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Abstract—Automatic medical code assignment for clinical
records is the fundamental problem of medical statistical research
and informatization. Due to the high dimension and sparse
distribution of label space, it is necessary to make full use of
the description information of the labels. However, most of the
current work is based on similarity matching at the level of token
or n-gram, and ignores information fusion with richer semantic
structure and representation. In this paper, we propose a Clause
Interaction HyperGraph (CIHG) to jointly model documents and
label descriptions, which construct a richer semantic interaction
at the level of clause. The CIHG models the high-order co-
occurrence relationship between document and labels based on
hypergraph, and uses the semantic structure of the document
to constrain the encoding of labels. Experiments on widely
used medical code assignment datasets show that our method
successfully constrains the embedding of labels and significantly
improves predictive precision1.

Index Terms—ICD Code Assignment, Hypergraph, Graph
Convolution, Joint Modeling of Document and Label, Deep
Learning

I. INTRODUCTION

The International Classification of Disease (ICD) system

maintained by the World Health Organization is widely used

in clinical data analyzing and monitoring health issues, and

automatic medical code assignment is the foundation of its

use [1]–[5]. As shown in Fig 1, medical code assignment

can be regarded as a large-scale multi-label text classification

problem [6], which is a classic challenge in natural language

processing. The characteristics of this task are large label space

and sparse supervision signal. For example, ICD-9 has more

than 20000 labels and ICD10 has more than 60000 labels. In

addition, according to our statistics, in 50000 samples, more

than 40% of the labels appear less than three times. Therefore,

traditional sequence modeling methods are difficult to deal

with this kind of problem, and the challenge to solve this

problem is how to make better use of the text descriptions

and the hierarchical organization structure of the label.

In recent years, there have been a series of researches on

the assignment of ICD codes. Previous works treat the clinical

This work was supported by the Key Research Program of the Chinese
Academy of Sciences under Grant No. ZDBS-SSW-JSC006-2 and Strategic
Priority Research Program of the Chinese Academy of Sciences under Grant
No. XDA27030300.

1The code is available at https://github.com/CKRE/CIHG

ICD-9 Codes Disease Name

790.01 Precipitous drop in hematocrit

430 Subarachnoid hemorrhage

331.4 Obstructive hydrocephalus

V66.7 Encounter for palliative care

… …

Ms. [**Known lastname**] was admitted to [**Hospital1 18**] on 
[**11-3**]. She had an EVD placed in the ED by Dr. [**Last Name 
(STitle) 739]. …She had a HCT drop of 10 points and received one 
unit of PRBCS. …CTA head [**11-3**]: 1.Massive subarachnoid 
hemorrhage. …Extensive intraventricular hemorrhage with severe 
hydrocephalus. …They made her DNR. …She expired on [**2189-
11-5**]…

Fig. 1. An example of automatically predicting ICD codes for clinical notes.
The upper part of the figure is the clinical note fragment, and the bottom part
is the ICD codes with text descriptions. The text fragments and ICD codes
with corresponding relationships are marked with the same color.

record text as a single sequence to interact with the label

information at the token level with GRU [7] or the n-gram level

with CNN [8]. [9] maps label-wise document representation

and label descriptions to hyperbolic space for matching and

[10] builds interactive connections between each word and

label. However, the interaction based on the entire document

will lose too many details, and based on the token or n-gram

cannot contain enough contextual information. These methods

lack information fusion with richer semantic representation. In

addition, the interaction of these methods stays at the level of

similarity matching, rather than exploiting the semantic and

structural information contained in the documents and labels.

To solve this problem, we propose the Clause Interaction
HyperGraph (CIHG) to model the documents and labels

jointly. Clause is a finer segmentation of sentence. Since

clauses (Avg. tokens 7.8) and label descriptions (Avg. tokens

6.6) have similar lengths, modeling at the clause granularity

enables more precise interactions. Therefore, we build the

hierarchical document tree and label tree based on the clause

segmentation of documents and the hierarchical structure of

labels respectively. Hypergraph have the hyperedge, which

can connect more than two nodes to capture high-dimensional
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copolymerization relationships. We build a clause hypergraph

based on the semantic structure of the document. The clause

hypergraph can capture the copolymerization of the infor-

mation of clauses in the document, and realize the long-

distance interaction in the document. It ensures the separation

of different semantic information and the aggregation of

similar semantic information in the document. Specifically,

We obtain the category of clauses as structural information

through clustering, and the clause category is taken as the

hyperedge to construct the clause hypergraph on the basis of

retaining the original sequence relationship of the document.

