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Abstract
Purpose – The purpose of this paper aims to model interaction relationship of traffic agents for motion prediction, which is critical for autonomous
driving. It is obvious that traffic agents’ trajectories are influenced by physical lane rules and agents’ social interactions.
Design/methodology/approach – In this paper, the authors propose the social relation and physical lane aggregator for multimodal motion
prediction, where the social relations of agents are mainly captured with graph convolutional networks and self-attention mechanism and then
fused with the physical lane via the self-attention mechanism.
Findings – The proposed methods are evaluated on the Waymo Open Motion Dataset, and the results show the effectiveness of the proposed two
feature aggregation modules for trajectory prediction.
Originality/value – This paper proposes a new design method to extract traffic interactions, and the attention mechanism is used in each part of
the model to extract and fuse different relational features, which is different from other methods and improves the accuracy of the LSTM-based
trajectory prediction method.
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1. Introduction

Motion prediction is a crucial component of developing
autonomous vehicles (Wang, 2010). However, it is a hard
problem due to the complexity of traffic agents’ dynamical
moving and social interaction process. To better predict traffic
agents’ good motion behavior, it is necessary to consider social
interactions between traffic agents and the physical constraints
of the roads in a given scene.
Traffic prediction based on deep learning has been

developed for a long time (Lv et al., 2014; Wang et al., 2017;
Chen et al., 2022; Zhang et al., 2021; Li et al., 2021; Wei et al.,
2021). There have been many methods for motion prediction
of pedestrians and vehicles. How to model the target traffic
agent’s interactions with nearby traffic agents and the road
environment is a core issue. Social interactions between traffic
agents mainly focus on interactions between the target agent

and its surrounding vehicles, pedestrians and nonmotorized
vehicles, and it is a dynamic interaction relationship usually
resulting from collision avoidance. There have been many
approaches to tackle this task. Existing interaction modeling
works can be classified into three categories: geometry-based
modelling, image-based modelling and vector-based
modelling. The former method takes the physical relationships
between agents into account and models the relationships for
agents artificially. The delineation of such relationships is often
based on real-life knowledge or common sense and is modeled
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from a specific perspective, such as relative distance or speed.
Alahi et al. (2016) performed a social tensor which was known
as the social pooling layer, to represent geometric relationships
between agents. A similar approach using geometric
relationships to help construct the potential interaction features
for pedestrians has been applied to vehicle motion prediction.
Deo andTrivedi (2018) used convolutional social pooling as an
improvement to social pooling layers for robustly learning
interdependencies in vehicle motion. Convolutional social
pooling can provide good insight into the relative position
information between agents but cannot cover the changes in
their relative position. Shi et al. (2021) used Graph
Convolutional Networks (GCN) to extract interactions
between pedestrians, which was also a method to extract
relations based on geometry.
The image-based works assign different elements of the

scene to channels and then overlay this information on a single
image. Konev et al. (2022) divided images into 25 channels, the
first three are Red, Green, Blue channels containing road
information such as lane lines and traffic signals, the 4th to 14th
channels are the positions of the target agent at each moment,
and the positions of others at each timestep are described in the
last 11 channels, then Convolutional Neural Networks (CNN)
backbone pretrained on ImageNet is used to predict. Although
it is believed that tensor and convolution can learn better
spatiotemporal interactions among agents and environments,
the data needs to be processed into images in advance, which is
complicated and time-consuming. At the same time, the
proportion of images containing features is small, and those
blank areas can also affect computing ability.
The trajectories of traffic agents are likewise influenced by

the physical lanes. The road polylines are represented as a
collection of vectors to aggregate the information on lanes, and
each polyline is aggregated into a vector representation in the
work of Gao et al. (2020). That is also howGu et al. (2021) and
Zhao et al. (2020) did. Another popular method of physical
lane information aggregation is to rasterize lanes and
trajectories into a graph, from which learns the relationship
between agents and lanes (Konev et al., 2022). Figure 1 shows
several methods of feature aggregation. In Figure 1(a), the

