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Abstract—Motor imagery (MI) based Brain–computer 
interface (BCI) is a promising BCI paradigm that can help 
neuromuscular injury patients to recover or replace their motor 
abilities. However, electroencephalography (EEG) based MI-BCI 
suffers from its long calibration time and low classification 
accuracy, which restrict its application. Thus, it is important to 
reduce the calibration time of MI-BCI and enhance its prediction 
accuracy. In this study, we propose a filter bank Wasserstein 
adversarial domain adaptation framework (FBWADA) that uses 
a short amount of training data from a new target subject, and all 
collected data from an existing subject. A Convolutional Neural 
Networks (CNN) based feature extractor is designed to extract 
feature from EEG data. Filter bank strategy is employed to extract 
feature from multiple sub bands and integrate predictions from all 
sub bands. Wasserstein Generative Adversarial Networks 
(WGAN) based domain adaptation network aligns the marginal 
and conditional distribution of target and source. We evaluate our 
method on Data set 2a of BCI competition IV. Experiment results 
show that our method achieves the best performance among 
compared methods under different amount of training data. 
Performance of our method trained with certain blocks of data is 
similar to or better than the best comparing method trained with 
one more block. This indicates that our method could reduce the 
need for training data for at least one block.  

Keywords—brain-computer interface, motor imagery, transfer 
learning, domain adaptation, filter bank, calibration reduction 

I. INTRODUCTION

Brain–computer interface (BCI) establishes a direct 
pathway that does not depend on the brain’s normal output 
channels of peripheral nerves and muscles for users to 
communicate with outside world.[1] Motor imagery (MI) 
based BCI decodes spontaneous human motor intention 
from brain signals, which can help neuromuscular injury 
patients to recover or replace their motor abilities.[2-6] 
Also, MI-BCI can be applied in education, entertainment, 
and smart home applications.[7-12] Compared with 
electrocorticography (ECoG), magnetoencephalography 
(MEG), functional magnetic resonance imaging (fMRI), 
and functional Near Infrared (fNIR), 

electroencephalography (EEG) is the most commonly used 
neuroimaging method in BCI systems due to its high temporal 
resolution, easy access and high safety. 

Traditional EEG decoding methods mainly consist of feature 
extraction and classification. Common Spatial Pattern (CSP) is 
one of the most effective MI feature extraction methods.[13] 
Filter bank common spatial pattern (FBCSP) which won the BCI 
competition IV in 2008[14] is a powerful of advanced version 
of CSP. Support vector machine (SVM) and Linear 
Discriminant Analysis (LDA) are the most widely used 
classification method. Recently, deep learning (DL) has 
achieved great success in the field of computer vision and nature 
language processing. Some researchers proposed some DL-
based algorithms to decode EEG signals, and which gain equal 
or better performance than traditional machine learning 
methods.[15-17] For example, R. T. Schirrmeister et.al 
proposed shallow and deep convolutional neural networks 
(CNN) for MI decoding.[15] V. J. Lawhern et.al proposed a 
compact CNN structure named EEGNet.[16] S. Sakhavi et.al 
proposed a CSP based neural network C2CM.[17]  

Despite the great achievement and the bright future in the 
field of MI-BCI，EEG based MI-BCI still suffers from its long 
calibration time and low classification accuracy, which restrict 
its application. Building an MI decoding model needs a lot of 
data. Especially for a DL method, more data brings the higher 
accuracy and robustness of the model. However, acquiring the 
training data for building model is time consuming. Besides, MI-
EEG signals have a large individual difference. Directly 
building a model using multiple subjects’ data usually leads to a 
poor classification performance. 

Transfer learning can transfer knowledge from one domain 
to another domain.[18] Through the transfer learning method, 
we can utilize MI data from an existing subject to facilitate the 
model training of a new subject and reduce the needs for 
collecting new data. Subject with already collected data is called 
source and the new subject is called target. However, the EEG 
signals of different subjects have large pattern difference. 
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Transfer learning for MI classification is still a difficult problem. 
This may be caused by two factors. Different subjects have 
various sensitive frequency bands during motor imagery. Also, 
there are large marginal and conditional distribution gap 
between subjects.  