Interaction represents interactive connection. To build the

communication and semantic information fusion between the

two tree structures of the document and labels, we use fuzzy

matching [11] to assign a corresponding label for each clause

and connect. The interactive connection and hypergraph con-

strain the encoding of labels with the semantic structure of the

document. In the embedding space, the distance between labels

with similar medical semantics is shortened, and with confused

semantics is lengthened. It brings better discrimination to label

prediction. This is equivalent to converting the clause semantic

structure into the copolymerization structure of the label. Our

contributions are summarized as follows:

• We propose a Clause Interaction Hypergraph (CIHG) to

jointly model document and labels, which realizes the

rich semantic interaction at the level of clause between

documents and labels.

• The high-order co-occurrence relationship between doc-

ument and label tree is modeled by hypergraph simul-

taneously, which introduces effective constraints for the

representation of documents and labels.

• Experiments on widely used ICD assignment datasets

show that our method successfully constrains the embed-

ding of labels and significantly improves the predictive

precision over the baseline.

II. RELATED WORK

a) Automatic Medical Code Assignment: Automatic

medical code assignment is an ongoing challenge in the field

of medical informatization [10], [12], [13]. There are already

many traditional machine learning approaches that provide

solutions for this task such as Bayesian ridge regression [14]

and hierarchical SVM [15]. In recent years, a series of deep

learning methods have achieved significant improvements in

this task [16]–[18]. [7], [8] introduced two label-wise attention

methods to map document features into the label space. In

order to strengthen the interaction between the document and

label, [9] performs similarity matching in hyperbolic space

and [10] constructs a complete bipartite graph. Different from

existing work, we use clause hypergraph to model documents

and hierarchical labels simultaneously, and achieve efficient

information interaction.

b) Hypergraph: Hypergraph is used to model the high-

order multivariate relationship between nodes [19] and have

been used in many fields such as question answering [20], an-

chor link prediction [21], text classification [22] and so on. In

Label Node
Clause Node
Sentence Node

Clause Hypergraph

Hierarchical Label Tree

Hyperedge

Interactive
Connection

Fig. 2. Overview of Clause Interaction Hypergraph. The circles of the same
color in the upper part and lower part of the figure represent the same
hyperedge. The clause node and label node with interactive connection are
connected by the dotted line.

order to realize the representation learning of the hypergraph

structure, [23] proposed a hypergraph neural network suitable

for the hypergraph, and [24] added an attention mechanism on

the basis of it. In addition, [22] proposed the HyperGAT based

on two-stage attention to solve the problem of text hypergraph

representation. Since there is a magnitude difference between

the number of bidirectional edges and hyperedges in our

clause hypergraph, we use a two-stage convolution to fuse

the calculation of hypergraph and simple graph.

III. PROPOSED METHOD

A. Problem Definition

We treat ICD code assignment as a large-scale multi-

label text classification problem. Given a clinical document

T = {ω1, ω2, . . . , ωn} with n words and a set of labels

L = {L1, L2, . . . , Lm} with m labels having an inherent

hierarchical tree structure, our goal is to select all labels from

L relevant to the clinical document T .

B. Clause Interaction Hypergraph Construction

a) Clause Document Graph: Fine-grained hierarchical

segmentation is conducive to document modeling [25], [26].