interaction representation of agents is based on geometric
relations (Song et al., 2020), then Figure 1(b) shows the
rasterized maps in which different channels contain different
information, and this approach often uses convolutional neural
networks to aggregate features and Figure 1(c) shows the map
generated by VectorNet.
In this paper, we propose a social relation and physical

lane aggregator, which is a new structure to aggregate social
interaction features of traffic agents and physical lane
features for motion prediction. The proposed model takes
lane point coordinates and vehicle history track points as
input, as shown in Figure 2, and the overall model can be
divided into three parts: social aggregator, hybrid
interaction aggregator and the decoder. For the social
relation aggregator, self-attention and GCN are used to
aggregate the features of traffic agents in a given scene; and
for the hybrid information of social relation and physical
lane, VectorNet and self-attention are both used to
aggregate features between lane and agents jointly.
Then the aggregated features are fed into the decoder,

which is composed of Long short-term memory (LSTM)
and Multilayer Perceptron (MLP) layers, to predict future
trajectories and their confidence. Comprehensive
experiments are conducted on Waymo Open Dataset to
demonstrate the effectiveness of the proposed approach. In
comparison with the LSTM-based method, our method
achieves better results.
The rest of this paper is organized as follows. Section 2 gives

the proposed social relation and physical lane aggregator.
Section 3 shows the experimental results. Section 4 draws
conclusions.

2. Methodology

Motion prediction aims to predict future location coordinates
of traffic agents in a given scene. Given a series of observed
trajectories over time t [{1,2,. . .,T0bs}, the coordinates of traffic
agent i at each timestep fpit j xit; yit

� �
; t ¼ 1; 2; . . . ;Tobs g,

and N coordinates lane points in the scene {lnj(xn, yn), n [ N},

Figure 1 Several methods of feature aggregation
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the goal is to predict its positions fpi
t0 j xi

t0 ; y
i
t0

� �
; t

0 ¼ Tobs 1 1;

Tobs 1 2; . . . ; Tpredg in the futureTpred prediction horizon.
In this paper, social relation and physical lane aggregator are

proposed to model both interactions between traffic agents and
interactions between traffic agents and physical lanes, which is
shown in Figure 3.
In the social relation aggregator module, the self-attention

mechanism is used to encode agents’ interaction features for
context understanding. The attention matrix, which represents
the relationships between agents, is fed into GCN as an
adjacency matrix for interaction extraction. Similarly, the hybrid
interaction aggregator is proposed to extract the relationship
between traffic agents and physical lanes. The outputs of the two
aggregators are fed together into a decoder composed of MLP
andLSTM for trajectory prediction.

2.1 Social aggregator
2.1.1 Agents encoding
The input of the social aggregator is the coordinates, velocities,
heading angles and agent types in a given scene. The target
agents’ location is set as the origin, and the observed data is
normalizedwith respect to it. Each agent’s featureGi

a is given by:

Gi
a ¼ xia; y

i
a; v

i
ax; v

i
ay; yaw

i ; typeia
� �

(1)

where xia and yia are coordinates of agent i, viax and viay
denotes the velocity along the axis, yawi and typeia are heading
angles and one-hot encoding of agent type. The encoding
process is implemented through a two-layerMLP:

Espa ¼ MLP Ga;W
spa
E

� �
(2)

where Espa are encoded vectors,Wspa
E 2 D�Dspa

E is the weights
ofMLP.

Figure 2 Model overview

Figure 3 Details of social aggregator and lane aggregator
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2.1.2 Interaction extractor
To capture the interaction between traffic agents, we first use
the self-attention mechanism to compute the asymmetric
adjacencymatrix, i.e. the spatial interactionAspa [R

N�N:

Qspa ¼ w Espa; Wspa
Q

� �
(3)

Kspa ¼ w Espa; Wspa
K

� �
(4)

Aspa ¼ Softmax
QspaKT

spaffiffiffiffiffiffiffiffi
dspa

p
 !

