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ABSTRACT

Extracting event temporal relations is an important task for natural

language understanding.Manyworks have been proposed for super-

vised event temporal relation extraction, which typically requires a

large amount of human-annotated data for model training. How-

ever, the data annotation for this task is very time-consuming and

challenging. To this end, we study the problem of semi-supervised
event temporal relation extraction. Self-training as a widely used

semi-supervised learning method can be utilized for this problem.

However, it suffers from the noisy pseudo-labeling problem. In

this paper, we propose the use of uncertainty-aware self-training

framework (UAST) to quantify the model uncertainty for coping

with pseudo-labeling errors. Specifically, UAST utilizes (1) Uncer-
tainty Estimation module to compute the model uncertainty for

pseudo-labeling unlabeled data; (2) Sample Selection with Explo-
ration module to select informative samples based on uncertainty

estimates; and (3) Uncertainty-Aware Learning module to explicitly

incorporate the model uncertainty into the self-training process.

Experimental results indicate that our approach significantly out-

performs previous state-of-the-art methods.
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1 INTRODUCTION

Event temporal relation extraction (ETRE) aims to identify tempo-

ral relations among mentioned events within a given text. Figure

1 provides a representative example of this task where an ETRE
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An explosion occurred in a clinic in Atlanta last month.
Now officials are investigating whether, Eric Rudolph,
who remains at large, is linked to all the attack

explosion investigating attack
before after

included

Figure 1: An example of event temporal relation extraction.

model should be able to predict all pairwise relations among men-

tioned events, i.e., explosion is BEFORE investigating, explosion is

INCLUDED in attack, and investigating is AFTER attack. The extrac-
tion of temporal relations among events is an important natural

language understanding (NLU) task and can facilitate a wide range

of downstream applications, likely question answering [16], narra-

tive prediction [3], timeline construction [6] and so on.

In recent years, various neural network models have been pro-

posed for supervised event temporal relation extraction [9, 20, 24,

33], which heavily relies on abundant human-annotated data to

yield state-of-the-art results. However, the data annotation for the

task is known to be very time-consuming and difficult even for

experts, because it needs to understand each event’s start and end

times within a complicated context [2, 24]. As a result, existing

event temporal relation extraction datasets are usually small. For

example, the widely used dataset MATRES [25] only contains 183

documents for training, which is far from enough to train large

neural network models [11]. To this end, we study the problem of

semi-supervised event temporal relation extraction, which seeks to

leverage a limited number of labeled data and a large amount of

unlabeled data for model training.

As a widely used semi-supervised learning method, self-training

[28, 30] has recently been shown to obtain state-of-the-art per-

formance for various tasks, including neural machine translation

[12], text classification [21] and machine reading comprehension

[27]. Its basic idea is to first train a model on some amount of la-

beled data, and then use the updated model to pseudo-annotate

unlabeled data. The original labeled data is augmented with the

pseudo-labeled data to re-train the model. The iteration training

process is repeated until convergence. Due to its simplicity and effec-

tiveness, we apply the self-training method to the semi-supervised

event temporal relation extraction task. However, we find that the

noisy pseudo-labeling constitutes a critical challenge. Specifically,

the pseudo-labeled data is inevitably noisy, while the self-training

method leverages all pseudo-labeled data without distinction. As

a consequence, the model gradually overfits noisy pseudo-labeled

samples, which hinders the performance [18, 34]. In this scenario,
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it is natural to perform sample selection, which can enable self-

training to better cope with pseudo-labeling errors.

Intuitively, when selecting pseudo-annotated samples, if we only

focus on the samples that the model already predicts with high

confidence, there is little to gain with self-training, because these

samples are very familiar to the model. On the other hand, the sam-

ples with less predictive confidence are not reliable for the model,

because these samples could be very noisy or too difficult to learn

from them. Therefore, the model could benefit from judiciously

selecting samples that the model is uncertain about. However, it is

non-trivial to generate uncertainty estimates for non-probabilistic

models like neural networks. Fortunately, we can leverage recent

advances in Bayesian deep learning [15] to calculate the model

uncertainty for pseudo-labeling.

