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Abstract. Visual cognitive development is vital for intelligent robots to
handle various types of visual tasks rather than predefined ones. It can
transfer the classification ability from an original model to a novel task.
However, the high reliance on large amounts of data hinders its devel-
opment. The energy it costs to adjust to the novel tasks is also a tough
problem. Thus we propose a model called knowledge-experience graph
(KEG) to imitate the mechanisms of human brains. With the help of
social knowledge stored in the knowledge graph, the novel classes can be
easily added. The combination of the experience via denoising autoen-
coder (DAE) also takes the relationship in the visual space into account.
With the propagation of information among the graph by graph convo-
lutional network (GCN), KEG generates the classifier of the novel tasks
effectively. Experiments show that KEG improves the classification ac-
curacy of novel categories on zero-shot learning and accomplishes visual
cognitive development to a certain extent.

Keywords: GCN · zero-shot learning · cross-task learning · cognitive
development · image classification. · denoising autoencoder

1 Introduction

Visual cognitive development is important for intelligent robots. With the ever-
growing development of computer vision, an intelligent robot has to face various
types of visual tasks rather than deterministic and predefined ones. To adjust
to this unstructured and dynamic environments, a robot needs to transfer the
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classification ability from an original model to a novel task, while the former
ability is still reserved. Cognitive development not only focuses on the cross-task
problem but also deals with the zero-shot learning task. The original model has
to use the unlabeled samples to retrain itself, which means it learns a novel
classifier with no need of human annotation. In this way, the time and energy
it takes to adjust to the novel tasks may be cut down a lot and the intelligent
robot may be applied to a much tough and complicated area.

The recently proposed graph convolutional network [2] has exhibited a pow-
erful ability in transferring knowledge across tasks. It can propagate messages
among the graph and take the structural information into account. To accomplish
the visual cognitive development of robots, it is reasonable to set up a neural
network evolving on its own just as human brains, which is accomplished mostly
by transferring information from base categories with the help of supplementary
information. There are two normal sources of this information. The first one is
the social knowledge developed in society, and the second one is the experience
obtained based on previous tasks, which is also called empirical knowledge.

Recent researches on zero-shot learning are mostly from two viewpoints. So-
cial knowledge builds the relation map of different classes at the macro level.
Wang et al. [1] build an unweighted knowledge graph combined with word em-
bedding [3] [4] upon the graph convolutional network [2] to handle zero-shot
problem. Kampffmeyer et al. [5] improve upon this model and propose Dense
Graph Propagation to prevent dilution of knowledge. As for the empirical knowl-
edge, it is acquired by recalling the related experience of the recognition task
[7] [8] . Gidaris et al. [6] get the experience as CNN is trained to recognize the
base classes and propose to implement the Denoising Autoencoder network to
reconstruct general weights of both the base classes and novel classes. The main
part of these models is to initialize the novel categories with few samples.

Though social knowledge makes it easy to add novel classes to the map,
it ignores the relationship in visual space. Empirical knowledge on the other
side considers the unique visual features of the datasets. However, as the visual
features are extracted from images, it can not handle zero-shot problem. Thus
we argue that both these methods are not ideal for visual cognitive development.

To tackle this problem, we propose to combine social knowledge and empirical
knowledge to build the relation map. The key problem for zero-shot learning is
to initialize the features of novel categories with no labeled samples available.
An intuitive idea is to estimates the feature of novel ones from prestored social
knowledge. Based on this idea, we propose a model called knowledge-experience
graph (KEG). KEG makes use of social knowledge in form of knowledge graph.
The knowledge graph shows the relationship between the categories with the
structure of inheritance. Novel classes aggregate supplementary information from
related classes to conduct knowledge inference along the edges. Furthermore, it
uses a traditional recognition model to train the base classes and observes the
classification weights of base classes. Combined with the estimated value of novel
classes from social knowledge, these initial weights build up an unweighted graph
with the relationship of similarity. By employing the graph convolution network,
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information of different nodes propagates along edges and aggregates on the
novel classes iteratively. By taking the classification of base classes as ground
truth, KEG finally gets the weights of novel classes and develops its cognitive
ability on the novel task.