The clause is a further segmentation of the sentence, with

semantic information more concentrated than the sentence and

more complete than n-gram. Due to the similar length, better

semantic matching can be achieved between clause and code

description. Therefore, we choose the clause for document

modeling and label interaction. The clauses are obtained based

on punctuation. Specifically, we first divide the document into

sentences based on periods and paragraphs, and then divide the

sentence into clauses based on commas, semicolons, etc. To

preserve the original sequential relationship of the document,

we retain the granularity of the sentence and concatenate them

in order. The clause nodes are connected to the sentence they

belong to, and all the edges are bidirectional. The document

graph structure is the upper part of Fig. 2.
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b) Hierarchical Label Tree: ICD codes are organized

into a hierarchical tree structure. Starting from the root node,

all codes are allocated layer by layer according to the contin-

uous subdivision of the disease, such as “001-999.9” → “001-

139.99” → “001-009.99” → “001” → “001.1”. As shown in

the lower part of Fig. 2, we retained this hierarchical structure

when building the graph, and all the edges point from the root

node to the leaf node.

c) Interactive Connection: A tree-like graph net-

work without additional constraints cannot encode higher-

dimensional relationships between labels. In order to constrain

the label encoding and strengthen the information fusion

between the document and labels, we need to construct an

interaction between the two tree structures. Specifically, we

calculate the edit distance [11] between each clause and all

the label descriptions. As shown in Fig. 2, the clause node is

matched to the label node with the highest matching score.

This is a virtual matching relationship without real edges.

d) Clause Hypergraph: Hypergraph is a special graph

structure used to describe high-dimensional copolymerization

relationships. In a bipartite graph, an edge can only connect

two nodes, while an edge can connect multiple nodes in a

hypergraph. This special edge is called hyperedge. In general,

there are two ways to construct a hypergraph: structure-based

and similarity-based. Structure-based hypergraph is usually

constructed based on the structure of the data itself. In the

document, the sentence is a natural structure. Taking each

sentence as a hyperedge, including the corresponding clause

nodes and the matching label nodes. The graph constructed

in this way is called the sentence hypergraph. Similarity-

based hypergraph is usually based on clustering relationships.

In the two hierarchical graphs we constructed above, the

similarity structure of each side can be used to constrain the

representation of the other side. Fig. 2 shows a scheme based

on clause clustering. Specifically, we use the combination of

TF-IDF [27] and K-Means to cluster clauses. Based on this

clustering relationship, we obtain the semantic structure of the

document. Then, each category of the clause can be regarded

as a hyperedge, including the corresponding clause nodes and

the matching label nodes. This connection spans different

sentences, covers the entire document and label tree, which

realizes the long-distance interaction of document information

and transfers the structural constraints of the document to the

labels encoding. This scheme is called the clause hypergraph.

Symmetrically, label hypergraph can also be constructed by

the clustering relationship of labels. The main experiment in

our paper is based on the clause hypergraph.

C. Input Layer

We utilize word2vec [28] to obtain word embedding matrix

Ẽ ∈ R
v×de , where v, de are the vocab size and embedding

size. Each node in the clause interaction hypergraph contains

a text segment Tnode = [ω1, ω2, . . . , ωng
] with ng words, so

the feature enode of one node in the graph can be obtained by

looking up in Ẽ and performing average pooling. Similarly,

we can obtain the embedding Ed = [e1, e2, . . . , en] of

the whole document from Ẽ. Then, we use a bidirectional

GRU [29] layer to obtain the contextual representation X =
[x1,x2, . . . ,xn] ∈ R

n×dd of the document, where dd is the

output dimension of document encoder:

xt = BiGRU(xt−1, et) (1)

where xt, et is the hidden state and the word embedding of

the t-th token.

D. Mixed Hypergraph Convolution
Although the bipartite edge can be regarded as a special

case of the hyperedge, due to the large gap between the

number of simple edges and hyperedges in clause interaction

hypergraph, we adopt the combination of graph convolution

[30] and hypergraph convolution [24] to obtain higher-level

feature of the graph.
A mixed hypergraph is defined as a graph G =

(V, E ,H,W), where E denotes the bipartite edge set with b
edges and H denotes the hyperedge set with c hyperedges.

V = {v1, v2, . . . , vN} denotes the node set with a nodes,

including ac clause nodes, as sentence nodes and al label

nodes. W denotes the importance weight between hyperedge.

