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Abstract— Agent-Based Model (ABM) is a widely used tool
to analyze distributed systems. However, the decision-making
parameters are difficult to determine, since ABM is a kind of
micro model and such parameters, varying from person to
person, cannot be measured conveniently in real traffic systems.
For this problem, this paper introduces reinforcement learning
to empirically and efficiently calculate the micro parameters of
ABM. By a parameterization of the individual interactions, our
new approach is able to decouple the dependence for a given
agent upon his “social neighbors”, and thus can accelerate the
learning process. Experiments on inter-city traveling of
population indicate that the proposed method is effective for the
micro parameter computation.

1. INTRODUCTION

Agent-Based Model (ABM) is an explicit model which
can describe the behavior patterns of individuals through a
micro perspective. Moreover, it can simulate the relationship
between individuals and environment. This makes ABM a
widely used tool to study socio-ecological systems such as
analyzing traffic situation[1-4], traveling behavior of
population[5-8], social computation[9-11], population
synthesis[ 12-15], and analyzing behavior of groups[16,17]. In
particular, many researchers use ABM to analyze COVID
transmission [18-20].

One main challenge of ABM is the model parameter
computation. As ABM usually models individuals or minor
groups in real social systems, such microscopic features like
preferences, cognitive knowledge patterns, etc. are rarely
measurable. Even a few of them could be achieved via classic
psychological tests, the results from a minor group of testees
may usually bring sample bias and may not be representative
enough for the overall population. Therefore, it is essential to
develop a feasible method to efficiently calculate the agent
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micro decision parameters so that the subsequent travel
simulation is consistent with realistic systems.

In history, agent parameter computation is usually named
as model calibration and validation. It refers to calibrating
agents parameters which are difficult to validate in macro
state by simulation output and realistic output. Due to the
heterogeneity of agents and the complex interactions between
agents and environment, values of the same microscopic
parameter are mostly various for different agents. These
parameters are difficult to calibrate at the macro level,
because the dynamic properties and causal relationship at the
micro level are difficult to analyze directly.

There are several different approaches in current work on
parameter calibration. Nicholas et al. proposed a
sensitivity-based method [21]. They propose a global
sensitivity analysis to combine the two sensitivities to learn
how microscopic parameters influence the macroscopic
output of the system. Fagiolo et al. proposed an indirect
reasoning method [22,23]. They used a simple proxy to
approximate the relationship between ABM input and output,
so that the parameter space could be searched more quickly.
This works well when the scale is small. Simone et al.
proposed the generalized method of moments (GMM) [24],
but the selection of moments may cause deviations in the
calibration of parameters. The same problem is also exists in
the method of simulated moments (MSM) [25]. Classical
Bayesian theory is introduced into the parameter calibration
problem [26,27], which effectively solves the problem of bias
due to the choice of moments, but the work of Canova et al.
[28,29] proved that the choosing of prior distribution may
produce artificial curvature. Lamperti et al. proposed a
machine learning approach [30], which requires to select an
appropriate prior distribution to ensure validity, and still has a
long computational process. Ye et al. introduced the idea of
mean field in physics, and calibrated the microscopic
parameters from the state transfer from the macroscopic
perspective [31]. On this basis, this paper further introduces
Reinforcement Learning (RL) to analyze the state transfer at
macro level, and quantifies the interaction of agents at micro
level to calibrate the parameters. Experiments on population
migration scenarios demonstrate the effectiveness of our
method.

This paper mainly has three contributions:

1) Introduce Reinforcement Learning to calculate the
state transfer probability, and calibrate microscopic
parameter with state transfer probability.

2) Propose to quantifies the interaction between agents as
the agent’s own parameters to represent explicitly and reduce
the computational burden.
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3) From the experiment of inter-city traveling of
population, prove that our method behaves well in accuracy
and computational complexity.

II. RELATED WORK AND PROBLEM STATEMENT

A. A.Review of Classical Methods

The purpose of calibration is to adjust the microscopic
parameters of the agent so that the output of system is
controlled within an acceptable error range to simulate
stylized fact[32,33]. However, because ABM has complex
construction, it is hard to observe the microscopic parameters
of the actual system, and direct parameter calibration is not
feasible. Naturally, minimizing the distance between the
output of the simulated system and actual statistics enables
ABM to approximate reality to achieve the expected effect of
the calibration. This inspired the idea of moment-based
methods. The Generalized Method of Moments(GMM) has
been applied in some financial market problems[24].
However, the moment cannot be accurately known in GMM,
so the Monte Carlo simulation method is used to approximate
it. This means that the effect of approximation affects the
selection of moments and thus the accuracy of the final
parameter calibration. The Method of Simulated
Moments(MSM) is to select a vector of parameter values and
then run ABM to generate a simulated time series, and
compute the distance function which measures simulated
moments and real-world sampled moment data[25]. Then,
through minimizing distance, the micro parameters will be
calibrated, which can be represented as:

¢ )

where  is the sampling moment of realistic data, and  is
the simulated moments. is the distance function of these
two moments. The calibrated parameter  is searched in
parameter space to minimize distance function. However, the
accuracy of calibration depends on the choosing of moments,
and searching process increases the computational burden of
method.