The main contributions of the paper can be summarized in three aspects.
Firstly, KEG extracts social knowledge from the knowledge graph and makes it
easier to add novel tasks to the original model. Secondly, based on the denoising
autoencoder, the combination of the experience makes KEG focus more on the
uniqueness of specific tasks. Thirdly, by introducing the graph convolutional
network, the inter-cluster similarity and inter-cluster dissimilarity are taken into
consideration at the same time. Thus it makes sense for KEG to deal with visual
cognitive development for robots.

2 Methodology

2.1 Problem definition

KEG focuses on visual cognitive development on the image classification task.
Let C denotes all of the categories involved in the task which contains two parts
novel classes Cnovel and base classes Cbase. The original model is trained on
the Cbase with the labeled samples, while novel classes refer to the task with
no labels. According to zero-shot learning, the dataset contains two parts: the
training set Dtrain with images from base classes and the testing set Dtest with
images from novel classes. Thus KEG learns from Dtrain to reconstruct a model
available to Dtest at the same time.

Fig. 1. Integrated framework of KEG which takes both the social knowledge and em-
pirical knowledge into account.

2.2 Knowledge inference Module

The knowledge graph well represents the relation map among different cate-
gories. Given an unweighted graph as G =< V,E >, where V = {v1, v2, ..., vn}
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represents the node-set of all classes, each node in it refers to a category. E =
{ei,j = (vi, vj)} is an edge set, if two node are related there will be an edge be-
tween them. KEG exploits the WordNet [10] as the knowledge graph to extract
social knowledge. For every category, WordNet stores up its semantic descrip-
tion. Glove text model trained on the Wikipedia dataset is exploited to transfer
the semantic description into a word embedding vector that can be operated.
The feature matrix of knowledge denoted as XK ∈ RN×S , where N is the total
number of classes and S is the feature dimension of each class. For WordNet,
the relationship is complicated, like hyponymy, meronymy, and troponymy. KEG
builds the knowledge graph based on the hyponymy. The relationship between
the nodes can be represented as

e(i,j) =

{
1, hyponymy(i,j)

0, otherwise
(1)

The knowledge inference module works to build up the relationship among
categories for zero-shot learning. The key problem is to initialize the classification
weights of novel classes with no labeled samples. To gather information from
related base classes to novel ones, KEG employs the graph convolutional network
on the knowledge graph. For one layer of the graph neural network, a given
node receives messages propagate from its neighbor along the edges and then
aggregates this information combined with its status to update the class feature.
The update process for a given node can be represented as

hi+1 = f(hi, E) (2)

where f(x) refers to the mechanism of propagation and aggregation. E is the
adjacent matrix and hi is the status of the given nodes in the ith layer.

For one layer in GCN, a node only receives the information from classes
connected to it. GCN can also be extended to multiple layers to perform deeper
spread and get more information to perform knowledge inference. Therefore KEG
employs two layer of GCN and the mechanism can be described as

H = D̂−
1
2 ÊD̂−

1
2ReLu(D̂−

1
2 ÊD̂−

1
2XK(0))K(1) (3)

where H denotes the output of graph, while X is the feature matrix. To reserve
self information of nodes, self-loops are added among the propagation, Ê = E+I,
where E ∈ RN×N is the symmetric adjacency matrix and I ∈ RN×N represents
identity matrix. Dii =

∑
j Eij normalizes rows in E to prevent the scale of input

modified by E. Kl is the weight matrix of the lth layer which GCN regulates
constantly to achieve better performance.