In this paper, we propose the use of uncertainty-aware self-

training (UAST) [22] to quantify the model uncertainty for tackling

noisy pseudo-labeling problem. The framework consists of three

major components: (1) Uncertainty Estimation: we leverage Monte

Carlo Dropout [7] to compute the model uncertainty in terms of

the expectation and variance of predictive probability; (2) Sample
Selection with Exploration: based on the uncertainty estimate, we em-

ploy two entropy-based strategies to select samples that the model

is more or less uncertain about for self-training; (3) Uncertainty-
Aware Learning: when re-training the model on the selected data,

we explicitly consider the variance of each sample to further re-

duce the impact of pseudo-labeling errors. Experimental results on

two widely used datasets indicate that our approach substantially

outperforms previous state-of-the-art methods.

2 METHODOLOGY

2.1 Base Model

Following recent works [9, 10, 33], we adopt the pre-trained lan-

guage model (PLM) based architecture as the base model for event

temporal relation extraction. Specifically, given an instance x (i.e.,

an event pair and its context), we first use a PLM, such as BERT

[5] or RoBERTa [19], to generate the contextualized embedding

for each token. Then, the token embeddings are further fed into a

bidirectional long short-term memory network (BiLSTM) [13]. The

outputs of the BiLSTM layer for the two events are concatenated

as the contextualized features. Finally, we feed the features into

a softmax classifier to predict the temporal relation. We refer to

the base model as PLM+BiLSTM. The feature extractor (i.e., PLM

and BiLSTM) is denoted as fW , whereW denotes model parame-

ters. Figure 2 shows an overview of the UAST framework. We will

illustrate each component in detail.

2.2 Uncertainty Estimation

Suppose Dl = {xi ,yi }
M
i=1 is a set ofM labeled instances, where yi

is the label for the instance xi . Also suppose Du = {x j }
N
j=1 is a set

of N unlabeled instances. Given the base model PLM+BiLSTM, we

first train it on the labeled data Dl . Then, the updated model is

used to predict the label of the unlabeled data Du . At the same time,

we leverage the Monte Carlo Dropout [7] to estimate the model

uncertainty for pseudo-labeling.

Labeled
Data

Unlabeled
Data

Augmentation 
with Uncertainty 

Estimates

Unlabeled
Data

Easy
Samples

Hard
Samples

Base Model

Selected
Samples

Labeled
Samples

Re-training 
Model

Selecting 
samples with

Uncertainty 
Estimation

Sample Selection
with Exploration

Uncertainty-Aware 
Learning

probability

Figure 2: The left part is the overview of the UAST frame-

work. The right part illustrates the detailed procedures that

augment the self-training with uncertainty estimates.

Specifically, for each unlabeled instance xu , we conduct T for-

ward passes with dropout layers being activated. Each pass t gen-

erates a pseudo-label denoted as p(yt
∗) = softmax(f W̃t (xu )), with

corresponding model parameters W̃t . We aggregate predictions

from T passes to obtain the final pseudo-labels:

y = argmaxc

T∑
t=1

I[argmaxc′ (p(yt
∗ = c ′)) = c], (1)

where I(·) denotes an indicator function. Intuitively, when pseudo-

labeling the unlabeled data, the more confident the model is, the

higher expectation and lower variance of predictive probability

are. Therefore, we consider the model uncertainty in terms of the

expectation and variance. Given the results of T forward passes

{p(yt
∗)}Tt=1, the variance can be approximated by

Var (y) = Var [E(y |xu ;W )]+E[Var (y |xu ;W )] ≈ (
1

T

T∑
t=1

p(yt ∗)2−E(y)2), (2)

where E(y) denotes the predictive expectation which can be ap-

proximately computed as:

E(y) ≈
1

T

T∑
t=1

p(yt ∗) =
1

T

T∑
t=1

softmax(f W̃t (xu )). (3)