(5)

where w denotes linear transformation,Qspa andKspa are the query
and the key, respectively.Wspa

Q 2 D�Dspa
Q ,Wspa

K 2 D�Dspa
K are

weights of the linear transformations and
ffiffiffiffiffiffiffi
dspa

p
is a scaling factor.

Because the adjacency matrix, Aspa is computed
independently at each time step, and it does not contain any
temporal information of the trajectory, which is the same as the
distance-based adjacency matrix. But the difference is that,
compared to using only distance as the adjacency matrix, the
attention-based matrix has the advantage of covering more
information, such as heading angles and velocity direction
vectors. We stack Aspa from each time step as At

spa 2 RTobs�N�N ,
and feed it into GCN for fusion. Each of the adjacencymatrix is
an asymmetric square matrix, where the (i, j) element of the
matrix represents the influence of agent i to agent j; the
relationship between them is asymmetrical. In the work of Shi
et al. (2021), the adjacency matrix At

spa is convolved over row
and column separately to predict for all agents, while we are
making individual predictions and focusing only on initiative
relations of the target, so only the rows are convolved:

Et
raw ¼ conv Et

spa;A
t
spa

� �
(6)

Et
gcn ¼ s Et

raw

� �
(7)

where Et
spa is the encoded vector at t time step, At

spa is the
asymmetric adjacency matrix at that moment and s is the
activation function. In the traditional GCN, the adjacency
matrix is fixed, but the interaction between agents changes at
each time step, so convolution operation is performed at each
time step. As shown in the social aggregator in Figure 3. The
interaction feature algorithm is given in Algorithm 1.

Algorithm1: Interaction Feature Fusion Algorithm
Input : Adjacency matrix Aspa, features of agents after

encodingEspa;
Output: Features of ith interest after aggregationEi

agg;
1: for t= 0,1,2,. . .,Tpred do
2: Calculate the convolution at the tth timestep and

Et
gcn ¼ s conv Et

spa;A
t
spa

� �� �
;

3: for t= 0,1,2,. . .,Tpred do
4: Fusion by attentionmechanismsEt

att ¼ atten Et
gcn

� �
;

5: Output features of ith interestEi
agg ¼ Eatt :; :; i; :½ �.

2.2 Hybrid interaction aggregator
2.2.1 Physical lane extractor
The processing methods for road elements can be mainly
classified into rasterization and vectorization. Combined with

the output of social aggregator, it is more convenient to model
road features using vectorization. The method of vectorizing
road elements can capture the structural features of (High
Definition)mapsmore efficiently.
VectorNet is a hierarchical graph neural network composed of

a subgraphmodule and a global graphmodule (Gao et al., 2020).
The subgraph module is used to encode the features of the lanes
and the agents, and the global graph module uses the attention
mechanism to capture the interactions among the lanes and the
agents. The lane information needs to be represented as vector El

to be aggregated with agents, and the subgraph of VectorNet is
performed to vectorize lane features, which is given by:

Gl ¼ xl ; yl ; dirxl ; diryl ; typelð Þ (8)

El ¼ subgraph Glð Þ (9)

where xl, yl are the coordinates of road lanes, dirxl, diryl are the
direction vectors and typel is the type of lanes.

2.2.2 Hybrid interaction extractor
The lane graph is the same at each timestep in the same scene;
therefore, it can be described as a static graph. To combine with
agents’ interaction graphs in the time dimension after
contextual encoding of the lane lines, the static road graph can
be replicated along time and connected to the agents’
interaction graph at eachmoment. Thus, the hybrid interaction
graph Gh is obtained, which contains the unfused features of
the target agents and lanes. More specifically, we use the
attention mechanism to extract the attentional relationship
between lanes and the target agent and fuse their features.

Qhy ¼ w Gh; Why
Q

� �
(10)

Khy ¼ w Gh; Why
K

� �
(11)

Vhy ¼ w Gh; Why
V

� �
(12)

Zhy ¼ Softmax

Xnl 1 1

i¼1
Qa

hyK
i
hyffiffiffiffiffiffiffi

dhy
p

0
@

1
AVhy (13)

where nl is the number of lanes, Why
Q ;Why

K and Why
V are

weights of the query, key and value’s linear transformations,
and the key of each element that participated in the fusion are
multiplied with Qa

hy, which is the query matrix of the target
agent, to obtain the weighted value of each element’s attention
to the target agent. Zhy is the hybrid matrix of agent-lane
interaction.