In order to ensure the consistency of the encoding space, we

use the text embedding result enode for all sentence, clause

and label nodes as the graph features:

G = [El,Es,Ec] (2)

where G ∈ R
a×de , El = {eli}al

i=1, Es = {esi}as
i=1 and

Ec = {eci}ac
i=1. We iteratively update the features with

bipartite edges and hyperedges.
a) Bipartite Edge Convolution: For the bipartite edges,

we use the adjacency matrix A ∈ R
a×a to represent the

pairwise connection between nodes. Then, we update the graph

features with graph convolution as

Gb = σ(D̃
− 1

2 ÃD̃
− 1

2GP b) (3)

where Ã = A+I and I ∈ R
a×a is the unit matrix. D̃ ∈ R

a×a

is the degree matrix of Ã, P b ∈ R
de×de is a learnable weight

matrix for the dimension projection and σ is the activation

function Relu. At this point we have completed the status

update of all nodes connected by the bipartite edges.
b) Hypergraph Convolution: Since not all nodes are

included in the hypergraph, we only operate the feature of

nodes contained in the hyperedge. The hypergraph can be

represented by an incidence matrix H ∈ R
k×c, where k

represents the number of nodes contained in the hyperedge.

In the incidence matrix H , row i represents the node and

column h represents the hyperedge. If the node i is contained

in the hyperedge h, Hih = 1, otherwise 0. In addition, the

importance of clauses is different. We counted the proportion

of the clauses contained in each hyperedge to the total clauses

and store them in the diagonal matrix W ∈ R
c×c as the

importance weight. Then the node degree and hyperedge

degree can be calculated as

Dii =

c∑

h=1

W hhHih,Bhh =

k∑

i=1

Hih (4)
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Fig. 3. The overview of our model. The word-level text representations are the word embedding of clinical notes and label texts obtained based on word2vec.
The document representation is partitioned into sentences and clauses according to the pre-processing. And together with label description representations,
the corresponding vector is obtained by average pooling as the feature of the clause hypergraph nodes.

Similar to graph convolution, the feature update of hyper-

graph convolution can be calculated as

Gh = σ(D− 1
2HWB−1HTD− 1

2GsP h) (5)

where P h ∈ R
de×de is the learnable weight matrix.

Finally, the mixed graph convolution of each layer is cal-

culated as follows and each layer is connected by residuals.

Gl = Gl−1 +HGCN(GCN(Gl−1,A),H,W ) (6)

c) Gated Attention: Through the clause interaction hy-

pergraph, we obtained the feature Gl after the entire inter-

action and aggregation of clinical documents and label text.

Since the structure of the graph is not necessarily optimal, we

select the node information in the graph with gated attention

as follows:

C = Relu(XP x) ·Relu(GlP g)
T (7)

Z = Softmax(C) ·Gl (8)

R = [Sigmoid([X;Z]P s);Tanh([X;Z]P t)] (9)

where P x ∈ R
dd×de , P g ∈ R

de×de , P s ∈ R
(dd+de)×dd ,

P t ∈ R
(dd+de)×dd are learnable parameter matrices and “;”

represents the concatenation of vectors.

E. Output layer
After the mixed convolution of the graph, we can obtain

the fusion feature R ∈ R
n×dd . In order to implement multi-

label classification, we introduce a label-wise attention matrix

M ∈ R
m×dd to map document features to the label feature

space.

U = Softmax(M ·RT ) ·R (10)

Each row U j included in U ∈ R
m×dd represents the informa-

tion related to the label j in the document. Then for each label

j, we use a fully connected layer to predict the probability of

belonging to the document.

pj = Sigmoid(MLP (U j)) (11)

TABLE I
THE STATISTICAL SUMMARY OF DATASETS.

MIMIC-III-full MIMIC-III-50

# Train. 47724 8067
# Dev. 1631 1574
# Test. 3372 1730
Avg. tokens 1485 1530
Avg. labels 15.9 5.7
Number of labels 8921 50

This probability is used to judge whether the label j belongs

to the document according to a predefined threshold. We

minimize the following objective based on the BCE loss

function as

L = −
m∑

j=1

lj log(pj) + (1− lj)log(1− pj) (12)

where lj = 1 means that the label j belongs to the document,

otherwise lj = 0.

IV. EXPERIMENT

In this section, we describe the experimental details of the

clause interaction hypergraph and provide further analysis of

the model and results.

