greater impact of eliminating 
channel 4 than channel 5. 

Table 4. Ablation study of channel selection. 

Figure 4 shows a typical example of the detection results 
of our Convection-UNet on June 17, 2022. The results of 
four UTC moments (00:30, 03:30, 06:30 and 09:30) are 
displayed from left to right. The background image in the 
result is visible imagery, while red pixels indicate true 
positives, blue pixels are false alarms, green pixels are 
misses, and yellow lines are national and provincial 
boundaries. It can be seen that our results can basically 
cover a large area of convection, the false alarms and misses 
mainly occur at the boundary of convection. In addition, our 
method can detect convective clouds when they are rising 
as overshooting tops, during this period, clouds usually 
show clear bubbling and lumpy-like textures on visible 
imagery. Therefore, the detection effect of overshooting 
tops confirms that the modeling of spatial context 

information of CNN is very important for the convection 
detection task. 

 

 
Figure 4. Visualization of results at specific moments. we select four 
moments on June 17, 2022 (00:30, 03:30, 06:30, and 09:30 UTC time 
from top left to bottom right respectively). Red pixels represent TP, blue 
pixels represent FP, green pixels represent FN, and yellow lines are 
provincial and national boundaries. 

V. CONCLUSION 

Motivated by the success of deep learning methods and 
their applications to computer vision, in this article, we 
propose a deep learning-based architecture Convection-
UNet to detect convection. For the FY-4B GHI data, we 
discuss the scheme of channel selection in detail, then build 
a deep neural network Convection-UNet to automatically 
extract spatial context features and achieve end-to-end 
learning. Compared with the traditional channel selection 
combined with threshold filtering methods, the detection 
results are greatly improved. At the same time, we 
demonstrate that our channel selection and data 
augmentation strategy are effective. However, the 
development of convection is a dynamic process. 
Considering that GHI can provide data with a frequency of 
1 minute, it is of great significance to introduce high time 
resolution information. In addition, the experiment uses 
visible imagery which has no effect on detecting convection 
at night. These problems are worth improving in further 
extended study areas. 
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