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Abstract— As a representative topic in natural language
processing and automated theorem proving, geometry prob-
lem solving requires an abstract problem understanding and
symbolic reasoning. A major challenge here is to find a
feasible reasoning sequence that is consistent with given axioms
and the theorems already proved. Most recent methods have
exploited neural network-based techniques to automatically
discover eligible solving steps. Such a kind of methods, however,
is greatly impacted by the expert solutions for training. To
improve the accuracy, this paper proposes a new method called
counterfactual evolutionary reasoning, which uses a generative
adversarial network to generate initial reasoning sequences and
then introduces counterfactual reasoning to explore potential
solutions. By directly exploring theorem candidates rather than
the neural network selection, the new method can sufficiently
extend the searching space to get a more appropriate reasoning
step. Through comparative experiments on the recent proposed
Geometry3k, the largest geometry problem solving dataset,
our method generally achieves a higher accuracy than most
previous methods, bringing an overall improvement about 4.4%
compared with the transformer models.

I. INTRODUCTION

As an essential subject in the secondary mathematical
education, geometry problem solving is beneficial for the
development of students’ abstract thinking. Psychologists
and educators believe that to achieve successful solutions for
geometric problems, one needs high-level thinking abilities
of symbolic abstraction and logical reasoning[4], [16]. These
abilities can partially reflect the human’s a mental activity
and thus the level of his intelligence. Therefore, as a long-
standing challenge in natural language processing (NLP) and
theorem proving(TP), the automated geometry problem solv-
ing is viewed as an ideal scenario to test whether (or to what
extent) an algorithm achieves the human’s intelligence[8].
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Generally, a geometry problem is typically given by an il-
lustrative figure with a paragraph of natural language descrip-
tion. And the people’s acquisition of its solution may roughly
experience a problem understanding and a symbolic reason-
ing. The former stage usually exploits formal representations
with explicit semantics, which characterizes the human’s
cognitive (re-)construction of the geometric elements with
relationships when encountering specific problems. Such a
process involves a data fusion of multiple detected results
both from the figure and the textural descriptions, so that the
problem is formally and consistently represented. The latter
stage mostly focuses on logical reasoning, which simulates
the human’s cognitive deliberation and rational thinking. A
feasible reasoning sequence, with each step being a known
theorem as one step forward the final solution, is obtained
in this stage according to the knowledge base that is usually
composed of axioms and proved theorems.

To limit the scope, this paper mainly focuses on the
symbolic reasoning stage of the task. As can be seen in
the next section, recent methods have mostly exploited
neural network-based techniques to automatically discover
eligible solving steps. Such a kind of methods, however, is
greatly impacted by the expert training data, which limits
the searching space for potential solutions. To improve the
accuracy, this paper proposes a new method called the
counterfactual evolutionary reasoning for the geometric or
other problem solving. Specifically, the problem solver starts
with a generation of initial reasoning sequences, using a
pre-trained generative adversarial network (GAN). Taking
these sequences as initial solution candidates, counterfactual
reasoning is introduced for interventions to investigate more
potential solutions. By a direct operation of the reasoning
sequence, our method is able to sufficiently extend the
exploration space other than expert training solutions. The
intervention is then heuristically evolved to optimally select
a final solution by setting an appropriate evaluation criterion.
Comparative experiments on recent proposed Geometry3k,
the largest geometry problem solving dataset, indicate that
our method generally achieves higher accuracy than most
previous methods, especially the transformer models. In
summary, the main contribution of this paper is two-fold.
First, we introduce the counterfactual reasoning into the
geometry problem solving. This is able to directly operate the
solution sequence, so that the local optima of neural network
(NN) models trained by expert data can be easily jumped out.
Second, an evolutionary mechanism is introduced to enhance
the heterogeneity of solutions, promoting the exploration of



new potential solutions. This could alleviate the complex
training of the sequential models (such as the transformer).

