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Abstract—Recent representation learning approaches mainly
fall into two paradigms: contrastive learning (CL) and masked
image modeling (MIM). Combining these two methods may boost
the performance, but its learning process still heavily depends on
the random masking strategy. We conjecture that the random
masking may hinder learning the comprehensive relationship be-
tween concept and visual patches. To overcome these limitations,
we propose an information-density masking (IDM) strategy for
general visual transformers. Specifically, the IDM mask out the
visual patches according to their activation values of attention
maps. To obtain the attention maps before the reconstruction, a
self-supervised training framework CAMAE is further proposed.
In addition, in order to reduce the redundancy among different
attention maps, we introduce a pattern-learning balance (PLB)
sampling to adaptively adjust the learning progress in different
attention spaces. Extensive experiments indicate that our method
efficiently retains more comprehensive visual characteristics and
achieves state-of-the-art performance.

Index Terms—Masked image modeling, contrastive learning,
unsupervised learning

I. INTRODUCTION

In recent years, contrastive learning (CL) and masked image
modeling (MIM) have attracted wide interest in the field
of self-supervised learning (SSL). CL-based methods [1]–[3]
distinguish whether two input images come from the same
instance, while MIM methods [4] reconstruct the masked
image from visible patches that capture semantic features.
Both methods could enable the visual encoder to learn rich
and holistic representations. However, Hinton et al. [1] pointed
out that the CL may lead the encoder to remove the low-
level transformation-dependent characteristics, which can be
harmful to generalized representation learning. Meanwhile,
previous works [4] found that the MIM requires much more
training epochs, and it only captures limited high-level seman-
tics within local details. How to learn comprehensive visual
representation is still an open question.

Previous works find that combining CL and MIM improves
the quality of learned representations. iBOT [5] proposes a
method of self-distillation learning by combining CL and
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MIM, but this method is hard to capture pixel-level visual
characteristics and needs many training epochs. CMAE [6]
designs a multi-task framework to coordinate the learning
of pixel-level and conceptual representations, but the training
efficiency problem is still unsolved.

We conjecture that the random masking strategy limits the
efficiency of learning the relationship between concept and
visual patches: the random masking strategy may contain
many semantic-irrelevant patches, thus the training process
needs more sampling attempts to capture useful characteris-
tics. Moreover, previously proposed masking approaches like
grid or block masks both fail to achieve effective semantic-
wise masking [4]. Importantly, DINO [7] identifies that self-
supervised visual transformer (ViT) enables attention maps
to locate the semantic regions of images. Inspired by this
finding, here we propose an information-density masking
(IDM) strategy to produce effective mask patterns as shown in
Figure 1. To provide the attention maps for IDM, we suggest
the Contrastive Attentional Masked Auto-encoder (CAMAE)
framework. Specifically, IDM samples an attention map from
CAMAE with multiple attention heads in each step, and it
sorts the visual patches based on their activation values of
the sampled attention map. In such a manner, IDM masks the
most informative 75% patches for MIM training. Finally, we
find that the captured total patterns have strong redundancy
though each attention space only captures a specific mode,
suggesting that the learning progress among patterns could be
imbalanced. To overcome this issue, we design the pattern-
learning balance (PLB) sampling to balance the learning
among different attention spaces. In summary, the contribution
of this work includes:

• We propose an information-density masking (IDM) strat-
egy, which produces informative masks for MIM through
attention information. The IDM significantly reduces the
training epochs needed for MIM training (from 1600
epochs to 400 epochs).

• We discover that the visual patterns captured by dif-
ferent attention maps have significant overlaps that in-
duce unbalanced mask modeling between foreground and
background. Thus we design a pattern-learning balance
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Fig. 1: The pipeline of the proposed CAMAE framework. Ti/T
′

i are the random data augmentation operators sampled from the
same family of augmentations. ∗θ are the parameters of the encoder network, and ∗ξ represent the parameters are momentum
updated by ∗θ and sg means stop-gradient. {atten1

i , .., atten
M
i } means the set of multiple attention maps (number=M ) of i-th

images in the last block of ViT. [p1, ..., pM ] is an M-dimension vector representing sampling probabilities distribution. The
“MIM loss” is used to update the sampling probabilities according to our pattern-learning balanced strategy. Noted that, fθ is
the same network that appears twice in the pipeline.

(PLB) strategy to re-balance the visual patterns during
the learning progress. The PLB eventually improves the
linear performance by 3% than the random sampling
strategy.

• We propose a new self-supervised learning framework
that combines the above strategies to learn comprehen-
sive visual structures for representation learning, which
significantly improves performance on the downstream
task (e.g. linear classification on the ImageNet-100 has a
gain of 6.0% over MoCo v3).