2.3 Temporal prediction decoder
The prediction of the trajectory consists of two parts, the
future trajectory points’ coordinates and the confidence level
of each trajectory. LSTM is used for trajectory prediction in
this paper. For the confidence, we apply the MLP to generate
theK confidence scores for each of the trajectory proposals.
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Gf ¼ LSTMGi
h (14)

Ptraj ¼ MLP Gf ;Wfð Þ (15)

whereGf is the trajectory prediction result of LSTM, Ptraj is the
confidence andWf is the weight ofMLP.

2.4 Objective function
Simple MSE loss does not allow probabilistic modeling of
multiple possible outcomes, and it showed poor performance in
our preliminary experiments. In this case, our network outputs
the means of the Gaussians while we fix the covariance of every
Gaussian to be the identitymatrix I.
For the loss, we compute the negative log probability of the

ground truth trajectory under the predicted mixture of
Gaussians with the means equal to the predicted trajectories
and the identityMatrix I as covariance:

L ¼ �log
X

k
ckN Xgt;m ¼ Xk;s ¼ Ið Þ

¼ �log
X

k
ck
YTpred

t¼1

N xgtt ; xk;t; 1
� �

N ygtt ; yk;t;1
� �

¼ �log
X
k

e
log ckð Þ�1

2

XTpred

t¼1
xgtt � xk;t
� �2

1 ygtt �yk;tð Þ2

(16)

where N(.;m, s) is the probability density function for the
multivariate Gaussian distribution with mean m and covariance
matrix s, Xgt is the given ground truth trajectory, xk,t and yk,t
are the horizontal and vertical coordinates, respectively, of the
kth possible trajectory at moment t.

3. Experiments

This section presents the experimental details and results of the
proposedmodel.

3.1 Data set description
The Waymo Open Motion Dataset is used to evaluate the
proposed method. It consists of 103,354 fragments, each
containing a 20-s 10Hz object trajectory and map data for the
area covered by that fragment. The fragments are further
divided into 1 s of historical data and 8 s of future data. The task
is to use the one-second historical trajectory of the target agent
to predict trajectories of surrounding traffic agents in the next
eight seconds. Follow the requirements of the Waymo Open
Motion Dataset, we use the previous second, including the first
11 frames of data, to predict the next 80 frames of data.

3.2 Evaluationmethodology
� Metrics: We adopt four standard metrics in meter:

minimum Average Displacement Error (mADE), minimum
Final Displacement Error (mFDE), miss rate (MR) and
overlap rate. The mADE denotes the minimum average L2
distance between the ground truth and the predicted results
of all time steps. The mFDE denotes the minimum average
L2 distance at the final time step. The MR is defined as the
state when none of the individual predictions are within a

given threshold of the ground truth trajectory, and the
overlap rate is computed as the rate at which the predicted
trajectories overlap with any other objects.

� Baselines: We compare the proposed method with
the following models, including Basic_LSTM, Loft,
LSTM_CV, AS_LSTM, ANET and AE_LSTM, where
Basic_LSTM is the result obtained after using the
proposed data processing method instead of the one on
the leaderboard.

3.3 Implementation details
3.3.1 Data processing
In the processing of data, we take each target agent as the center
and standardize the lane and other agents in the scene. In
addition, lane line points are sampled at 2-m intervals.

3.3.2Model parameters
In the social aggregator, we use a single-layer MLP with a
hidden dimension of 256 for the encoding of agents. The
hidden dimension in the graph convolutional network used for
interaction fusion and the subgraph used for lane encoding is
256. Because the number and length of roads in each map are
different, for the convenience of training, we take themaximum
number of roads and the longest length of all scenes in each
batch size as the number and length of roads in the whole batch
and fill in the extra part with 0 to unify the input data
dimension. The hidden dimension of LSTM in decoder is 512,
and two two-layer MLPs are used to predict K possible
trajectories and the corresponding confidence levels,
respectively. In our experiments,K is set to 6.