II. RELATED WORK

As alluded before, the geometry problem solving mainly
involves the abstract problem understanding and the sym-
bolic reasoning. Many fruitful researches come from the field
of theorem proving[5], [24], [25]. This section will summa-
rize related researches according to these two categories.

A. Problem Understanding

The problem understanding includes a diagram and text
parsing. Kahou et al. introduced FigureQA, a visual rea-
soning corpus to synthesize questions from 15 templates.
They studied the visual reasoning task that can be expanded
to diagram parsing and reasoning[10]. Lewis et al. intro-
duced generative models for the language understanding and
reasoning[12]. Seo et al. first introduced NLP techniques to
extract the representations of geometry problems[22], [23].
They proposed a method for understanding the geometric
graphs by identifying the elements in the diagram with
their relative spatial places and geometry properties, and
matching them by maximizing the consistency between the
textual description and the visually identifiable elements.
Hopkins et al. combined the methods of machine learning
and logical reasoning to propose a problem solver system
called EUCLID[8]. Their system could propagate uncertainty
from multiple sources (e.g. coreference resolution or verb
interpretation) until it can be confidently resolved. A second
approach to build a neural sequence-to-sequence translator to
map questions to sequences, with an arithmetic tree adopted,
was proposed by Roy and Roth[18]. Their work could be
viewed as an intelligent parser of math expressions. The idea
of combining reasoning and machine learning in this system
was innovative, yet achieved only marginal improvements
over random baselines. Kembhavi et al. proposed to use
diagram parse graphs (DPGs) to encode elements with their
relationships[11]. They formulated the problem of graph
syntactic parsing as a task of learning to infer the DPG that
best interprets the graphs.

B. Problem Solving

Huang et al. introduced GamePad to apply machine
learning in the theorem proving. They solved the position
evaluation and tactic prediction task[9]. Zhang et al. proposed
a neural network component that allows a robust object
counting in natural images. This component can solve vi-
sual question answer problems with a higher accuracy[26].
By treating the geometric relations as constraints, Seo et
al. proposed the first automatic geometry problem solver,
GEOS, which formulated the task as an optimization problem
and found a solution by satisfying all the constraints[22],
[23]. However, it was not a reasoning method that used
the relationship between the elements. In the work from
Kembhavi et al., the semantic interpretation of graphs and
the reasoning about elements with their relationships were
studied in the context of graph question answering[11]. They

defined the task of graph parsing and reasoning. Sachan et al.
collected theorems from multiple textbooks and parsed them
into horn clause rules. Such a collection of theorems solved
the problem with less annotation and low redundancy[19],
[20], [21]. Moreover, re-use of these horn clauses could
reduce the computational complexity and improve the ac-
curacy. The work sufficiently exploited the proved theorems
in the reasoning process, but it did not provide users with
readable proof steps, and the search process for applying
theorems was not fully controllable. Zhu et al. systematically
described the whole process of geometry problem solving.
By using predicates and parameters, they developed a textual
and graphic parser to accurately extract the geometric rela-
tionship between elements[15]. In the reasoning stage, they
further built a predictor to construct a sequence of theorems
that would be applied to solve the problem. Compared
with other work, the reasoning is more interpretable and
the predicted theorem sequence can reduce the searching
space. However, it was the compressed searching space that
may bring further improvement of accuracy. Seohyun et al.
introduced the NeurQuRI to answer questions based on the
reasoning with multiple different constraints[2].

III. COUNTERFACTUAL EVOLUTIONARY
REASONING FOR THEOREM SEQUENCE

OPTIMIZATION

Generally, the NN-based model such as the transformer
requires a complex training using expert solutions. It highly
depends on the heuristics implied by the training data, which
may narrow the searching space when getting a potential
solution. To improve the accuracy, this section will elucidate
our counterfactual evolutionary reasoning method for the
geometry problem solving.

A. Problem And Solution Rresentation

Fig. 1. A Geometry Problem Example.