II. RELATED WORK

Contrastive learning. The CL compares two augmented
views of the same input to capture semantic-invariant features,
such as object-related characteristics. Some works [1], [2], [8]–
[10] attract the positive (similar) pairs and repulse negative
(different) pairs to learn the representations. Some works [7],
[11], [12] also provide a self-distillation framework, which
only matches positive samples to learn the representations.
Moreover, Zbontar et al. [13] proposes to minimize the redun-
dancy between the vector components of positive pairs’ vectors
could also achieve good representation learning. However,
Hinton et al. [1] has pointed out that CL-based methods neglect
some essential information such as colour or object orientation.

Masked image modeling. Since masked language modeling in
the NLP field achieves great success, several pioneering works
[14], [15] propose Masked Image modeling (MIM). iGPT [14]
reconstructs the masked down-sampled images to train the
visual encoder, but the down-sample operation loses visual
details. BEiT [16] tokenizes the visual patches via a discrete

VAE to learn representations by predicting masked tokens, but
the discrete operation still loses information. SimMIM [17]
proposes to reconstruct the masked image area in the original
pixel space, but the encoding needs to input the masked visual
token. In contrast, MAE [4] only inputs unmasked visual
tokens to the encoding, which greatly reduces the computation.
Moreover, AttMask [18] proposes to produce the mask guided
by attention maps, but it uses the average activation of different
attention maps, which ignores different visual patterns. CMAE
[6] combines CL and MAE as multi-task framework to boost
the performance. Importantly, all the above MIM methods are
inefficient, which require abundant training epochs to learn
effective representations.

III. METHOD

As shown in Figure 1, the CL and MIM in our framework
coordinate to supplement each other to learn different levels of
visual structure. However, the MIM requires abundant training
epochs induced by the random masking strategy. To further
improve the efficiency of the MIM training, we find that
the attention activation in ViT is beneficial to produce a
valuable mask pattern. The details of each component will
be introduced in the following.

A. Contrastive learning

First of all, we obtain the two augmented views xi and x
′

i

of the input image i. Consistent with the CL framework [10],
here we apply an encoder fθ and a momentum encoder fξ to
extract their hidden output hi and h

′

i. The projectors gθ, gξ



Fig. 2: Visualization of different attention maps of the last block of ViT-B/16 trained by our CAMAE, which contains various
visual patterns and could be used to produce effective masks for MIM training.

further cast the hidden outputs to the visual representations zi
and z

′

i , and the contrastive objective loss is:

Lc(xi) = − log
exp(zi · z′i/τ)

exp(zi · z′i/τ) +
∑
j ̸=i

exp(zi · z′j/τ)
, (1)

where z′j is the representation of other samples in the same
batch produced by the momentum projector.

B. Masked image modeling
The masked images are trained by the MIM task upon the

same encoder fθ with an additional decoder module qθ, and
the masked reconstruct loss Lm of m-th attention space is:

Lm =
∑
i

Lm(xi) =
∑
h

maskmi,h ∗ (xi,h − x̃i,h)
2, (2)

where maskmi,h is the binary matrix representing whether
h-th patch of i-th image should be masked, and the meaning
of m will be introduced later. xi,h means the pixel input of
the i-th image’s h-th patch, x̃i,h means the reconstructed pixel
output corresponding to the i-th image’s h-th patch.

The reconstruction loss is calculated by Equation 2, which
equals the mean squared error between the reconstructed pixel
output and the original pixel input. We note that maskmi,h will
filter the unmasked pixels, and this loss will only calculate the
reconstruction error based on masked pixels.

C. Information-density masking strategy
Then, to improve the training efficiency of the MIM, we pro-

pose an information-density mask (IDM) strategy to produce
semantic-related masks rather than random erasing. In general
visual transformer networks, the last block has multiple self-
attention maps {atten1

i , .., atten
M
i } as shown in Figure 1. The

values of the attention map (patch size × patch size) represent
the masked importance of corresponding visual patches. IDM
sorts the visual patches according to the activation values of
the attention map and produces the semantic-related mask as
shown in Figure 3. If the value is bigger, it is more important
to the representations, so our IDM masks out the top 75%
values visual patches to train a MIM task.

Equation 3 indicates the relationship between mask and
attention maps:

maskmi,h = I(h, attenm
i ), (3)

0.1 0.4 0.6 0.1

0.2 0.5 0.7 0.4

0.3 0.4 0.3 0.3

0.1 0.1 0.2 0.3

Mask 
top 75% patches 

Attention map Attention mask image

Fig. 3: Schematic illustration of the IDM mask. The real patch
size is 16.

where the I(·) represents the IDM module in the original pa-
per, attenm

i is the i-th image’s m-th attention head activation
value, and h indicates the index of individual image patches.
Specifically, if the h-th image patch activation value over the
top 25% total patches of attenm

i , then this patch should be
masked.