A. Dataset

We verify the effect of clause interaction hypergraph on a

widely used dataset MIMIC-III [31], which includes clinical

notes and their corresponding ICD-9 codes labeled by human

coders. Following the previous works [8], [16], we use the

discharge summaries as the summary of all clinical notes and

extract the corresponding ICD codes according to the patient

number. MIMIC-III-Full and MIMIC-III-50 are two common

settings. MIMIC-III-Full contains the complete dataset and

MIMIC-III-50 only contains the instance including the top 50
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TABLE II
MAIN RESULT ON TWO DATASETS. THE MODEL WE RAN 5 SEEDS AND REPORT THE MEAN ± STANDARD DEVIATION. THE NUMBERS IN BOLD IN THE

TABLE REPRESENT THE BEST PERFORMANCE.

Model

MIMIC-III-50 MIMIC-III-Full

AUC-ROC F1

P@5

AUC-ROC F1

P@8Macro Micro Macro Micro Macro Micro Macro Micro

C-MemNN 83.3 - - - 42.0 - - - - -
CNN 87.6 90.7 57.6 62.5 62.0 80.6 96.9 4.2 41.9 58.1

Attentive LSTM - 90.0 - 53.2 - - - - - -
CAML 87.5 90.9 53.2 61.4 60.9 82.0 96.6 4.8 44.2 52.3

DR-CAML 88.4 91.6 57.6 63.3 61.8 82.6 96.6 4.9 45.7 51.5
LEAM 88.1 91.2 54.0 61.9 61.2 - - - - -

BERT-LWAN 81.4 85.3 42.5 49.8 52.1 84.0 97.4 2.3 32.5 53.6
HyperCore 89.5±0.3 92.9±0.2 60.9±0.1 66.3±0.1 63.2±0.2 93.0±0.1 98.9±0.5 9.0±0.3 55.1±0.1 72.2±0.2

GatedCNN-NCI 91.5±0.3 93.8±0.1 62.9±0.5 68.6±0.1 65.3±0.1 92.2±0.2 98.9±0.3 9.2±0.2 56.3±0.1 73.6±0.3

BiGRU 82.8 86.8 48.4 54.9 59.1 82.2 97.1 3.8 41.7 58.5
MultiResCNN 89.9±0.4 92.8±0.2 60.6±1.1 67.0±0.3 64.1±0.1 91.0±0.2 98.6±0.1 8.5±0.7 55.2±0.5 73.4±0.2

BiGRU+CIHG 92.0±0.2 94.1±0.1 65.7±0.3 70.8±0.1 66.8±0.1 88.1 ±0.2 98.4±0.3 8.6 ±0.2 56.6 ±0.1 75.1±0.1
MultiResCNN+CIHG 91.8±0.1 93.8±0.1 64.9±0.5 69.6±0.1 65.8±0.1 90.6±0.3 98.7±0.1 9.7±0.4 57.9±0.1 74.5±0.2

most frequent codes. The statistics of the dataset are shown in

Table I.

B. Experiment Settings

For MIMIC-III-Full and MIMIC-III-50, we use the same

word2vec embedding and K-means clause clustering results,

both of which are pre-trained on all discharge summaries.

The embedding size de is 100 and the number of clause

categories is 20. In the process of establishing the interactive

connection, the similarity score between the clause text and

label description text is calculated by FuzzyWuzzy. Then we

select the label with the highest similarity score for each clause

to match. Our model is implemented based on PyTorch [32],

and we train and test the model on one Titan XP GPU and

Xeon E5-2643 v4 CPU. In the experiments, the batch size

is 4, the dropout rate is 0.3, the number of layers of mixed

hypergraph convolution is 2. We use Adam optimizer [33] for

training, and the learning rate is 1e-4. For the experiments

based on MultiResCNN, following [34], the convolution filter

size is the combination of {3, 5, 9, 15, 17, 25}, and each filter

output size is 50. For the BiGRU-based experiment, the hidden

size is 300. The threshold for all label predictions is set to 0.5.

C. Baselines

We select some representative work for comparison.

CAML [8] uses CNN to extract the n-gram features of the

clinical note and trains the label representation based on label-

wise attention for classification.