A geometry problem P is usually defined as a tuple
(t, d, c), where t is a textual description, d is a diagram
image and c = {c1, c2, c3, c4} is a set of multiple result
candidates in the format of numerical values. Given the text
t and diagram d, an automated solver is required to predict
the correct answer ci ∈ c. We use a predicate to represent
a geometric shape entity, geometric relation, or arithmetic
function. A literal is an application of one predicate to a
set of arguments like variables or constants. A set of literals
makes up the semantic description from the problem text and
diagrams in the formal language space W . A primitive is a
basic geometric element like a point, a line segment, etc..
Figure 1 shows a simple geometry problem as an example.
As illustrated, the primitive Triangle defines a triangle and



Fig. 2. Counterfactual Evolutionary Reasoning for Geometry Problem Solving.

the literal MeasureOf applies the angle to a constant(say
45 or 56).

Given a geometry problem formally represented as a set of
literals, the objective of a solver is to find a feasible solution
that results in an answer from choices. A solution is defined
as a theorem sequence where a group of selected theorems
from the axioms and proved theorems are arranged in a
certain order. Each theorem has a premise and a conclusion.
When applying a theorem, the original problem assumptions
and the conclusions achieved from previous applied theorems
will be matched with its premise. If the match is successful,
the new conclusion of the applying theorem is obtained and
is added into achieved conclusions. This operation extends
the theorem sequence. When a sequence is able to finally
result in an eligible answer, it is called a feasible solution.

B. Generation of Initial Solutions Using GAN

Our proposed method consists of two stages, the initial
solution generation and the counterfactual evolutionary rea-
soning (see Figure 2). After receiving the formal representa-
tion (literals from both text and diagram) of a problem, the
solver sends its latent encoding to a pre-trained GAN to get a
collection of initial reasoning sequences. The initial solutions
start by random sampling and are “filtered” by a pre-trained
generator network. They both retain a certain degree of
heterogeneity and include some expert heuristics, providing
the subsequent counterfactual evolution a suitable start point.
Compared with other sequence-to-sequence models, GAN is
able to keep a good balance between the heterogeneity of
initial solutions and the training efficiency. Then, a proba-
bilistic intervention is applied to these initial solutions and
an iterative evolution is conducted to optimize the reasoning
sequences. Please note that we use a Symbolic Geometry
Problem Solver that is provided by the original Inter-GPS
research, to check whether the premise of a given theorem
matches that of the problem to be solved. This symbolic
solver can neither generate solutions by itself, nor impact
the solution construction at all. Each solution is a theorem
sequence that determines which theorems and in what order
to be applied to solve a specific geometry problem. Its
generation all depends on the Counter-Factual Evolution,
Evaluation and Selection drawn in the figure. Therefore,

using such a symbolic solver assistant does not influence
our solver’s performance.

Fig. 3. Structure of the Conditional Generative Adversarial Network for
Initial Solution Generation.

The initial solution generation aims to get some reasoning
sequences that are relevant to the given problem. This can set
a suitable start point for the subsequent solution searching.
Our problem solver adopts a conditional generative adver-
sarial network (cGAN) to complete such a task. For each
problem, the original formal representation is embedded into
a lower-dimensional latent space by encoding the top k most
frequent predicates in the training data. The latent encoding
is used as a condition, which is a common part of the inputs
both for the generator and discriminator networks (see Figure
3). For the generator training, the embedded condition is
concatenated with a randomly generated sequence as the
input. The “randomly generated sequence” is obtained by
a purely random sampling over the whole theorem space.
It can be viewed as the most chaotic solution, without any
prior heuristics. After several convolution and full connected
layers, the generator reduces the solution’s randomness and
constraints it “near” the expert training data, as an output
solution sequence. The loss for back propagation is computed
by a pseudo label returned by the discriminator. For the
discriminator training, its input is the embedded problem
condition concatenated with a generated (fake) or an expert
(real) solution. The numerical output is between 0 and
1, indicating how the input is “real”. The label for back
propagation is set as 0 for a generated input and 1 for an