Grazzini et al. introduced Bayesian theory to
calibration[27]:
) ) Q)
(; )=01)
where (; ) represents likelihood function, ( ) is the

prior distribution and ( | ) is the posterior distribution of
parameters.  is observed statistics. According to maximize
(| ), parameter of agents will be calibrated.

Bayesian method solved the drawback of moment-based
methods that calibration accuracy depends on the choosing of
moments. And Bayesian method focuses on the whole
distribution but not specific moments, which improve the
efficiency of Bayesian method.

This frame involves three steps: /) simulating the model,
2) computing ( ; ) witha . 3) sampling parameters

from ( | ). These steps have great computational burden.
The complexity of ABM leads to the requirement for
efficient sampling methods.

With the development of machine learning(ML),
researchers started to introduce ML to ABM. Lamperti et al.
Proposed to calibrate with ML and intelligent iterative
sampling[30]. This method draws a points pool of parameters
first, then sample and runs ABM with the result of sampling.
Points will be labeled according to the output of ABM. Run
the surrogate learning algorithm and predict labels over the
pool. Then sample from unlabeled points and label them after
running ABM. Iteration will stop till the 'budget' defined by
users is reached. Before this procedure, preliminary settings
should be chosen, including surrogate algorithm, sampler and
measurement of surrogate performance.

This approach calibrate parameters by drawing pool of
parameter combinations. Thus, it solves the problem of
searching in parameter space. In particular, decision trees are
introduced to classify and regress, and the set of decision trees
is build to make the surrogate approximate.

The decision tree surrogate needs heuristic search so the
computational burden is still great if ABM scale increases.

Calibrating from a fundamental perspective in detail
provides a different perspective. Yu et al. proposes AMETS
(Agent-based Model for Emission Trading Scheme)[34]
model to describe the emerging process from micro to macro
level, and heterogeneity among agents. Parameters in this
model are divided into two parts. Calibration of first parts uses
FORECAST model[35] and for the second part they design
functions and calibrate with collected statistics. This helps the
results of AMETS achieve high accuracy.

B. Problem Statement

In Ye's work[27], the behavior of agents is considered as a
high-order Markov Decision Process(MDP)[36].Then from
Markov theory, the transfer of ABM’s macro state will have
Markov property, which is represented into:

O= 0O (-1
1
{ 0= o )
This is the macro state transfer equation, where () =
[10), 20) ()] is macro state of ABM, () is the
number of agents with the -th micro state at time . is the

states number. g is initial state of the ABM system. ()
RN*N s the state transfer matrix. () stands for the state
transfer probability from -th micro state to j-th micro state at
time ¢.

Let ( )represent the macro observation of ABM at time
t. Assuming that the measurement is linear, then the
-dimensional vector () will be:

O=0-0 2

where () * is the measurement matrix. Let ()
stand for the realistic observation of actual ABM system, then
we can compare these two observation and get a function to
measure the macro output of ABM system:
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Fig. 1.State transfer after Reinforcement Learning.
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where K stands for the number of steps, is coefficient

matrix of the importance of each metric.

Then () can be solved through minimizing . The
macroscopic state transfer probability of the system is the
statistical representation of the microscopic actions of
multi-agents, and the actions of the agents are determined by
their own parameters and environmental information. This
inspires the idea of this paper that uses the macroscopic state
transition probability to calibrate the ABM parameters.

III. DECISION PARAMETER COMPUTATION USING
REINFORCEMENT LEARNING

On the basis of macro state transfer, this paper further
proposes to use Reinforcement Learning to calibration.
Inspired by macroscopic state transfer, this paper further
proposes to use reinforcement learning to calibrate the
microscopic parameters of ABM. Specifically, we first use
reinforcement learning to learn the behavior patterns of the
agent. Considering the multi-faceted micro-parameters of the
agent to set the reward function of action, so that the action of
the agent can simulate the decision result of the agent in the
real scene to the greatest extent. For the learned agent, its state
transfer probability is calculated to make it equal to the
transfer probability expressed by the microscopic parameters,
so as to calibrate the microscopic parameters of the agent.