MultiResCNN [34] combines multi-filter convolutional net-

work and residual blocks.

HyperCore [9] maps documents and ICD codes into hyper-

bolic space, combining the hierarchical information and the

co-occurrence relationship of ICD codes.

BERT-LWAN [6] combines BERT encoder and label-wise

attention. It achieved SOTA on multiple large-scale multi-label

classification datasets. Here we use the Clinical-BERT [35],

which has been fine-tuned on biomedical documents, including

discharge summaries.

GatedCNN-NCI [10] uses dilation convolution with a

forgetting mechanism to extract features of clinical notes, and

constructs a complete bipartite graph between documents and

labels at word level for interaction.

Some typical models that are also compared including C-

MemNN [36], Attentive LSTM [37] and LEAM [38]. The

results of BiGRU and CNN are reported by [8].

D. Metrics

Following the previous work [8], we use AUC-ROC, F1 and

P@k to evaluate the performance of our model. AUC-ROC is

defined as the area enclosed by the coordinate axis under the

ROC curve. F1 is the most common metric in the classification

problem, and P@k represents the precision of the model to

predict the top k labels. We set k = 5 for MIMIC-III-50 and

k = 8 for MIMIC-III-Full. Macro and Micro are two different

averaging algorithms [39]. Macro calculates the metrics for

each category separately and then takes the average, while

Micro does not distinguish between categories and directly

uses the population samples for evaluation.

E. Result

In this section, we add the Clause Interaction Hypergraph to

the two representative and high performance ICD assignment

baselines (MultiResCNN and GRU) for experimentation. The

results in Table II show that our method has advantages in most

metrics, and the performance has been significantly improved

after adding the CIHG.

(1) The MIMIC-III-50 can be used to verify the classifi-

cation performance on a medium-scale high-frequency label

set. From the result, we can see that our method based on

GRU achieved the best performance on all metrics. Compared

with strong baselines, our method achieves an improvement of

4.5% on F1-Macro and 3.4% on F1-Micro, and also achieves

an improvement of 2.3% in the precision of top-5 labels. This

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 26,2023 at 03:43:18 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III
THE ABLATION EXPERIMENTAL RESULTS ON MIMIC-III-50 ABOUT

CLAUSE DOCUMENT GRAPH (GD.), HIERARCHICAL LABEL TREE (GL.)
AND HYPERGRAPH (HG.).

Model

F1

P@5Macro Micro

MultiResCNN 59.6 67.5 64.2
MultiResCNN + GD. 64.4 69.5 65.6
MultiResCNN + GL. 63.8 68.6 65.3
MultiResCNN + GL. + GD. 63.8 68.9 65.4
MultiResCNN + GL. + GD. + HG. 64.9 69.6 65.8

BiGRU 60.1 66.5 64.3
BiGRU + GD. 62.4 68.6 66.4
BiGRU + GL. 64.7 70.2 66.5
BiGRU + GL. + GD. 64.1 70.4 66.6
BiGRU + GL. + GD. + HG. 65.7 70.8 66.8

result shows the superiority of our method in high-frequency

label data.

(2) Since MIMIC-III-Full has a huge label assignment

space, accurate prediction of the corresponding label requires

full use of the information carried by the labels. It can be

used to measure the ability of the model to utilize external

knowledge. In this dataset, our method still achieves the

improvement of 2.8% on F1-Micro and 2% on the precision of

top-8 labels. It indicates that our method can still maintain the

precision of code assignment even after the number of labels

has increased to a large scale.