expert input. To preserve the dependence between theorems
in training data, we further adopt an attention module (drawn
as the Positioning Encoding in the figure) to heuristically
learn the theorem relative order in the sequence. The pooling
operation has a property of transitional invariance. It is used
to retain the significant dependence of adjacent theorems. In
addition, we refer to the Wasserstein GAN to fine-tune the
network structure in order to avoid the mode collapse[1].
The fine-tune includes a direct exploitation of the output
rather than the log form as its loss function, a removal of
activation functions in the last layer of discriminator, a use
of the RMSProp optimizer instead of the momentum-based
ones, and a clamp of the discriminator parameters to (-0.01,
0.01).

C. Counterfactual Evolutionary Reasoning For Sequential
Reasoning

The second stage in our problem solver is the counter-
factual evolutionary reasoning. Its objective is to explore
potential solutions so that the theorem sequence for a given
problem can be optimized. The basic idea behind is to
preserve the sequential theorem dependence from training
data rather than a stochastic search in a solving process. It
can sufficiently exploit heuristics from the expert solutions.
Unlike the NN-based methods where theorems are encoded
and selected by a pre-trained neural network, we introduce
the intervention of counterfactual reasoning to directly ma-
nipulate the theorem candidates[14]. Here, the “facts” are
those existing solutions, which reflect the human expert
experience for the encountered problems. The contextual
dependence between theorems in a particular solution se-
quence implies their endogenous causal relationships. The
“counterfacts” are those different potential reasoning paths
with the implicit causal dependence retained. By manually
intervening theorem candidates instead of an NN selection,
our prover can infer a possible intuitive reasoning. This is
able to enhance the heterogeneity of solutions so that the
searching space is extended.

Our counterfactual evolutionary reasoning includes the
intervention and evaluation. Given a theorem sequence<
, a, b, c, > as shown in Figure 4, an intervention point is
randomly determined, say the theorem b. An intervention is
performed then by replacing b with another possible theorem
b̂, which is computed as

b′ = argmax
b̂

∫
Ω

P{b̂, u|b}R{b̂}du (1)

where: P{b̂, u|b} = P{b̂|u, b} · P{u|b}

= P{b̂|u} · P{u|b} =
P{u}
P{b}

· P{b̂|u} · P{b|u} (2)

In the above equations, P{b|u} stands for the probability
that b is the direct successor of u in the expert training
data. R (b) is a reward of b, which characterizes the effect
of changing b to b̂ for solving. It is set to be 1 in the
experiment to reduce more calculations. P{u} and P{b} are
the probabilities emerged in the training data set. P{b̂, u|b}

Fig. 4. Intervention of Counterfactual Reasoning.

represents the intervention probability that b is replaced by b̂
provided that b and b̂ have a common parent u. The first equal
sign in Eq.2 is the probability chain rule. The second equal
sign holds because of the independence given the common
parent u. The third equal sign is Bayes theorem. Ω means
the integration over the whole predicate space determined
by the training data. Note that in the above method, we use
a single intervention point for each reasoning sequence, but
this can be easily generalized to multiple interventions.

The probabilistic intervention explores heterogenous solu-
tions according to the current theorem sequences. And an
evaluation for these evolved sequences would lead to a final
optimized solution for the given problem. In our prover, each
evolved sequence is firstly checked whether its theorems can
be applied to the original problem representations and the
intermediate conclusions. Specifically, if the original problem
representations together with intermediate conclusions (for
the first theorem in a sequence, there is no intermediate
conclusion) can match the premise of a theorem, then its
conclusion holds and we call this theorem applicable. The
achieved conclusion is added into intermediate conclusions
for the subsequent theorem check. By iteratively checking
each theorem, a solution sequence is evaluated as

fit =
na

N
+ kp ·

nr

N
(3)