2.3 Sample Selection with Exploration

Consider D ′
u = {xu ,yu } to be pseudo-labeled dataset. To select

informative pseudo-labeled samples, we adopt the Bayesian Active

Learning by Disagreement (BALD) measure [14]. The objective of

the BALD measure is to select samples that maximize the informa-

tion gain about the model parameters:

B(yu ,W |xu , D′
u ) = H[yu |xu , D

′
u ] − Ep(W |D′

u )[H[yu |xu ;W ]], (4)

where H[yu |xu ;W ] denotes the entropy of predicting the label yu
for sample xu under the model parametersW . Since the model

posterior is intractable, Gal et al. [8] utilize stochastic dropouts to

approximate the above measure:

B(yu ,W |xu , D′
u ) ≈ B̂(yu ,W |xu , D′

u ) = −
∑
c
(
1

T

∑
t
p̂tc ) log(

1

T

∑
t
p̂tc )

+
1

T

∑
t,c

p̂tc log(p̂
t
c ),

(5)

where p̂tc = p(yu = c |xu ;W̃t ). The value of the measure is in-

versely proportional to the expectation, therefore, a high value of

B̂(yu ,W |xu ,D
′
u ) indicates that the model is highly uncertain about
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Table 1: Performance comparisonwith various amounts of labeled data and 50% unlabeled data on the TB-Dense andMATRES.

Methods

TB-Dense MATRES

30% 40% 30% 40%

Pre. (%) Rec. (%) F1. (%) Pre. (%) Rec. (%) F1. (%) Pre. (%) Rec. (%) F1. (%) Pre. (%) Rec. (%) F1. (%)

PLM+BiLSTM 53.3 53.3 53.3 55.2 55.2 55.2 73.9 69.3 71.5 71.1 74.0 72.5

Han et al. [9] 53.6 53.6 53.6 55.7 55.7 55.7 73.6 70.4 72.0 72.5 73.3 72.9

Mean-Teacher [31] 53.9 53.9 53.9 56.1 56.1 56.1 72.7 71.1 71.9 71.9 74.1 73.0

Self-Training [30] 54.3 54.3 54.3 56.4 56.4 56.4 67.1 77.9 72.1 69.5 77.6 73.3

UAST (Ours) 58.2 58.2 58.2 60.8 60.8 60.8 74.4 76.2 75.3 73.7 79.1 76.3

the predicted label yu for the sample xu . Based on the measure, we

can employ two strategies to select samples:

(1) Selecting Easy Samples: We rank the pseudo-labeled sam-

ples by 1 − B̂(yu ,W |xu ,D
′
u ). The top samples are easier examples,

namely, the model is less uncertain about these samples. Intuitively,

if we always select these easy samples, the model will not acquire

any additional information, because the model is always certain

about these examples. Therefore, we select samples with some

exploration (i.e., probability):

pu =
1 − B̂(yu ,W |xu , D′

u )∑
xu ∈D′

u
1 − B̂(yu ,W |xu , D′

u )
. (6)

That is to say, we select the instance (xu ,yu ) with probability pu .
(2) Selecting Hard Samples: Similar to selecting easy samples,

we rank the pseudo-labeled samples by B̂(yu ,W |xu ,D
′
u ). The top

samples are called harder ones that the model is more uncertain

about. If the model always focuses on these hard samples, it will

hinder the performance due to noisy pseudo-labels. Thus, we also

select samples with following probability:

pu =
B̂(yu ,W |xu , D′

u )∑
xu ∈D′

u
B̂(yu ,W |xu , D′

u )
. (7)

The above two strategies bias the sampling process towards

picking easier samples (i.e., less uncertainty) and harder ones (i.e.,

more uncertainty), respectively. Our method uses either of the two

strategies for selecting samples for self-training.