The state transfer is as shown in Fig.1. Assume agents
attime — 1 are with the -th micro state, then at time , those
agents will transfer to different states. The transfer step is
decided through Reinforcement Learning. After RL, agents
will transfer to the state that will get the most reward. Due to
the heterogeneity of agents, the reward and their transfer
targets will be different. Let  stand for the number of agents
that transfer from -th state to j-th state, so the corresponding
transfer probability will be represented by the following
equation:

=— @

From a microscopic point of view, there are roughly four
factors that can affect the state change of an agent: parameters
related to the state change of agent itself, interaction with
other agents, decision parameters and methods of agents, and
environmental influence. For ABM, there are complex agent
interactions inside the system. A powerful tool for simulating
the decision-making process and selection preferences of
agents under this interactive relationship is Multi-Agent
Reinforcement Learning (MARL). However, this method is
computationally demanding because it requires to observe the
joint state of the agents and consider joint actions and rewards.
With the number of agents increasing, the computational cost
will become barely affordable. In order to simplify the
calculation, this paper parameterizes the interaction between
multiple agents. Specifically, the agents can be expressed as

{, O O, . }. Here, () is agent parameters
itself, that is its individual factors which will be considered in
the decision making process. () is factors from other

agents which have interaction with itself. is weight
parameters which measures importance of factors. is
factors of environment. Thus we can express in

microscopic state by the expression through these factors:

=, O O

{-14, (-1, (-1, ., D 6)
And reward function in RL is also from these factors:
= O, O O ) (6)

Through learning, the simulated decision-making process
of agents is constantly approximate the 'stylized facts'. At
micro level, action policy of agents can simulate
decision-making process. At macro level, the state transfer
probability can be calculated after one time step, then ~ will
be used to calibrate micro parameters. The process that
parameterized the complex interaction will reduce
computational complexity possibly.

The pseudo code of whole process is as shown in
Algorithm.

The Reinforcement Learning is for simulating the
decision-making process of agents in real system by
designing the reward function of actions through considering
parameters that affect the agent's state transfer.

For each step, the corresponding reward value is
calculated and the Q matrix is updated. The corresponding ¢
value consists of two parts: the immediate reward and the
future reward. The attenuation coefficient y in the future
reward indicates the degree of importance that the agent
attaches to the future reward. As the ¢ value contains future
reward, if the future reward is not large, the second part of the
q value is relatively small, resulting in a small ¢ value, then
the probability of the agent selecting action a next time in
state s is correspondingly decrease. The greedy coefficient
in decision process is to prevent action selection from falling
into a local optimum. If the greedy coefficient is not set, and
the action with the highest current profit is selected in each
decision, other ¢ values cannot be selected, which makes it
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difficult for the agent to explore other actions and miss better
strategies.

After the training is completed, the converged Q matrix is
obtained. According to the Q matrix, the state transfer of
agents in the next time step can be determined, so as to
calculate the state transfer probability of the entire multi-agent
system. From a microscopic point of view, the agent's own
parameters can be used to represent the state transfer
probability of another expression. The values of the two
expressions are equal to complete the calibration of the
microscopic parameters of agents.

IV. CASE STUDY: INTER-CITY TRAVELING OF POPULATION

A. Experiment Setting

In order to verify the method proposed in this paper, this
section selects inter-city traveling of population, one of the
classic application scenarios of ABM, for computational
experiments. For comparison, we conduct experiments with
the data used in the paper [15,31] and compare with machine
learning based surrogate method and mean-field method.

The experiment selects China's population traveling
behavior in the decade 2000-2010 to simulate. As one of the
most populous countries in the world, China's population
system is a representative multi-agent system. The data in
this experiment mainly has three categories: census data,
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population sample and annual statistics. The census data is
the fifth national census in 2000. Individuals in this data has 7
basic attributes. These are gender, age, residence city,
ethnicity, registration province, marital status, and birth
status. The population sample data is also disaggregated
sample which is from census in 2000. It has 1,180,111
records, including personal and social attributes of
individuals, and some other detailed information under the
premise of protecting personal information. These records
accounts 0.95% of the whole national population records.
The census data and population sample are for generating the
initial state, which is population in 2000 in this experiment.
The annual statistics is from totally 361 cities, and records
information such as average annual income, birth rate, death
rate and other demographic characteristics of these cities.

In RL, we set a Q matrix. For corresponding to city
number, the Q matrix has 361 rows and 361 columns. Then
the elements in Q matrix is g value. For example, the (i, ;) in
Q matrix is transfer probability from i-th city to j-th city. This
matrix is for training to learn the decision-making of agents.
After this matrix converges, in the i-th row, the number of
column which has the largest g is city number that the agent
will transfer to in next step. The computation of Q matrix
with iteration is:

(.)=a-) .H)+ -+ () INC)
where 0 is learning rate, (0,1) is the attenuation factor,
( ") stands for the future reward. R is reward computed

from the following equation:

= -C = ) ®)

where £ is an artificial constant. is the evaluation of
value in origin state and in destination state. The value
evaluation can be computed from the following equation:

= 0O+ - 0O+ O
*a- - - ©)

where 0, 3,y is the weight of each parameter. The total of the
4 weights is 1.