where N represents the total number of theorems in the
sequence. na is the number of theorems that are applicable
and nr is the maximally repeated times of a theorem in the
sequence. kp ∈ (−1, 0) is a penalty coefficient. The above
fitness function characterizes a solution from two aspects,
the applicability and the repetition rate. The former metric
is usually pertinent to solving the problem. For example,
theorems about circles may probably not be valid for the
problems about triangles. Thus, more applicable theorems
may result in a feasible solution with a higher probability.
The latter metric measures the redundancy of a solution.
Intuitively, a less repetition rate means fewer unnecessary
reasoning steps. Thus, the solution is more sufficient. Given a
geometry problem, our counterfactual evolutionary reasoning
is iteratively conducted for several rounds and the solution
with highest fitness according to Eq.3 is selected as the final
result.

IV. EXPERIMENTS ON GEOMETRY PROBLEM
SOLVING

To verify the proposed method, we conduct experiments
on Geometry-3K, the largest dataset of publicly available
geometry problems, and compare our algorithm with other



TABLE I
EXPERIMENT RESULTS WITH BASELINES.

Method All Angle Length Area Ratio Line Triangle Quad Circle Other
Q-only 25.3 29.5 21.5 28.3 33.3 21.0 26.0 25.9 25.2 22.2
I-only 27.0 26.2 28.4 24.5 16.7 24.7 26.7 30.1 30.1 25.9
Q+I 26.7 26.2 26.7 28.3 25.0 21.0 28.1 32.2 21.0 25.9
RelNet 29.6 26.2 34.0 20.8 41.7 29.6 33.7 25.2 28.0 25.9
FiLM 31.7 28.7 32.7 39.6 33.3 33.3 29.2 33.6 30.8 29.6
FiLM-BERT 32.8 32.9 33.3 30.2 25.0 32.1 32.3 32.2 34.3 33.3
FiLM-BART 33.0 32.1 33.0 35.8 50.0 34.6 32.6 37.1 30.1 37.0
Inter-GPS(No GT) 55.1 58.2 57.3 30.2 58.3 63.0 63.5 51.7 41.8 29.6
GAN 54.4 57.0 56.3 32.1 58.3 56.8 65.6 52.4 34.3 25.9
GAN+CER(ours) 59.5 58.3 71.5 11.4 50.1 51.9 73.3 46.2 42.0 88.9

existing methods[15]. This section will briefly introduce the
dataset and experiment setting, followed by the report of our
comparative studies.

TABLE II
SOME PROPERTIES OF GENERATED SOLUTIONS OF INTER-GPS AND

COUNTERFACTUAL EVOLUTIONARY REASONING.

Method Inter-GPS (No GT) GAN GAN+CER (ours)
Accuracy (%) 55.07±0.1 54.4±0.5 59.5±0.75
Average Steps for 39.97 49.05 39.94All Problems
Average Steps for 7.33 16.41 10.72Solved Problems
Average Time for 57.13 66.69 45.76All Problems (sec.)
Average Time for 10.64 13.85 15.73Solved Problems (sec.)

A. Dataset And Experiment Setting

The Geometry-3K dataset contains 3002 geometry prob-
lems, including 2101 for training, 300 for validation, and
601 for test. All problems are collected from popular high
school textbooks for grades 6-12. Apart from lines, triangles,
quadrilaterals and circles, the problems also involve polygons
and irregular quadrilaterals. The large scale of the dataset
and the high diversity of problem types make it one of the
representative testbeds for problem solving algorithms.

As the Geometry-3K dataset is proposed by Zhu, et al, it
is natural to compare our method with their transformer-
based model, the problem solver in Inter-GPS[15]. Other
baselines include the Q-only method that uses only a gated
recurrent convolutional network to understand and solve the
textual description of the question[5], the I-only method
that only uses the residual network ResNet-50 to extract
information from the image of the question and solve it[7],
the Q+I method that combines the above two methods,
the RelNet to model and reason the relationship between
entities[3], the FiLM to perform visual reasoning on topic
icons[17], the FiLM-BERT that uses BERT model to perform
language reasoning [6], and FiLM-BART that uses the BART
model[13].