In this study, we proposed a Filter Bank Wasserstein 
Adversarial Domain Adaptation (FBWADA) framework to 
reduce the need for data during calibration and improve the 
classification accuracy for MI-BCI. This framework uses a short 
amount of training data from a new target subject, and all 
collected data from a source subject. Our FBWADA framework 
includes three parts: First, we construct a classification model. 
We perform convolution operation through each EEG channel, 
which can be taken as time domain filtering. Then, convolution 
across channels is applied to achieve spatial filtering. A full 
connection neural network is employed to output predictions. 
Secondly, to deal with sensitive frequency band difference 
across subject, filter bank strategy is employed to extract the 
features from multiple sub bands and integrate predictions from 
all sub bands. Thirdly, a Wasserstein Generative Adversarial 
Networks (WGAN) based domain adaptation network align the 
marginal and conditional distribution of target and source. To 
further align the conditional distribution of target and source, we 
apply adversarial training separately for each class. In other 
words, we pull the intra-class cross domain difference. 

The main contribution of this paper is summarized as follow: 

 We propose a filter bank CNN model for MI 
classification. To the best of our knowledge, this is the 
first work that use filter bank method in deep learning MI 
classification model. 

 We incorporate WGAN into our model for adversarial 
training, which transfer knowledge from source data to 
target data. 

 We evaluate our method on Data set 2a of BCI 
competition IV. Results show that our method archives 
better performance compared with existing methods that 
use short amount of target data and gets better 
classification accuracy. 

The rest of this paper is organized as follows. In Section II, 
we introduce the proposed method. In Section III, we describe 
the experiment setting. Experiment result and discussion is 
presented in section IV. Section V is the conclusion if this study. 

II. METHOD 

A. Notifications 
We first introduce the notations and definitions for later use. 

Let � ∈ ℝ�×� represents one EEG sample with C channels and 
T time points. � ∈ {1, . . . , ������}  represents the class label, 
where ������ is the number of classes. � = {��}����  is a set of N 
samples and � = {��}����  is the corresponding label set. The 
marginal distribution of �  is denoted as �(�)  and the 
conditional distribution of �  is �(�|�). Target subject is the 
one we want to train a predict model for. A source subject with 
many already collected samples is adopt to assist the model 
training process. Let �� = {(��� , ���)}�����  denotes ��  labeled 

EEG samples from target subject and �� = {(���, ���)}�����  
denotes ��  labeled EEG samples from source subject, where ��� ,  ���  are the � -th and � -th sample from target subject and 
source subject respectively and ���, ���  are the corresponding 
label. There is a gap between target distribution and source 
distribution, �(��) ≠ �(��), �(��|��) ≠ �(��|��).  

Our goal is to train a model to predict class label of test 
sample with little amount of training data from target subject. 
While utilizing data from source subject could increase the size 
of training sample, the distribution gap between target and 
source data may lead to worse model accuracy. The motivation 
of our work is to align the distribution of target and source in 
feature space, such that �(��|��) ≈ �(��|��) , where �� ={���}����� , �� = {���}����� . ���, ��� is the feature of ��� and ���. Then, 
training a classifier on the common feature space would work 
for both target and source domains. 

B. Network architecture 
The pipeline of our method is illustrated in Fig. 1. A filter 

bank including �����  FIR band pass filters is employed to 
extract multiband EEG signals. The passbands we choose are 4-
10, 8-14, …, 32-38 Hz. These passbands are selected because 
they cover and uniformly distributed in the range of 4-38Hz 
which is the main response frequency range of MI.[13-15]  

A feature extractor is then used to extract feature of the band 
passed signal. A temporal convolutional network is first adopted 
to extract temporal feature for each channel. The kernel shape of 
the temporal convolutional network is 1×25. Next, a spatial 
convolutional network is used to find the spatial pattern of 
multiband EEG signal. Spatial convolutional network could also 
be regarded as a spatial filter which takes linear combination of 
EEG channels. The kernel shape of the spatial filter is �� × 1, 
where ��  is the number of channels, thus each spatial 
convolutional kernel act as one combination of all EEG channels. 
Temporal and spatial filters are designed by the inspiration of 
traditional MI classification methods.[13] We apply spatial and 
temporal filter separately because that it simulates the behavior 
of those traditional methods. Besides, we want each spatial filter 
extracts one unique spatial pattern. In other words, each spatial 
filter keeps same combination of channels for every temporal 
point, which is reasonable for multi-channel EEG processing. 
Furthermore, compared with one 2-dimension kernel, separately 
apply two 1-demension kernels reduce parameters which might 
enhance the robustness of our model. Filtered signal is then 
squared to obtain power information. Finally, an average 
pooling model with kernel shape of 1 × 75 is used to reduce the 
feature dimension. The stride of pooling is 15. The pooling 
parameters are selected according to shallow CNN.[15] 
Dimension of the extracted feature is about 40 × 70 . A 
classifier with two fully connected layers is adopted to output 
class label. The activate function of the first layer is Leaky ReLU. 
Log SoftMax is used to output class predicts. Batch 
Normalization and dropout techniques are adopted to enhance 
the model performance. 