However, the encoder has multiple attention maps output,
and IDM needs to decide which one should be selected to
produce the mask. Random sampling is a good choice, but we
will provide a more efficient approach in the next section.

D. Pattern-learning balanced sampling

Although previous work [7] proves the attention maps are
rich in high-level features, we further discover that different
attention maps contain various visual patterns. As shown
in Figure 2, the visual modes are highly semantic-related.
However, the captured semantic patterns are heavily imbal-
anced because some visual modes are redundant. Therefore,
the sampling strategy should balance the learning progress
between different patterns.

Therefore, we propose a patterns-learning balance sample
strategy (PLB) to bridge the learning gap. PLB samples
well-trained attention patterns with low probability, otherwise
samples with high probability. PLB uses the reconstruction
loss to represent the learning progress of each attention space.
Specifically, PLB will gather statistics of the average loss value
during each epoch, it saves the reconstruct loss Lm related to
the m-th attention map. After each training epoch, PLB will
update the probability by the saved loss value according to



Equation 4:

pm ← (1− λ) ∗ pm + λ ∗ exp(Lm/ϵ)∑M
k exp(Lk/ϵ)

, (4)

where M is the number of attention maps, and λ, ϵ are hyper-
parameters (λ=0.99,ϵ=0.2)

At each step, PLB will sample the index m from P to select
the attention map to produce mask governed by Equation 5
and 3. During initialization, all attention spaces have the same
probability.

m ∼ P (p1, ..., pM ). (5)

In conclusion, the total training loss is:

L =
∑
i

(Lc(xi) +
∑
m

Lm(xi)). (6)

IV. EXPERIMENTS

A. Implementation details

For a fair comparison, our pre-training and linear
classification experiments are conducted on the ImageNet-
100/1K dataset, following the same protocol as [4].

Architecture. We use the vision transformers (ViT) [15] and
ViT-B/16 as the backbone f. For ViTs, /16 denotes its patch
size is 16. We pre-train and fine-tune the Transformers with
224-size images, so the total number of patch tokens is 196.
The projection head h is a 3-layer MLPs following [10].
Pre-training. We pre-train the ViT-B on the eight V100 GPUs
with a batch size of 4096 for 400 epochs. We use Xavier
uniform [19] to initialize all Transformer blocks. We use the
AdamW optimizer [20] in the pre-training. We use the linear lr
scaling rule: lr = base lr × batchsize / 256. The mask ratio is
75%. The τ of contrastive loss is 0.2. The dimension of hidden
output of the encoder is 768. The dimension of the output of
the projector is 256. The self-distillation setting follows [7]
and contrastive learning setting is the same as [10]. The MIM
experiments are similar to [4].
Downstream task. (1)Linear probing and fine-tuning: We use
a linear classifier on the frozen representations to evaluate the
quality of pre-trained features. For this process, we use the
same regularization strategies as [4] and set weight decay
as zero. Our fine-tuning follows the common practice of
supervised ViT training. (2)Semi-supervised learning: We split
1 percent and 10 percent training dataset according to [1], and
we follow the experimental setting with [13]. (3)Detection/seg-
mentation 1 are based on the open-source code to evaluate the
pre-trained encoder. The image scale is in [640, 800] pixels
during training and 800 at inference.

B. Effectiveness of IDM

Previous studies of CL [7] prove that self-supervised fea-
tures of ViT contain various semantic visual characteristics. In
this paper, we investigate whether CL-pretrained ViTs could
provide effective masks when applying the IDM method.

1https://github.com/bytedance/ibot

TABLE I: The evaluation of MAE when using different IDM
methods on the ImageNet-100 dataset. The best results are in
bold.

Method IDM Epoch Acc.

MAE [4] - 400 61.3

MAE DINO [7] 800 33.8
MAE MoCo [10] 800 35.7
MAE End-to-end 400 62.5

CAMAE - 400 83.0
CAMAE End-to-end 400 83.2

The results of Table I show that the IDM cannot use well-
trained attention maps, only the end-to-end IDM strategy could
work well.

C. Effectiveness of PLB

In Table II we compare different masking strategies: (1)
Random: randomly masking the visual patches (2) Attention:
randomly sampling attention maps to produce masks. (3) PLB:
PLB sampling attention maps to produce masks.

TABLE II: The evaluation of the PLB. Experiments on the
linear classification of ImageNet-100. The “Mask” means
different mask strategies. “Acc.” indicates the top-1 accuracy
of linear classification. The best results are in bold.