In our experiments, the knowledge base contains 17 theo-
rems. The maximum length of each generated sequence is set
to be 30. But this does not mean that our reasoning for each

problem contains 30 theorems at most. As a matter of fact,
such a theorem sequence after the intervention and evolution
may probably exceed that length. The evolved theorem
sequence is sent to a symbolic geometry problem solver
for a validation[15]. After receiving a solution candidate,
the symbolic solver performs a symbolic reasoning using
the theorems one by one. If the geometry problem cannot
be solved by the solution candidate, a low-first search will
be conducted by directly using the basic theorems in the
knowledge base. We set the maximum reasoning step is
100, and if the problem is still unsolved after that, the
symbolic solver finally gives a random guess of the 4 choices.
To test each method, we randomly select 100 successive
problems from the test dataset, because running all the test
problems is quite time consuming. The 100 successive but
not stochastically chose problems can avoid the sampling
bias that those “easy” problems for the solver are selected.
The proportion of successfully solved problems is defined
as the accuracy. For the problems that cannot be solved in
these 100 test problems, we directly treat their accuracy as
25% (uniformly choose an answer from the 4 choices, and
this operation is the same as Inter-GPS).

B. Comparative Studies With Baselines

The experiment results with baselines are shown in Table
I. As can be seen, the theorem sequences generated by the
GAN outperform others in Ratio, Triangle and Quad. But its
overall performance is not as good as the original Inter-GPS
solver. When the counterfactual evolutionary reasoning in-
corporated, 5 of 9 metrics have reached the best performance.
However, our method performs not stably for different types
of problems. It may result from the unbalanced distribution
of problem types in the test dataset. For example, with
much fewer problems about Area and Other, it is easier to
bring a low or high accuracy. Despite the higher variance,
the overall evaluation has increased about 4.4% compared
with the original Inter-GPS. These results indicate that our
counterfactual evolutionary reasoning is valid in searching
for optimal decision sequences for problem solving.

To further compare the properties of generated solutions
between Inter-GPS and counterfactual evolutionary reason-
ing, we further compute statistical metrics in Table II.
Clearly, our method gets fewer average steps and less average



time for all problems, whereas these two metrics grow larger
than the Inter-GPS for solved problems. It manifests that
our method prefers to generate longer theorem sequences.
By contrast, solutions from our method have fewer steps
than those from the GAN without counterfactual reasoning.
It shows the effect of the fitness optimization.

V. CONCLUSIONS AND FUTURE WORK

Geometry problem solving is a representative topic in
natural language processing and automated theorem proving.
This paper proposes a new method by introducing a counter-
factual reasoning and evolution mechanism. The method uses
a generative adversarial network to generate initial reasoning
sequences and then an intervention to explore potential
solutions. By directly operating the theorem candidates rather
than the neural network selection, our method can sufficiently
extend the exploration space to get a more appropriate
reasoning step. The method is validated on the Geometry-3K
dataset, bringing an overall 4.4% improvement of accuracy
compared with the most advanced transformer model.

Though the counterfactual evolutionary reasoning out-
performs other methods in an overall evaluation, it still
suffers from some critical issues. First, the generated theorem
sequence has more reasoning steps than Inter-GPS, which
indicates that the solution has more redundant theorems. A
heuristic setting in the evaluation may further reduce the
solution’s complexity. Second, albeit the proposed method
is more explorable and adaptive to the problem, it is more
computational expensive as well. As the transformer model
requires a complicated training, the training of the GAN in
this paper is much easier. However, this essentially shifts the
computation to the later evolutionary stage. Since the solver
needs interventions and evolutions for every test problem, it
may suffer from a heavier computational burden. Setting a
larger knowledge base via a parallel/cloud computing in our
future work may help reduce the evolutionary search and
compress the solving time.
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