During the training process, the goal is to predict the initial classification
of novel classes. The graph is trained to minimize the predicted classification
weights and the ground-truth weights by optimizing the loss

L =
1

2M

M∑
i=1

P∑
j=1

(Wi,j −W k
i,j)

2, (4)
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where W k refers to the output of base classes on GCN, which is a part of H,
and W denotes the ground truth of classification weight obtained from the visual
transfer model. M is the number of base classes and P is the dimensionality of
the vector.

2.3 Visual Transfer Module

To take the visual feature into account, KEG learns the experience from the
process the original model is trained. For an traditional classification model
C(F (·|θ)|w) based on CNN, it contains two parts: feature extractor F (·|θ) and
category classifier C(·|wv) where θ and wv indicate the parameters trained with
Ctrain = {(x̂1, ŷ1), ..., (x̂M , ŷM )}. W v ∈ RM×P refers to the classification weights
that determines the classification score of each category. M is the total number
of base categories and P is the length of classification weight. The goal of visual
transfer module is to reconstruct a general version of classification with the
framework of denoising autoencoder.

KEG also builds up a graph to represent the relationship among categories,
i.e. Gv =< Xv, Ev >, where Xv is the node set and Ev represents the edge
set. Each node refers to a category and has a visual feature Xv

i . For the base
classes, the visual feature is the classification weights extracted from the original
model while for the novel ones it is the initial classification from the knowledge
inference model.

xvi =

{
wv, Ci ∈ Cbase

wk, Ci ∈ Cnovel

(5)

KEG exploits cosine similarity to generate propagation channels which are the
set of edges(i, j) ∈ E of the graph. With the boundary of cosine similarity, it can
decide the density of the graph. If the visual feature of two classes are related
their information can be propagated reciprocally by the edge.

e(i,j) =

{
1,

xv
i ·x

v
j

‖xv
j ‖‖xv

j ‖
> s

0, otherwise
(6)

It is worth noting that the edge is connected in terms of cosine similarity of the
initial node features which is the vector before the injection of Gaussian noise.
S refers to the boundary to the cosine similarity which decides the density of
the graph.

To exploit the denoising autoencoder to generate the classification weights
of novel classes, KEG injects Gaussian noise to the input

x̂v = xv +G (7)

G is the Gaussian noise with the same size as the node feature. Autoencoder is
a neural network that generates the output by taking the input as the ground-
truth. KEG uses the classification weights extracted from the original model as
the ground-truth. By employing a two layers GCN on the graph, novel classes
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learn the mechanism of an end to end learning of classification model from the
original one and generate more universal classification weights W̃∈RN×P . W̃ is
applied to the last layer of the original model which is transferred to C(F (·|θ)|w̃).
Note that differs from W v, W̃ contains n rows of P , which means it represents
the classification of the whole classes C.

With the knowledge inference module and visual transfer module, KEG de-
velops the cognitive ability to novel tasks by generating more universal classifica-
tion weights. Combined with the original classification model, KEG computes the
classification score of every categories as [s1, s2, ..., sN ] = {zT w̃1, z

T w̃2, ..., z
T w̃N}.

z refers to the visual features extracted from the original model. In other words,
KEG learns a mapping network, which makes a good inference from the knowl-
edge and experience space to visual space. With the general classification scores
s = zT w̃, KEG distinguishes novel classes with few samples and transfers the
original model to other datasets efficiently.

3 Experiment

3.1 Datasets

As KEG focus on the transfer learning of models between different datasets,
ImageNet [9] is used as the base classes and AWA2 [17] as the novel classes.
Besides, WordNet represents the source for constructing a knowledge graph.

ImageNet ImageNet is an image dataset constructed base on the hierarchical
structure of WordNet. We use ImageNet 2012 as the training set for zero-shot
learning, which contains 1000 categories. There are no more than half of the
categories are animals. Besides it also contains other classes like daily necessities,
buildings, foods, which is a general dataset.

Animals with Attributes 2 AwA2 contains images of 50 animal classes with
pre-extracted feature for each image. However, as we try to learn the experience
from base classes, we do not use the feature it provides, but the images only.
There are about ten classes that are disjoint from ImageNet and they make up
the testing set in the experiment to test the transfer ability of KEG.