Method Mask Epoch Acc.

Random 400 83.0
IDM 400 83.2CAMAE
IDM+PLB 400 86.5

The results show that the PLB strategy significantly im-
proves the performance and efficiency of pre-training with
jointing the contrastive pretext task. However, we find the
PLB is not helpful for MAE framework. Because the PLB
tends to sample the mask patterns that contributed more to
the reconstruction loss with high probabilities. We found that
the PLB tends to capture noisy attention maps with large
reconstruct loss in the MAE framework without CL. Thus CL
is necessary for PLB.

D. Visualization

We visualize the object-related attention map produced by
different SSL methods as shown in Figure 4. In the first image,
there is a bird standing on the grass ground, in the previous CL
methods, such as iBOT or MAE, the object-related attention
maps always contain the background grass, and the attention
map of our method mainly focuses on the bird itself. This
result indicates that the attention maps captured by CAMAE
decouple the background and object information much better
when compared to other methods.

E. Linear evaluation

To verify the effectiveness of our method, we use linear
classification to evaluate the quality of learned representations.
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Fig. 4: Visualization of attention map compared with different
MIM methods.

TABLE III: Pre-experiments on ImageNet-100/1K linear clas-
sification. Models based on ViT-B/16. “Lin.” indicates the
top-1 accuracy of linear evaluation of classification task with
ImageNet-100/1K. “Fin.” means the fine-tune results. “hours”
indicates the number of hours required. The best results are
in bold.

Method Epoch IN-100 IN-1K
hours Lin. Fin. Lin. Fin.

MoCo v3 [10] 300 14 80.2 86.8 76.7 83.2
DINO [7] 300 24 81.8 88.1 78.2 83.6
MAE [4] 800 32 74.4 85.7 72.7 83.6
iBOT [5] 800 60 83.3 89.8 79.4 84.0
AttMask [18] 100 - - - 76.1 -
CMAE [6] 800 - - - - 84.4

CAMAE 100 8 81.2 87.6 77.2 81.5
CAMAE 400 29 83.2 89.9 79.3 84.1
CAMAE + PLB 400 29 86.5 90.9 80.2 84.7

In Table III, the CAMAE outperforms other self-supervised
methods and achieves a new state-of-the-art performance.

Moreover, training epochs and hours in Table III represent
the efficiency of pre-training, and we can see that CAMAE
does not require too many training epochs, achieving efficient
representation learning. In addition, DINO [7] and iBOT [5]
use multi-crop technology to boost performance, but it slows
down the training process. The experiment results indicate
that our proposal significantly improves linear classification
performance with fewer training epochs compared to other
MIM methods.

F. Detection/segmentation

Here we evaluate the ImageNet-100 pre-trained ViT-B/16
on the detection/segmentation task as shown in Table IV. The
results indicate that our approach learns general representa-
tions and can be well-transferred to fine-grain visual tasks.

TABLE IV: Instance segmentation and object detection results
on COCO. * denotes reproduced results. The best results are
in bold.

Method AP bb AP bb
50 AP bb

75 APmk APmk
50 APmk

75

MoCo v3∗ 38.1 56.8 41.1 33.6 54.0 35.6

CAMAE 38.0 56.6 40.7 33.5 53.7 35.3
CAMAE+PLB 38.8 57.1 41.5 34.0 54.7 36.2

TABLE V: The top-1 semi-supervised classification accuracy
of the ImageNet-100 using 1% and 10% training examples. *
denotes reproduced results. The best results are in bold.

Method 1% Label 10% Label

MoCo v3∗ [10] 55.9 77.0
DINO∗ [7] 57.2 79.6
iBOT∗ [5] 57.6 80.8

CAMAE 58.4 81.1
CAMAE+PLB 62.5 82.1

G. Semi-supervised learning

We use 1% and 10% subset of the ImageNet-100 to test the
semi-supervised learning performance as shown in Table V.

The results show that our proposal consistently improves
the performance of the semi-supervised learning task.

V. DISCUSSION AND CONCLUSIONS

In this paper, we propose a new masking strategy named
IDM to address the training inefficiency of the MIM task.
We demonstrate the effectiveness of producing the mask
with attention maps, which significantly improves the training
efficiency and boosts the downstream performance. To pro-
mote consistent pattern learning, we design a pattern-learning
balanced sampling strategy. Experimental results show that
our framework decouples the object and background in the
attention maps much better than previous methods. Thus,
our method achieves considerable and consistent gains in
downstream performance over the state-of-the-art methods. In
summary, the proposed IDM is a versatile, transferable, and
low-cost approach to improve representation learning.
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