F. Ablation Analysis

a) The effectiveness of the Clause Interaction Hyper-
graph: In this section, we conduct ablation experiments on

several main components (clause document graph, hierarchical

label tree and hypergraph) of the clause interaction hypergraph

to examine the effectiveness. Our experiment is still carried

out on the two representative baselines, with and without the

specific components. The experimental results are shown in

Table III. It can be seen that the addition of clause document

graph and hierarchical label tree both can bring significant

performance improvement to the baseline. This proves that

the incorporation of document structure information and label

description information can improve the ability of document

modeling. However, the joint addition of clause document

graph and hierarchical label tree does not lead to better

improvement. This is due to the lack of effective interaction

between the two. Once we use hypergraph to bridge the

gap between the clause document graph and label tree, the

performance of the model can be further improved. This proves

the effectiveness of the hypergraph.

b) Comparison between different hypergraph structures:
In order to explore the quality of different hypergraph con-

struction schemes, we compare the performance of clause

hypergraph, sentence hypergraph and label hypergraph based

on two representative models. The results are shown in Table

IV. Compared with the baseline, all the three structures of

TABLE IV
THE EXPERIMENTAL RESULTS ON MIMIC-III-50 ABOUT DIFFERENT

TYPES OF HYPERGRAPH, WHERE CH. REPRESENTS CLAUSE HYPERGRAPH,
SH. REPRESENTS SENTENCE HYPERGRAPH AND LH. REPRESENTS LABEL

HYPERGRAPH.

Model

F1

P@5Macro Micro

MultiResCNN 59.6 67.5 64.2
MultiResCNN + SH. 64.5 69.2 65.3
MultiResCNN + LH. 64.6 69.4 65.7
MultiResCNN + CH. 64.9 69.6 65.8

BiGRU 60.1 66.5 64.3
BiGRU + SH. 63.8 69.6 66.5
BiGRU + LH. 65.2 70.0 66.6
BiGRU + CH. 65.7 70.8 66.8

the hypergraph can provide performance improvements. Com-

pared with the other two structures, the performance of the

sentence hypergraph is poor. We deem this is because sentence

hypergraph can only use the local structure information of the

document at the sentence level, and lacks the global copoly-

merization structure. Both the clause hypergraph and the label

hypergraph utilize the global copolymerization structure of

the document and show advantages in performance. However,

the label hypergraph composed of label clustering will cause

confusion on similar labels, so that the precision is not as good

as the clause hypergraph.

G. Discussion

a) Computational Cost Analysis: In this section, we

analyze the computational cost of the model conducted from

parameter amount, training time, training epoch and inference

speed, with and without the addition of clause interaction

hypergraph. The results are shown in Table V. It can be seen

from the table that the clause interaction hypergraph does not

bring too much parameter growth, but the training time has

increased by about 250s every epoch. And the addition of

CIHG accelerates the convergence of the model and reduces

the number of training epochs. In the terms of inference speed,

the model after adding CIHG still maintains the speed of more

than 15d/s, which is enough to handle the daily new medical

documents. Therefore, the addition of CIHG will increase

computational complexity, but the increased cost is acceptable.

b) Limitations of AUC-ROC Scores: From Table II, we

observe that there is an inconsistency in the AUC-ROC scores

under the two settings of MIMIC-III. The CIHG brings a

comprehensive improvement under the setting of 50, but it

only improves precision and F1 under the setting of full and

has little effect on AUC-ROC. We deem the reason is that most

of the current methods did not consider the zero-shot problem

in the MIMIC-III dataset. Table VI show the AUC-ROC and

F1 scores of labels with different frequencies with and without

CIHG. The comparison shows that CIHG can significantly

increase model’s performance with training data, even for few-

shot labels. It shows the effectiveness of our method for joint
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TABLE V
ANALYSIS OF COMPUTATIONAL COST WITH AND WITHOUT CLAUSE INTERACTION HYPERGRAPH BASED ON TWO REPRESENTATIVE MODELS. “M”, “S”,

“EP” AND “D” DENOTE MILLION, SECOND, EPOCH AND DOCUMENT RESPECTIVELY.

Model Parameter Amount Training Time Training Epoch Inference Speed

MultiResCNN 6.58m 64s/ep 37 222d/s
MultiResCNN+CIHG 6.84m 323s/ep 30 31.9d/s

BiGRU 5.98m 198s/ep 72 23.4d/s
BiGRU+CIHG 6.51m 435s/ep 63 17.3d/s

TABLE VI
THE MACRO AUC-ROC AND F1 SCORES OF LABELS WITH DIFFERENT

FREQUENCIES ON MIMIC-III-FULL BASED ON MULTIRESCNN WITH

AND WITHOUT CIHG. “N” REPRESENTS THE NUMBER OF TIMES THE

LABEL APPEARS IN THE TRAINING SET.