3.2 Experimental Setting

The original recognition model is pre-trained on ResNet50 on ImageNet 2012.
The final general classification weights will adjust to the last layer of it. The
output dimension of KEG is set to 2049. The model is trained in 3000 epochs.
We use Adam optimizer for the training process with the weight decay of 0.0005
and the learning rate of 0.001. The boundary of similarity is set to 0.6 to ensure
the density of the graph is suitable. The information of every node is mixed
with both experience and knowledge equably. The whole project is under the
framework of PyTorch and operated on the Ubuntu system.
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3.3 Comparison

Table 1. Top-1 accuracy (%) results for classification

model accuracy

SGCN [5] 74.6

SSE [11] 61.0

DEM [12] 67.1

SAE [13] 61.0

RelationNet [14] 64.2

SYNC [15] 46.6

SJE [16] 61.9

KEG 77.8

From the experiment results posted in table 1, KEG shows better perfor-
mance on zero-shot learning. It increases the classification accuracy of novel
tasks. Previous methods have to extract visual features from novel classes, KEG
needs no sample on novel categories. KEG stores prior social knowledge with
the structure of the knowledge graph. It can easily get information from the
semantic description to support its visual inference. Thus with the help of social
knowledge, the way exploits empirical information expands its application range.

On the other hand, the information from the social knowledge is lack of the
feature from visual space. Empirical knowledge shows the connection between
categories from a visual point. From the experiment, it shows there are obvious
differences in the accuracy of specific categories between KEG and SGCN, for
example, ’mole’. The direct neighbors of ’mole’ from the inheritance and the
visual space are different. From the relationship shown in figure 4, we notice

Fig. 2. The direct neighbor from the relationship of inheritance and the visual space.

that besides the relationship from biology, there is also a similarity in the visual
feature. For example, the dolphin belongs to the mammal but it looks more like
fish. Thus it is more reasonable to gather information from the visual side since
the goal of the model is to classify the image correctly.
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3.4 Analysis of KEG

We perform ablation studies on modules of KEG to ensure that the choices we
make have the best performance. Specifically, we examine the modules on the
following. First, we test the similarity boundary of the connection mechanism to
analyze the influence of the density of the graph. Then we use the best perfor-
mance “similarity” and change the “DAE module” to ensure its importance for
the increase of accuracy. The result of the ablation study is shown below.

Table 2. Top-1 accuracy results for classification

Similarity 0.8 0.6 0.5 0.4
Accuracy 76.3 77.8 73.3 73.96

DAE module 0 1
Accuracy 74.6 77.8

From the ablation study, we notice that a suitable similarity boundary is vi-
tal for accuracy. When the boundary is high, The similarity between categories
is tight which results in a dense graph. However large boundary does not bring
better performance which may be caused by dilution of information through the
path. When the boundary is small, it means the relationship between the neigh-
bor becomes further which results in a sparse graph. Since the given node can
not get enough supplementary information from its neighbor the accuracy cuts
down as well. Thus a suitable similarity boundary is vital for the performance.
We also test the necessity of the model which shows that with the help of DAE
the classification accuracy of zero-shot learning increases. The injected Gaussian
noise indeed helps to reconstruct a general version of the classification weights.

4 Conclusion

In this paper, we address the problem of visual cognitive development from
two parts: zero-shot learning and cross-task learning. The proposed model KEG
stores social knowledge with the structure of the knowledge graph. Thus KEG
builds a relation map, which supports the accession of the novel task. It also
takes the feature relationship in the visual space into account with the informa-
tion from the empirical knowledge. The mix of the two sources of information
makes it suitable to accomplish visual cognitive development. During experi-
ments, the ability of the proposed model outperforms previous state-of-the-art
methods. In future work, we will devote to improving the mechanism of fusion to
further improve the performance of our model. We also try to perform a better
connection mode to avoid the attenuation of information.
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