 Inspired by the adversarial training, we employ a 
discriminator to close the feature distribution between the target 
and source domains. While the classifier is used to predict class 
label from the extracted features, the discriminator aims to 
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predict which domain the current sample comes from. Feature 
extractor tries to find features that could not be distinguished by 
the discriminator. In other word, the feature extractor will learn 
to find a common feature space for the target and the source 
domain, where the distribution of two domain are similar. 
Traditional discriminator with cross entropy loss could hardly 
work when there is little or none overlap between two 
distribution. Considering there are only a few samples from the 
target domain and the distribution gap between EEG from 
different subject is large, our discriminator estimates the 
Wasserstein distance between target and source domain instead 
of predict domain label. Wasserstein distance could reveal the 
distribution difference even when the two distribution have no 
overlap. The discriminator we proposed has four fully connected 
layers. Leaky ReLU is selected as the activate function. A batch 
of features from two domain is taken as the input. The output of 
the discriminator is a scalar that indicates the Wasserstein 
distance between two domains of the input batch. To further 
enhance the predict accuracy of the proposed model and align 
the conditional distribution between target and source, each 
class has a unique discriminator. That is to say, the discriminator 
narrows the distribution between the two domains within the 
same class. 

C. Loss function 
For each band, we have one feature extractor, one classifier 

and ������ discriminators. During training, data from different 
bands are separately trained. For a test sample comes from class �� , the classifier of �����  outputs the possibility �������� . 

Possibility of one sample that comes from class �� is averaged 
between all bands ��� = ������ ∑ ��������. 

For classifier �, the loss function is: 

 ����,� ℒ� = −��,�~��∪�� ��� ������(�|�) (1) 

Where ������(�|�) is the predicted probability of � given �. 

For discriminator, the following loss function is maximized 
to estimate the Wasserstein distance between two domains: ���� ℒ� = ���~��[�(�(��))] − ���~��[�(�(��))] (2) 

The feature extractor, on the contrary, try to minimize the 
Wasserstein distance between two domains: min� ℒ��� = ���~��[�(�(��))] − ���~��[�(�(��))] (3) 

The final loss function for the feature extractor and the 
classifier is: 

 min�,� ℒ = ��ℒ� + ����ℒ��� (4) 

Where �� and ���� is the weight for classification loss and 
adversarial training loss. 

D. Training pipeline 
In training process, discriminator is alternatively trained 

with feature extractor and classifier. In other word, in each 
training epoch, we first train �  for ��  iterations, then train � 
and � for �� iterations. Our training pipeline is summarized in 
algorithm 1. 

Fig. 1. Proposed Filter Bank Wasserstein Adversarial Domain Adaptation framework. Data from target and source are first separately feed into filter bank which 
outputs multiband signals. Multiband signals are then put into feature extractor to generate multiband features. A classifier takes feature from each band and outputs 
class predictions for each band. Multiband predictions are ensembled by averaging predict probability from each band. For features from each band each class, a 
unique discriminator is used to predict the Wasserstein distance between target feature batch and source feature batch. Adversarial training is adopted that the 
discriminator tries to maximize the output distance while the feature extractor tries to minimize the output distance. By adversarial training, feature extractor is 
forced to extract common feature for target and source and thus we could use source data to assist model training for target data. 
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Algorithm 1. The training process of the proposed framework 
Input: training data from target and source domain �� , �� , maximum 
training epoch ������, number of iterations for training classifier and feature 
extractor per epoch ��, number of iterations for training discriminator per 
epoch ��, batch size � 

Output: feature extractor �, classifier �, discriminator ��,…, ������� 

1: initialize �, �, ��,…, �������, with parameters ��, ��, ���,…��������  

2: for t = 1, …, ������: 

