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Abstract— In additive manufacturing (AM), accurate pre-
diction for the deformation of printed objects contributes to
compensation in advance, which is crucial to improving the
accuracy of products. Many factors affect the deformation, such
as the shape of the object, the properties of the material, and
parameters in the printing process. Existing methods suffer
from difficulties in modeling and generalizing between different
shapes. In this paper, we formulate the error prediction in
AM as a point-wise deviation prediction task and propose
a point-based deep neural network to learn the complex
deformation patterns by local and global contextual feature
extraction. Furthermore, a data processing flow is proposed for
automatically handling the real-scenario data. As an application
case, we collect a dataset of dental crowns fabricated by the
digital light processing 3D printing and validate the proposed
method on the dataset. The results show that our network
has a promising ability to predict nonlinear deformation. The
proposed method can also be applied to other AM techniques.

I. INTRODUCTION

Additive manufacturing (AM), also known as 3D printing
and rapid prototyping, is a technology for manufacturing
parts from digital models by stacking materials layer by
layer. One of the advantages of AM is its ability to manufac-
ture products with complex structures, such as ceramic cores
for hollow aeroengine turbine blades, which are difficult or

*This work was supported in part by the National Key Research and De-
velopment Program (No. 2018YFB1700200), the National Natural Science
Foundation of China under Grants U1909218; Scientific Instrument Devel-
oping Project of the Chinese Academy of Sciences (Grant No. YZQT014);
CAS Key Technology Talent Program (Zhen Shen); Guangdong Basic and
Applied Basic Research Foundation under Grant 2021B1515140034; Foshan
Science and Technology Innovation Team Project (2018IT100142); Youth
Foundation of the State Key Laboratory for Management and Control
of Complex Systems (Y6S9011F1G); CAS STS Dongguan Joint Project
20201600200072. (Corresponding author: Zhen Shen.)

1M. Zhao and 4Q. Fang are with the State Key Laboratory for
Management and Control of Complex Systems, Institute of Automation,
Chinese Academy of Sciences, Beijing 100190, China, and also with
the School of Artificial Intelligence, University of Chinese Academy
of Sciences, Beijing 101408, China (e-mail: zhaomeihua2018@ia.ac.cn,
fangqihang2020@ia.ac.cn).

2G. Xiong is with Beijing Engineering Research Center of Intelligent
Systems and Technology, Institute of Automation, Chinese Academy of
Sciences, Beijing 100190, China, and also with Guangdong Engineering
Research Center of 3D Printing and Intelligent Manufacturing, Cloud
Computing Center, Chinese Academy of Sciences, Dongguan 523808, China
(e-mail: gang.xiong@ia.ac.cn).

3W. Wang, 5Z. Shen, and 7F. Zhu are with the State Key Laboratory
for Management and Control of Complex Systems, Institute of Automa-
tion, Chinese Academy of Sciences, Beijing 100190, China, and also
with the Intelligent Manufacturing Center, Qingdao Academy of Intelli-
gent Industries, Qingdao 266109, China (e-mail: weixing.wang@ia.ac.cn,
zhen.shen@ia.ac.cn, fenghua.zhu@ia.ac.cn).

6L. Wan is with Ten Dimensions (Guangdong) Technology Co., Ltd.,
Foshan 528225, China (e-mail: li.wan@10dim.com).

even impossible to fabricate with conventional techniques.
In addition, without the requirements for molds, fixtures,
and intermediate steps, AM makes it possible to manufacture
small quantities of products with great diversity and geomet-
ric complexity, bringing about a paradigm shift from mass
production to individual customization.

Improving the accuracy of printed parts is a fundamental
research problem in AM. The more accurate the man-
ufactured parts, the higher their usability. The errors in
conventional subtractive manufacturing such as lathe are
mainly thermal errors and geometric errors caused by tool
path limitations. Because of the existence of mature servo
systems, the errors in this technology can be easily controlled
at the micron level. However, the AM process is complex.
Taking digital light processing (DLP) 3D printing as an
example, the manufacturing process usually involves heating,
cooling, bonding, and resin curing. The accuracy of its
products is affected by a variety of factors, such as optical
power, layer thickness, material properties, and part shape.
Even if the positioning deflections of a 3D printer are in tens
or hundreds of microns, the errors of printed parts are always
much larger.