Type

No CIHG With CIHG

AUC F1 AUC F1

Frequent (n>20) 93.9 23.2 95.0 31.1
Few (n≤20) 84.8 0.4 86.8 1.5
Zero (n=0) 66.8 0.0 66.8 0.0

All 90.4 9.0 90.6 9.7

(a) Without CIHG (b) With CIHG

Fig. 4. The visualization of label embedding with and without hypergraph.

modeling of documents and label descriptions. However, since

there is no dedicated component to deal with the zero-shot

problem, the model cannot assign zero-shot labels perfectly.

These labels rarely appear in the test data (0.2% for zero-short

labels and 2.4% for few-short labels), so they have little effect

on the precision calculation but only affect the macro AUC-

ROC. This explains why the improvement in AUC-ROC is

not as significant in precision. Based on this explanation, the

comparison between GRU-based method and MultiResCNN-

based method scores in Table II shows that the GRU-based

method has higher requirements for label frequency. With

sufficient training data, the GRU-based method is stronger than

CNN-based method. It also indicates that the key to further

improve the performance of the medical code assignment task

is to solve the zero-shot problem.

c) Embedding distance between ICD codes.: We con-

duct further analysis on one sample (HADM ID 149498) to

verify the effectiveness of the CIHG. In order to show the

effectiveness of our method for the embedding of ICD codes,

we calculated the Euclidean distance between some codes.

The (0, 1) normalization is used on ICD code embedding to

TABLE VII
THE EUCLIDEAN DISTANCE OF LABEL EMBEDDING WITH AND WITHOUT

HYPERGRAPH BETWEEN ICD CODES, WHERE THE CODE “96.72” AND

“518.81” ARE GOLDEN LABELS.

ICD-9 code

96.71 Continuous mechanical ventilation for less
than 96 consecutive hours

96.72 Continuous mechanical ventilation for 96
consecutive hours or more

518.81 Acute respiratory failure
518.84 Acute and chronic respiratory failure

ICD-9 Code No Hypergraph With Hypergraph

96.71-96.72 2.4 ×10−5 0.52

518.81-518.84 6.6 ×10−4 4.17

96.71-(all code) 2.54 13.32
96.72-(all code) 2.54 12.67

ensure the comparability of Euclidean distances of different

representations. The results are shown in Table VII. It can be

seen that (1) Distinction of similar codes: The ICD code

“96.71” and “96.72” are almost identical in text description

but have completely opposite semantics. Our method achieves

a distinction that traditional word2vec cannot achieve. (2)
Effectiveness of Interactive Connection. The code “518.81”

is connected to a clause node by the interaction connection.

This is reflected in its high-strength representation that pro-

vides sufficient support for the correct prediction of the label.

(3) Aggregation of related labels. The sum of Euclidean

distances between all gold labels and “96.71” or “96.72” show

that our method shortens the distance of the associated labels

in one sample, which can be helpful for the prediction of easily

confusing labels.

d) Embedding Visualization of Labels: In order to ver-

ify the constraint effect of clause interaction hypergraph on

the label encoding, we use t-SNE [40] to visualize all the

22334 label representations of one instance encoded with and

without hypergraph. The results are shown in Fig. 4. It can

be seen that when there is no clause interaction hypergraph

constraint, the labels show a divergent distribution. The label

representations have learned a divergent structure, and do not

obtain the co-occurrence constraint. With the constraint of

clause hypergraph, the label representations show hierarchical

and directional division. This demonstrates the effectiveness of
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using document semantic structure to constrain label encoding.

V. CONCLUSION

In this paper, we propose a Clause Interaction Hypergraph

(CIHG) to jointly model documents and label descriptions for

the large-scale medical code assignment problem. Our method

uses the interactive connection to construct the semantic fusion

between the document and label, and uses the hypergraph

to capture the co-occurrence relationship in document and

labels. The combination of the two realizes the constraint

of the document structure on the label encoding. Several

experimental results show the effectiveness of our method. In

the future, we will focus on solving the zero-short problem

and extend this method to more fields.
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