3:   for ������ = 0,1,…, ������: 

4:     for �� = 1, …, ��: 

5:       sample a batch {(���, ���)}����  from target class ������ 

6:       sample a batch {(���, ���)}����  from source class ������ 

7:       ��������� ← ∇�������� [ �� ∑ ���������(���)����� − �� ∑ �������(�(���))���� ] 
8:       �������� ← �������� + �� ∙ RMSProp(�������� , ��������� ) 

9:     end for 

10:  end for 

11:  for �� = 1, …, ��: 

12:    sample a batch {(���, ���)}����  from target 

13:    sample a batch {(���, ���)}����  from source 

13:    ��� ← −∇��[ �� ∑ log ������(���|���)���� + �� ∑ log ������(���|���)���� ] 
14:    for ������ = 0,1,…, ������: 

15:      ��� ← ��� − ∇��[ �� ∑ �������(�(���))���� − �� ∑ �������(�(���))���� ] 
16:    end for 

17:    ��� ← −∇��[ �� ∑ log ������(���|���)���� + �� ∑ log ������(���|���)���� ] 
18:    �� ← �� + �� ∙ Adam��� , ����, �� ← �� + �� ∙ Adam(�� , ���) 

19:  end for 

20:end for 

E. Source selection 
Source selection is important for our transfer approach. 

Inappropriate source subject may bring negative transfer, which 
will in turn damage the model performance. Therefore, we 
propose a source selection method.  

We choose source subject base on two criterions. First, the 
source distribution should be close to target distribution. In this 
case, it would be easier to pulling closer the features from two 
domain. Second, source data should provide useful information 
for classification. That is to say, inter-class distribution 
difference of source subject should be large. In other words, 
source data itself should has high classification accuracy.  

For each available source subject, we divide the source data 
into training set and evaluation set. We pretrain a classification 
model on the training set and test it on the evaluation set. The 
source subjects are then ranked according to their evaluation 
accuracy. The first half of the source subjects are taken as 
optional subjects. For each target subject, we evaluate all 
pretrained models of optional subjects on the target training set. 
The subject with highest classification accuracy is finally 
selected for the adversarial training. 

F. Cropped training 
To effectively train the neural network with limited training 

samples, cropped training strategy is adopted.  Cropped training 
use cropped samples generate by a sliding window to train the 
model and is widely adopted by deep learning based MI 
decoding models. Concretely, for each training sample with 
shape of � × �, a sliding window of length 500, stride 10 is used 
to crop original sample into ������ slices. In this study, ������ is 
63. Thus, one EEG block with 48 training samples results in 
48×63 = 3024 cropped slices. For each original training sample, 
the predict result is generated by taking average of all cropped 
slices. 

G. Implementation details 
Implementation details are given in Table I. We use Adam 

optimizer for classification and RMSprop optimizer for 
adversarial training. 

TABLE I. IMPLEMENTATION DETAILS 

Modules layers params 
Feature extractor Convolution (1,25)×40, stride=1 

Convolution (��,1)×40 
Pow  
pool (1,75), stride=15 

Classifier Fc 32, batch norm, leaky 
Relu 

Fc 4, SoftMax 
Discriminator Fc 64, leaky Relu 

Fc 32, leaky Relu 
Fc 16, leaky Relu 
Fc 1 

III. EXPERIMENT 

A. Dataset 
Our method is evaluated on Data set 2a of BCI competition 

IV[19] which contains EEG data of 9 subjects. Two sessions on 
different days were collected. Each session includes 288 trails. 
There are four different motor imagery tasks (left hand, right 
hand, both feet, and tongue). Each class contains 72 trails in one 
session. 22 EEG channels were recorded at sampling rate 250Hz. 

B. Pre-process 
EEG data is preprocessed to improve the signal to noise ratio. 

We follow a general preprocess pipeline as described by R. T. 
Schirrmeister[15]. Raw data is band passed to 4-38Hz by a FIR 
filter. An exponential moving average method with a decay 
factor of 0.999 is then applied. Time segment from 0.5s before 
to 4s after the onset of the visual cue were used. 