Physics-based modeling, prescriptive modeling, and ma-
chine learning methods are three popular approaches for
deformation prediction and compensation in AM. Although
physics-based modeling has always been a research concern,
accurate simulations are difficult and computationally expen-
sive due to the complexity of the AM process. Prescriptive
modeling approaches learn error functions from a limited
number of shapes and obtain optimal compensation plans
for new and untested ones. However, it is difficult to take
the effect of inter-layer stresses into account. At present,
machine learning-based AM error compensation methods are
drawing increasing attention. Some of these methods [1],
[2] perform point-level predictions, ignore the understanding
of 3D shapes, and are therefore difficult to generalize to
other shapes. Also, foundation work is required for error
prediction. In our previous work, we proposed an end-to-
end error compensation framework and presented a voxel-
based neural network for error prediction and compensation
[3], [4]. Since the geometric errors of AM parts are much
smaller than their sizes, the voxel grid needs to be set to a
high resolution for high accuracy error prediction, and the
memory burden caused by the voxel representations is heavy.
In addition, limited by the accessibility of real datasets, the
method uses simple simulation data, which makes it difficult
to capture the complex deformations of real-scenario AM



parts.
In this paper, we have made further improvements to our

previous work. The error prediction task is formulated as
a point-wise deviation prediction problem, in which each
point in the printed model is considered to be obtained by
deforming its corresponding point in the designed model.
Therefore, our task is to find the deviation between the two
points. Further, we propose a point-based network that ex-
tracts multi-level and multi-scale deep features for each point
of the input to predict point-wise deviation. The proposed
network enables 3D shape understanding by context-aware
geometry learning and thus has a good generalization ability
to various shapes. Moreover, the memory burden caused by
the voxel-based approach can be greatly released. Also, we
collect a dental crown dataset manufactured by a DLP 3D
printer and provide a data processing flow to obtain the
aligned designed model and the printed model. In summary,
this work intends to make the following contributions.

1) It formulates the error prediction in AM as a point-wise
deviation prediction task and proposes a point-based context-
aware deep neural network to predict point-wise deviation.
The proposed network can generalize to various 3D shapes
with a smaller memory burden.

2) It collects a real-scenario dataset and proposes a data
processing flow. In this way, the complex deformation pat-
terns can be recorded fully.

3) It conducts experiments on the collected dataset, and the
experimental results demonstrate that the proposed approach
can achieve promising results.

The rest of the paper is organized as follows. In Section II,
the related work is reviewed. In Section III, we formulate the
error prediction task as a point-by-point deviation prediction
problem. In Section IV, we introduce the process of real-
scenario dataset acquisition. In Section V, we detail the
error prediction method and the adopted neural network. In
Section VI, we provide the experimental results and analysis.
The conclusion is given in Section VII.

II. RELATED WORK

In this paper, we categorize deformation prediction and
compensation approaches for AM into physics-based mod-
eling, prescriptive modeling, and machine learning methods.

The complexity of DLP lies in that it is a multi-physics
and multi-scale process, including resin-Ultraviolet light
interactions at the microscale, the liquid monomers curing
at the mesoscale, and thermal-mechanical coupling at the
macroscale. Great efforts have been made to develop various
physical models to obtain the geometric deformation of
the products. Westbeek et al. [5] proposed a multi-physical
modeling framework to predict the deformed geometry of
vat photo-polymerized components. However, the effects
of the resin components contents (i.e., photoinitiators and
photoabsorbers) on shape distortion were not considered.
Zhang et al. [6] established a material constitutive model
to study the development of shape distortion due to vol-
ume shrinkage during printing. Given the lack of in-depth
understanding of the AM process, it is difficult for the

aforementioned approaches to take all factors of the whole
process into account. As a result, predicting the geometry
errors accurately in a short time by these physics-driven
methods is challenging.