2.4 Uncertainty-Aware Learning

The above sampling strategies select informative samples according

to the posterior entropy. However, the strategies only leverage the

expectation, ignoring the predictive variance. To enable the model

to better cope with pseudo-labeling errors, we intend to explicitly

incorporate the predictive variance into the training process. The

original objective of self-training can be formulated as:

min

W
Exl ,yl ∈Dl [− logp (yl |xl ;W )]+Exu ∈Du Ey∼p(y |xu ;W ∗) [− logp (y |xu ;W )] ,

(8)

whereW ∗
denotes the model parameters after training on the la-

beled data. In order to incorporate the uncertainty into the self-

training, we modify the above loss function as:

min

W
Exl ,yl ∈Dl [− logp (yl |xl ,W )] + Exu ∈Su EW̃ ∼qθ (W ∗)

Ey∼p(y |xu ,W̃ )

[
− logp (y |xu ,W ) · log

1

Var (y)

]
.

(9)

where Su denotes the selected instances. qθ (W
∗) is the parameter

distribution. The model parameters W̃ ∼ qθ (W
∗) are obtained by

activating Dropouts. The per-sample loss for the unlabeled instance

xu is a combination of the log loss − logp(y) and inverse of its

predictive variance given by log
1

Var (y) with log transformation for

scaling. We repeat the above procedures (i.e., pseudo-labeling with

uncertainty estimation, sample selection and uncertainty-aware

learning) until the model convergence.

3 EXPERIMENTS

3.1 Datasets

We evaluate ourmethod on twowidely used datasets: (1)TB-Dense

[1] is constructed based on TimeBank Corpus [29] but addresses

the sparse annotation issue in the original data by introducing the

VAGUE label. It defines 6 classes of temporal relations: BEFORE,
AFTER, INCLUDES, INCLUDED, SIMULTANEOUS, and VAGUE. (2)
MATRES [25] is developed from TempEval-3 [32]. It uses a multi-

axis annotation scheme to enhance data quality and adopts a start-

point of events to improve inter-annotator agreements. The dataset

defines 4 classes of relations: BEFORE, AFTER, SIMULTANEOUS,
and VAGUE, where the VAGUE is regarded as the negative class.

3.2 Evaluation Metrics and Hyperparameters

To be consistent with previous work [23, 24], we adopt micro-

averaged precision, recall and F1 score as evaluation metrics. For

the TB-Dense, VAGUE pairs are taken into consideration (i.e., all

classes are seen as positive classes). Thus, the metric should share

the same precision, recall and F1 score. For the MATRES, since

VAGUE pairs are excluded in metrics calculations, the precision,

recall and F1 score are different. We leverage the RoBERTa [19] to

encode the text. The sizes of hidden states of BiLSTM are 60 and 40

for the TB-Dense and MATRES, respectively. The learning rate is

initialized as 2e-5 with a linear decay. We use the Adam algorithm

[17] to optimize model parameters.

3.3 Overall Results

Utilizing Limited Labeled Data. For the two datasets, we sample

30% and 40% training data as labeled sets, and we also sample 50%

training data as an unlabeled set. We compare our method with

two representative semi-supervised learning methods, i.e., Mean-

Teacher [31] and Self-Training [30]. In addition, the state-of-the-art

ETRE method [9] is also employed as the baseline. Table 1 shows

the experimental results on the TB-Dense and MATRES. Overall,

we can observe that our method significantly outperforms all the

baselines. It demonstrates that our method can effectively alleviate
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Table 2: Experimental results on the TB-Dense dataset.

Methods Pre. (%) Rec. (%) F1. (%)

PLM+BiLSTM 62.4 62.4 62.4

Chambers et al. [2] 49.4 49.4 49.4

Cheng and Miyao [4] 52.9 52.9 52.9

Meng and Rumshisky [20] 57.0 57.0 57.0

Han et al. [9] 63.2 63.2 63.2

UAST (Ours) 64.3 64.3 64.3

Table 3: Experimental results on the MATRES dataset.