3.3.3 Training details
During the training process, the initial learning rate is set to
0.001 and reduced at every 10,00 steps with max training
epochs of 100. And the training dataset is 35 Waymo Open
MotionDataset, with a total data size of 20.5G.

3.4 Results on benchmarks
The experimental results are shown in Table 1. Compared with
trajectory prediction methods based on LSTM, the proposed
methods have advantages in most of the metrics, and there is a
significant improvement compared with Basic_LSTM. The
social relation and physical lane aggregator can provide a good
complement to the LSTM-based trajectory prediction and
achieve better results.
Figure 4 shows the prediction results for several cases,

including pedestrians and vehicles, straight ahead or turning at
intersections. The figure shows the target agents’ six possible
trajectories, and the polyline with red dots is the most likely
trajectory. The red line segments in each subfigure represent
past trajectories of agents. It can be seen that our proposal is
effective for the prediction of trajectory; whether it is in a more
interactive intersection or straight road, it can predict the trajectory
in a certain time period. Figure 5 shows the convergence speed of
the proposed method and Basic_LSTM. It is obvious that our
method converges faster.

3.5 Ablation experiments
To verify the effectiveness of the social aggregator and hybrid
interaction aggregator module, we conducted ablation
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experiments on the adjacency matrix and road feature
extraction parts, and the results are shown inTable 2.
From Table 2, we can see the proposed modules contribute to
improving the prediction performance. It can be seen that the
mADE is improved from 4.6 to 4.2 by applying the attention-
based adjacency matrix and from 4.6 to 3.3 by applying the
hybrid interaction aggregator. With the contextual information
being captured and incorporated by each module, the model
has a more detailed understanding of the whole scene. For

example, the hybrid interaction aggregator captures road
information, incorporates useful road features, and thus, has a
large lift (about 28.26%). When using the attention-based
adjacency matrices instead of just distance relationships, more
interaction features can be captured, resulting in an 8.31%
improvement.

4. Conclusion

In this paper, the social relation and physical lane aggregator,
which includes a social aggregator and hybrid interaction
aggregator based on GCN and the self-attention mechanism, is
proposed to explore and obtain social and physical interactions
of traffic agents and the road environment. To validate the
effectiveness, the proposed method is tested on the Waymo
Open Motion Dataset and achieves better results on trajectory
prediction. In verifying the computation of the adjacency
matrix in GCN, the distance function and the attention
mechanism were explored and compared, and the results
proved that the adjacency matrix based on the attention
mechanism better describes the relationship between agents;
also, the ablation experiments were conducted for the twomain
modules that we designed. In this experiment, we assumed that

Table 1 Model performance on the Waymo Open Dataset

Methods mADE mFDE MR Overlap Rate

Basic_LSTM 5.5092 11.5927 0.8034 0.2937
Loft 6.1850 14.5074 0.8237 0.2697
LSTM_CV 4.6984 11.1285 0.7831 0.3145
AS_LSTM 4.5373 10.8299 0.7374 0.2714
ANET 4.0467 9.8998 0.7939 0.2824
AE_LSTM 3.9917 10.8874 0.7490 0.2761
Raster_MP 3.4021 8.7416 0.6974 0.2367
Social-Lane Aggregator (Ours) 3.0452 6.1735 0.5674 0.2615

Figure 4 Trajectories generated by social-lane aggregator

Figure 5 Model convergence speed comparison
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agents and lane rules are equally important to drivers, but this
may not be the case. Future work can continue to verify which
ismore influential, agents or lane lines.
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Table 2 Ablation on social-lane aggregator

Distence Adjacency Attention Adjacency Hybrid Interaction Aggregator mADE mFDE

� 4.6710 8.8616
� 4.2967 8.1718

� � 3.3117 6.3278
� � 3.0452 6.1735
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