A series of studies established prescriptive models to
predict the deformations of AM parts. In 2015, Huang et
al. [7] developed a mathematical model of the error in the
polar coordinate system and derived an optimal shrinkage
compensation function. The error model was only applicable
to cylindrical shapes. In their following work, the error
prediction model was extended to polygonal shapes and
arbitrarily complex shapes [8], [9]. However, the model
only models 2D shape deviations and does not consider
the effect of inter-layer stresses. Given this, Jin et al. [10]
made improvements by modeling out-of-plane deviation for
improving the understanding of inter-layer interactions. Since
specifying function bases in the normalized model is usually
heuristic, this method tends to result in a large uncertainty
when predicting the shape deformation of untested products.
Considering this problem, Sabbaghi et al. [11] proposed
an adaptive Bayesian approach by combining a small set
of models manufactured previously with different shapes
and their in-plane deviation data to assist in prescriptive
modeling of in-plane deviations for a large class of new
shapes. Although the prescriptive modeling approaches have
been studied a lot, it still suffers from the difficulties of
modeling and generalizing to other shapes.

Machine learning-based methods for error prediction and
compensation in AM come to the spotlight in recent years.
Chowdhury et al. [1] proposed an artificial neural network
(ANN) to compensate for the geometric thermal deformation
of a part. Similarly, Hong et al. [2] introduced an ANN-based
method to compensate for geometric errors in sub-millimeter
overhang trusses fabricated by selective laser melting (SLM).
During training, the polar angle and radii from the geometric
center of the as-printed point cloud were treated as input,
and the polar radii of the as-designed point cloud with
the same polar angle were regarded as the ground truth.
However, the above two methods rely on the finite element
method (FEM) or preprinted models to obtain predicted or
realistic deformations of 3D parts. In addition, only point-
level features are extracted for the prediction, causing the
difficulties of extending to other shapes. Huang et al. [12]
proposed a shape deviation generator under a convolution
formulation, in which the 3D deformation is described as
the result of fusing the 2D in-plane deformation with a
transfer function that captures the interactions between the
layers. The framework has been validated with spherical
shapes built in a stereolithography (SLA) process. However,
fundamental work is still needed to predict complex defor-
mation patterns of free shapes. Wang et al. [13] extended the
above convolutional learning framework to a broader class
of 3D geometries by constructively merging spherical and
polyhedral shapes into a unified model. Francis and Bian
[14] proposed a deep learning-based model to predict the
point-wise distortion in 3D printing, which combined a con-
volutional neural network (CNN) and an ANN for analyzing
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Fig. 1. Data flow diagram for dataset acquisition

thermal images and relevant process/design parameters.
In summary, there is still a lack of an efficient error

prediction and compensation approach that can efficiently
capture the complex deformation patterns of AM parts and
applicable to various shapes. In this paper, in contrast to the
point-level prediction, we apply a neural network with local
and global contextual feature awareness for error prediction
in AM and propose a data processing flow for real dataset
collection.

III. PROBLEM STATEMENT

Following the notations in [3], we denote a designed dental
crown model as the “nominal model” V and the model output
by a particular 3D printer as the “deformed model” V ′. To
transform them into a form that can be directly processed by
the neural network, Poisson sampling is performed on the
surfaces of V and V ′ to obtain “nominal point cloud” P and
“deformed point cloud” P ′, respectively. It is considered that
each item p′ in the point cloud P ′ is obtained by deforming
the corresponding point p in the point cloud P , i.e., p′ =
p+ ∆p, where ∆p is the vector of point-by-point deviation.

Therefore, the point cloud P is taken as input, and the
deviations of all points are predicted by the neural network.
Then we add the predicted deviations to the coordinates of
points in P for obtaining the predicted point cloud P ′′. Our
goal is to train the neural network to make P ′′ as similar as
possible to P ′, which is formulated as

θ∗ = argmin
θ

1

N

N−1∑
i=0

L(fθ(Pi), P
′
i ), (1)

where θ refers the parameters of the neural network. L(·) is
the loss function. N is the number of training samples. After
training, we will obtain the optimal parameter θ∗.

IV. DATASET ACQUISITION

The acquisition of large-scale datasets is an essential
prerequisite for deep learning-based error prediction algo-
rithms. However, as far as we know, no public dataset has
been established yet. To fill this gap, we introduce a data
processing flow and manually collect a dental crown dataset
in this paper.