C. Experiment Settings 
We evaluated the methods on two sessions separately. For 

each session, we first randomly separate the target data into six 
blocks and choose one block as training set and the rest blocks 
as test set. One other subject is selected as source subject and all 
of the data from source subject is used for training. We repeat 
this procedure for five times and report the average result. To 
fully evaluate the model performance when trained with 
different amount of data, we gradually increase the training data, 
use two, three, four, five of target data blocks to train the model 
and rest of the blocks to test. 
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IV. RESULT AND DISCUSSION 
We evaluated our method and different existing methods on 

dataset IIa of BCI Competition IV. Table II shows the 
classification accuracy of models under different amount of 
training data from the target subject in session 1 of dataset IIa. 
And Table III shows that in session 2. Each column represents 
one training scheme that use a certain amount of data as train set. 
In each column, method with the highest accuracy is highlighted 
in boldface. Also, existing comparing methods with the highest 
accuracy is highlighted in boldface. State-of-the-art methods are 
selected as comparing methods. CSP and FBCSP is also 
compared, although these two methods are quite old, their 
performance is still competitive. Among comparing methods, 
CSP and FBCSP is realized by adopting codes from MNE 
toolbox.[20] EEGNet[16], shallow and deep CNN[15] is 
realized by adopting the original source code provided by the 
authors. C2CM[17], which we don’t have access to the source 
code, is re-implemented following the original paper. 

Results in Table II and Table III show that our method 
achieves the best performance under each amount of training 
data. And , classification accuracy of our method improves with 
the increase of training data. Moreover, performance of our 
method trained with one and two block of data is better than the 
best comparing method trained with two and three blocks 
separately. For session 1, our method trained with three blocks 
of data gets better result than the best comparing method trained 
with five blocks. And for session 2, our method trained with 
three blocks of data gets better result than the best comparing 
method trained with four blocks. Therefore, our method could 
reduce  the need for training data for at least one block. 

Result shows that CSP and FBCSP have a good performance 
with one and two blocks of training data. in contrast, Deep 
learning methods is not robust enough when only few training 
samples are available. It indicates that CSP is a robust feature 
extraction method for MI classification and holds the 
performance only when there is only a few block of training data. 
This may be because that CSP method has lower structural risk.  

Table II and Table III show that when training data increased, 
deep learning methods show advantages against traditional 
methods. ShallowCNN gains better accuracy compared with 
CSP and FBCSP with five blocks of training data. It reveals that 
neural networks hold the potential to work better when provided 
with enough data. Our method based on transfer learning utilizes 
source data to offset the limited training samples. Even given 
one block of target training data, we could also achieve a better 
accuracy. 

Besides, we notice that all methods in session 2 generally 
gets better performance compared with in session 1. This may 
be due to the influence of subject experience. Session 2 is 
collected on a different day after session 1. Skill of motor 
imagery of subjects may be improved. 

In order to evaluate the effectiveness of utilizing source data 
and proposed filter bank strategy and domain adaptation 
framework, we conduct the following experiments on session 1. 
Table IV shows the classification  accuracy with or without 
source data, filter bank strategy and adversarial loss. Here, Data 
from Session 1 is again randomly separated into 6 blocks and 2 
blocks is selected as train set while rest blocks are test set. This 
procedure is conducted five times. Adversarial loss is not used 
while comparing the effectiveness of source data.  

In Table IV, performance of model trained with source data 
without adversarial training is similar to model trained with only 
target data (66.38%, 66.92%). It indicates that the distribution 
difference between the target data and the source data is large. 
Directly using source data and only two blocks of target data 

TABLE IV PERFORMANCE OF OUR METHOD WITH OR WITHOUT SOURCE DATA AND FILTER BANK AND ADVERSARIAL LOSS (IN 
PERCENTAGE %) 

  t1 t2 t3 t4 t5 t6 t7 t8 t9 mean 

w/o SRC 
o 78.02  54.06  75.94  56.67  54.27  46.35  83.96  83.02  70.00  66.92  

w 79.58  47.81  79.17  53.12  53.44  46.25  84.79  83.13  70.10  66.38  

w/o FB 
o 73.75  48.96  81.46  51.67  50.21  45.73  81.46  78.02  70.21  64.61  

w 79.69  53.54  79.90  55.94  58.44  48.75  86.56  84.27  72.40  68.83  

w/o ADV 
o 79.58  47.81  79.17  53.12  53.44  46.25  84.79  83.13  70.10  66.38  

w 79.69  53.54  79.90  55.94  58.44  48.75  86.56  84.27  72.40  68.83  

TABLE II CLASSIFICATION ACCURACY OF DIFFERENT ALGORITHMS WITH 
DIFFERENT NUMBER OF TRAINING BLOCKS ON SESSION 1 OF DATA SET IIA OF 