In this experiment, () is represented by registration

parameter , which can be expressed as:
1
( , )

This function is from the famous Schelling’s model [37].
where dist is a function that computes the distance between
the agent's residential city and registration city. Constant k
should satisfy the condition that <

( , ) so that <I1. Here we set

= ( ) )
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TABLE L RELATIVE ERRORS OF THREE METHODS OF
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a1 ¥ Calibration | 29.15% 11.40% 27.95% 13.03% 28.52%
with RL
2000 zn‘ct 2nloz 20‘03 20‘04 20‘05 z}lns 20‘07 2008 2009 2010 2011 Mean-field 22.11% 23.71% 22.67% 25.07% 22.99%
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Fig. 2. Results of three methods of calibration.
. ) ) Surrogate 24.30% 26.21% 24.99% 27.86% 25.42%
() is represented by family parameter , which can be Calibration
calculated by: 2006 2007 2008 2009 2010
= Calibration 13.30% 26.96% 14.07% 25.28% 15.04%
with RL
where means the number of family members that are in | Mean-field | 25.50% | 22.93% | 25.68% | 24.81% | 27.20%
the same city as the agent, and means the number of agent's | Calibration
all family members. () is represented by income Surrogate 28.25% | 25.12% | 27.49% | 25.54% | 27.49%
parameter . This is decided by agent's residential city Calibration
and year. is represented by ethnic parameter , which

can be expressed as:
=1-

where means the rank of proportion of ethnic
groups in agent's residential city and means the number

of cities. Here the ethnic parameter is designed for
minorities.

The decision-making parameters and environment
influence parameters are complicated in realistic system.
Many factors can influence the process of state transfer. To
simplify the calculation, we select income factors that have a
greater impact in the personal decision-making process as
agent's decision-making parameters, and select ethnic
settlement factors that have a greater impact in the social
environment as environmental parameters.

B. Experiment Results

In the experiment, one agent is set to represent 10000
actual people. For evaluate the effectiveness of proposed
method, we set relative error which can be calculated by:

where N is the total city number, which is 361. is the
population number in the -th city in simulation system and

is in actual system. For baselines, we set experiment
results shown in Ye's work [31] as baselines, and Mean-Field
calibration method is also proposed in their work. The
comparison is shown in Fig. 2 and Table L.

It can be seen that our method achieves lower relative errors,
which indicates that our method performs better in the
parameter calibration task of population migration
experiments. In some years, such as 2002, 2004 and other
even-numbered years, our method can greatly reduce the
relative error, and in other years, the errors of three methods

are close. So it can be seen that that our method is better on the
whole. From the trend of data, we can intuitively find that if
the simulation time is increased by a few more years, the
fluctuation of the errors of our method will gradually decrease
and the performance will be better than the other two methods,
which can be known from the data in 2009. And the results
show that our method is not so robust in these 10 years, but it
will be more robust in ten more years.

The running time of our methods is 2,257 seconds, and
mean-field calibration needs 2,158 seconds. The two methods
have similar time cost, and the difference in running time is
only about 100 seconds. If we consider every related agents of
an agent, that will add many new parameters because agents
have their own factors. Our method considers these factors
and represents them into only 4 parameters. This is the reason
why our method can reduce the computational complexity.
The process that parameterizing the interaction between
agents simplifies the complexity of calculation to a certain
extent. If we do not simplify the interaction but consider it
directly, the running time will be greater. Moreover, this
process keeps accuracy without ignoring the interaction
between agents at the same time.

V. CONCLUSION

One of the main challenge for Agent-Based Model is its
decision parameter learning for a reasonable and reliable
simulation. While typical methods have limitations because
ABM has complex structure especially if agents in simulation
add, this paper introduces RL for parameter calibration.
Reinforcement Learning is used to simulate the behavior of
agents, and then we calculate state transfer probability. Then
the microscopic parameters of agents are calibrated according
to the state transfer probability. By a parameterization of the
agent interactions, our method can further reduce the
computational complexity with an acceptable accuracy.

One major limitation of our method is that the empirical
setting of reward function in most cases cannot uniquely
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determine each parameter of the agent decision model. It
only provides a constraint for a feasible domain of parameter
set, parameters in feasible domain can satisfy constraints of
calibration. Therefore, to achieve unique “optimal” values,
we need to impose more heuristic rules in our future work,
such as the maximum entropy or the minimum variation
principles.
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