Each sample in the dataset consists of a nominal dental
crown model and its corresponding deformed model. The

nominal models are obtained in cooperation with hospitals
and denture factories, which are designed by specialized
skilled workers and saved as a stereolithography (STL) file.
The deformed models are manufactured by a high-precision
DLP 3D printer with fixed printing parameters and materials.
Specifically, multiple nominal models are first imported into
ten dimensional technology 3D printer software and laid
out. Then, support structures are automatically added to the
models using the software to prevent parts with overhanging
structures from collapsing when printing. Afterward, the
slicing operation is performed and the images are generated
for fabrication. The photosensitive resin material is cured by
a photopolymerization reaction under the action of the light
source, forming a thin layer of the part. After the part is
manufactured, post-processing operations, including manual
cleaning and removal of support structures, are performed to
obtain the fabricated dental crown models.

The following important step is to measure and store
the manufactured dental crown models in a computer-
recognizable format. For this purpose, we utilize the high-
precision OKIO 3M-100 3D scanner, which contains a
binocular camera and adopts a non-contact surface scanning
method. The measurement accuracy can reach 0.007 mm.
The data flow diagram for dataset acquisition is shown in
Fig. 1. We place the deformed models to be scanned on
a turntable with marking points, and the images taken by
the binocular cameras are processed by specific software to
obtain a partial point cloud of the target and the background.
To obtain the complete point cloud, we turn the turntable
to scan and measure from multiple views and then stitch
the results. Considering that some of the structures are
occluded, we flip the crown model manually and repeat the
above process. As shown in Fig. 1, two results of unilateral
scans consisting of the object and background are marked in
orange and blue, respectively. Next, we separate the object
from the background. It is observed that the object and
background are not connected and the result of a unilateral
scan consists of multiple high-density regions. A natural idea
is to apply the density-based spatial clustering of applications
with noise (DBSCAN) [15], which is a density clustering-
based algorithm that divides regions with sufficient density
into clusters. Finally, the cluster with the largest size is
automatically chosen as the object.
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Fig. 2. The architecture of the proposed neural network

After obtaining the two partially scanned crown models,
we apply the iterative closest point (ICP) algorithm [16]
to combine them into a complete one. Since the overlap
between the two scanned parts is small, we need to find a
good initial transformation matrix. To this end, the nominal
model and the partially scanned crown models are first
moved to the coordinate origin. Then the RANSAC-based
global registration [17] is performed between the nominal
model and the scanned model to obtain the initial rough
transformation matrix. To further improve the accuracy of
point cloud registration, point-to-plane ICP is utilized to
perform global registration. At this time, the two partially
scanned crown models are brought into a roughly matched
position. Further, the ICP-based global registration algorithm
and the merging operation are performed on the two partially
scanned models to obtain the complete deformed model. The
merging operation mainly consists of the following steps:
1) Sampling on the surfaces of the two models, and then
concatenating the sampled point clouds; 2) Estimating the
normal vectors of the points and then performing surface
reconstruction using the Poisson reconstruction algorithm.
Finally, the best fit alignment algorithm is performed be-
tween the deformed model and the nominal model. In this
way, the sum of squares of distances between the sample
pairs from the two models is minimized.

V. ERROR PREDICTION METHOD

In this paper, we adopt a neural network based on Point-
Net++ [18], which is an improved version of PointNet
[19]. It performs the hierarchical feature extraction that
PointNet ignores. For a local region, PointNet is first applied
to capture the local geometry of the point cloud and the
interactions between points. Then similar to CNNs, the input
data is subsampled several times for features aggregation
from larger local regions until the features of the whole
point set are captured. Fig. 2 shows the overall architecture
of the proposed neural network. It can be observed that the
input is a nominal point cloud P ∈ RN×6, where N is the
number of points, and each point has a 3-dimensional x-y-z
coordinate vector and a normal vector. The input is first fed
to three set abstraction levels for feature extraction. After
obtaining point-wise features for all original points, a shared

multilayer perceptron (MLP) is utilized to predict deviations
for all points. Finally, the predicted deviations are added to
the coordinates of the original points to obtain the predicted
model. A loss between the predicted model and the deformed
model is calculated and used for parameter learning.