BCI COMPETITION IV (IN PERCENTAGE %) 

method 1 2 3 4 5 

CSP[13] 54.64  57.92  60.22  60.79  60.92  

FBCSP[14] 51.53  60.01  67.38  68.15  70.28  

EEGNet[16] 31.46  42.43  49.58  54.79  63.01  

shallowCNN[15] 51.94  60.05  66.56  69.98  71.02  

deepCNN[15] 43.72  53.47  60.00  63.56  67.50  

C2CM[17] 51.90  60.87  65.43  68.12  69.91  

ours 63.98  68.83  72.53  74.38  75.74  

 
TABLE III CLASSIFICATION ACCURACY OF DIFFERENT ALGORITHMS WITH 

DIFFERENT NUMBER OF TRAINING BLOCKS ON SESSION 2 OF DATA SET IIA OF 
BCI COMPETITION IV (IN PERCENTAGE %) 

method 1 2 3 4 5 

CSP[13] 60.00  62.33  62.53  63.40  63.47  

FBCSP[14] 56.19  65.85  69.09  70.00  72.18  

EEGNet[16] 33.32  46.44  54.88  58.27  64.40  

shallowCNN[15] 54.50  62.53  67.67  70.58  73.47  

deepCNN[15] 44.53  56.23  62.98  65.90  68.89  

C2CM[17] 54.52  64.27  68.38  72.18  72.68  

ours 65.68  69.77  72.96  74.65  78.38  
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cannot enhance model performance. It may even cause negative 
transfer. 

Accuracy of model without filter bank is 64.61%. With filter 
bank, model accuracy enhanced to 68.83%. It shows that filter 
bank could effectively increase the model performance. This 
increase is benefit from multi band ability to grasp multi band 
information and the integration of multi band predictions. 

Without the adversarial loss, the model classification 
accuracy is 66.38%, which is lower than model trained with 
target data only. Adding the adversarial loss, the model 
classification accuracy increased to 68.83%. It shows that our 
adversarial domain adaptation framework based on WGAN 
could effectively align target and source distribution.  

To further demonstrate the significance of our adversarial 
domain adaptation framework, we applied t-distributed 
stochastic neighbor embedding (t-SNE)[21] to visualize the data 
distribution. Fig. 2 shows an example from target subject 1 and 
the corresponding source subject 7. Fig. 2 (a) is the distribution 
of raw data. Fig. 2 (b) is the distribution of feature extracted by 
model trained without adversarial training. Fig. 2 (c) is the 
distribution of feature extracted by model trained with our 
proposed adversarial training framework. 

Result shows that raw EEG data don’t have obvious clusters. 
After extracting feature thought feature extractor, distribution of 
target and source feature is separated into clusters, which could 
be seen in Fig. 2 (b) and (c). In Fig. 2 (b), without adversarial 
training, inter-class distribution is close. Besides, there exist a 
distribution gap between two domains. In Fig. 2 (c), after adding 
the adversarial training approach, distribution from different 
class is pushed away from each other. And the distribution gap 
between domains is closer. These results show that our 
adversarial training framework can effectively align the target 
and source distribution. 
 

V. CONCLUSION 
In this paper, we proposed a filter bank Wasserstein 

adversarial domain adaptation framework to reduce the need for 
calibration data and improve classification accuracy for MI-BCI. 
We design a CNN based feature extractor to extract feature from 
EEG data in MI tasks. Filter bank strategy is employed to deal 
with sensitive frequency band difference across subject. It 
extracts feature from multiple sub bands and integrates 
predictions from all sub bands. WGAN based domain adaptation 

network is used to extract common feature from target and 
source. The adversarial training is separately applied to each 
class to close the intra-class cross-domain distribution difference. 
Experiment results shows that our method achieves best 
performance given same amount of training data compared with 
existing methods. Besides, performance of our method trained 
with certain blocks of data is similar to or better than the best 
comparing method trained with one more block. This indicate 
that our method could reduce calibration time by saving on 
block training data. 
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