Methods Pre. (%) Rec. (%) F1. (%)

PLM+BiLSTM 72.1 83.6 77.4

Ning et al. [26] 61.6 72.5 66.6

Ning et al. [25] 66.0 72.3 69.0

Ning et al. [24] 71.3 82.1 76.3

Wang et al. [33] 74.3 85.0 78.8

UAST (Ours) 76.6 84.9 80.5

Table 4: The performance of different sample selection

methods on the TB-Dense and MATRES datasets.

Methods

TB-Dense MATRES

30% labeled 40% labeled 30% labeled 40% labeled

Random 54.1 55.9 72.5 73.2

Probability 54.3 55.8 73.1 74.0

Hard (Ours) 56.2 58.4 74.0 74.7

Easy (Ours) 56.5 59.2 74.4 75.2

the noisy pseudo-labeling problem of the self-training method.

Utilizing All the Labeled Data. We also evaluate our method

on the full training sets. When the model is trained on the TB-

Dense dataset, the training set of the MATRES dataset is used as the

unlabeled set, vice versa. We compare our method with previous

state-of-the-art ETRE models. The results are listed in Table 2 and

Table 3. From the results, we can find that our method outperforms

all the baselines and achieves state-of-the-art performance on the

two datasets. This indicates that leveraging more high-quality la-

beled data is a direct approach to boost the performance and our

method can effectively utilize the unlabeled data for the task.

3.4 Effectiveness of Sample Selection

We compare the effect of different sample selection methods when

utilizing 30% and 40% labeled data for the task. The results (i.e., F1

score) are shown in Table 4. “Random” denotes randomly selecting

samples from pseudo-labeled data. “Probability” denotes selecting

the top-scoring samples based on predictive probabilities. “Easy”

and “Hard” denote selecting samples with the probability com-

puted by Eq.(6) and Eq.(7), respectively. From the results, we can

observe that the two sample selection strategies both substantially

outperform other selection strategies.

Table 5: The performance of different sample weight assign-

ment methods on the TB-Dense and MATRES datasets.

Methods

TB-Dense MATRES

30% labeled 40% labeled 30% labeled 40% labeled

Mean 56.3 59.1 74.1 75.1

Probability 56.5 59.3 74.3 75.2

Uncertainty (Ours) 58.2 60.8 75.3 76.3

Table 6: Performance of ourmethodUAST and Self-Training

with various amounts of unlabeled data.

Ratio

UAST (Ours) Self-Training

TB-Dense MATRES TB-Dense MATRES

30% 59.5 74.9 56.1 72.3

40% 60.3 75.9 56.3 72.7

50% 60.8 76.3 56.4 73.3

60% 61.0 76.6 56.9 73.5

3.5 Effectiveness of Uncertainty Learning

To verify the effectiveness of the uncertainty-aware learning, we

compare different sample weight assignment methods. The results

are shown in Table 5. “Mean” denotes that all pseudo-labeled in-

stances share same weights. “Probability” denotes that the corre-

sponding probability of predicted label is used as the weight of the

sample. From the table, we can observe that the uncertainty-aware

learning module achieves the best performance. It indicates the

module can further alleviate the impact of noisy pseudo-labeling.

3.6 Varying the Amounts of Unlabeled Data

For semi-supervised ETRE task, we may wonder whether more

unlabeled data will always help. To investigate the problem, we fix

the amount of labeled data (i.e., 40%) and compare the performance

under different amounts of unlabeled data. The results are listed

in Table 6. Overall, we can observe that our method and the Self-

Training both benefit from a larger amount of unlabeled data. In

addition, even utilizing less unlabeled data, ourmethod still achieves

better performance than the Self-Training, which indicates that our

method can effectively alleviate the noisy pseudo-labeling problem.

4 CONCLUSION

In this paper, we introduce a semi-supervised event temporal rela-

tion extraction task and leverage UAST framework for the task. Our

method uses the sample selection with exploration module to select

informative samples based on the model uncertainty, and utilizes

the uncertainty-aware learning module to emphasize low variance

samples for self-training. Experimental results demonstrate that our

method substantially outperforms previous state-of-the-art models.
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