A set abstraction level takes an N × (d + C) matrix as
input, where N is the number of points, and each point is
with d-dim coordinates and C-dim point features. It outputs
an No × (d + Co) matrix of No subsampled points with
d-dim coordinates and new Co-dim feature vectors that
summarize the local context. A set abstraction level consists
of a sampling layer, a grouping layer, and a PointNet layer.
In the sampling layer, the farthest point sampling algorithm
is iteratively used to obtain a subset of the input point set.
For each sampled point xc, the grouping layer finds its local
region, which consists of points within a radius centered
at xc. After that, the PointNet layer encodes local region
patterns into a feature vector fc, which can be calculated as

fc = MAX
i=1,...,k

{g ([(xi − xc), fxi ])} , (2)

where {x1, x2, . . . , xk} is a point set in the local region, k
is the number of points, and {fx1 , fx2 , . . . , fxk

} is a feature
set of these points. [, ] represents a concatenation operation.
All the points are transformed to a local coordinate system
with the centroid as the origin and then concatenated with
their corresponding feature vectors. The results are fed into g
for feature transformation. g is usually an MLP followed by
a batch normalization (BN) layer and a rectified linear unit
(ReLU) activation function with shared parameters across all
regions and points. Finally, a max-pooling function is used
as a symmetric function to aggregate features of all points
in the local region into a latent vector. The vector stores the
global contextual information about the input geometry.

In the error prediction task, we need to obtain the point-
wise features for each point in the input and predict its de-
viation. However, the original point set is subsampled in the
set abstraction level. Therefore, we propagate features from
subsampled points to the original points by interpolation.
Assume that the layer l is with the shape of Nl × (d + Cl),
and the layer l− 1 is with the shape of Nl−1 × (d + Cl−1),
where Nl and Nl−1 are number of points. A distance-
based interpolation method is adopted. Specifically, for each
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point x among Nl−1 points, we find its k nearest neighbors
from the set of Nl points, and then use inverse distance
weighted average based on the k nearest neighbors to obtain
interpolated feature values f ′(x), i.e.,

f ′(x) =

∑k
i=1 wi(x)fxi∑k
i=1 wi(x)

, and wi(x) =
1

E (x, xi)
q , (3)

where xi is the ith nearest neighbor among Nl points of
x, and fxi

is the feature of xi. w is the weight, which is
determined by the Euclidean distance E between x and xi

and a hyper-parameter q. In the experiment, we use q = 2
and k = 3 by default. After obtaining f ′(x), we concatenate
it with the feature of x, and then apply an MLP to reduce
the feature dimension.

In the experiment, the mean squared error (MSE) is
adopted as the loss function, which can be calculated as

L =
1

N

N∑
i=1

(pi − p′i)
2
, (4)

where pi is a point in the nominal point cloud, and p′i is its
corresponding point in the deformed point cloud. N is the
number of points in the nominal point cloud.

VI. EXPERIMENTS

A. Dataset

Following the data processing flow described in Section
IV, we collect a total of 82 samples, each of which consists
of a pair of nominal and deformed models. In this section,
we describe how the acquired dataset is further processed to
verify the performance of the neural network.

We perform Poisson sampling on the surface of the nomi-
nal model V and deformed model V ′ to obtain point clouds
P and P ′, respectively. For a point p in P , we regard its
corresponding point as the one that has the closest Euclidean
distance to it in P ′. Therefore, we sample 8,000 points on
the surface of the nominal model and 1,000,000 points on
the surface of the deformed model. The distance between
each pair of points is calculated to find the correspondence
between the points. Finally, 5,000 corresponding points are
randomly selected as the input and ground truth of the neural
network. Fig. 3 shows two samples of the dataset. In Fig. 3
(c), the x-axis represents the size of the errors in millimeters,
and the y-axis represents the number of points.

To eliminate the effect of an unbalanced data partition,
we perform three-fold cross-validation. The samples in the
dataset are divided into three mutually exclusive subsets of
similar size. One of them is extracted each time as the test
set, and the remainings are used as the training set. The
average result on multiple test sets is used to evaluate the
performance of the model.

Considering that the sample size is not large, data en-
hancements are performed on the training set to improve the
performance of the proposed network. First, the coordinates
of all samples are transformed to (−1, 1) according to a fixed
scale. Then the following operations are performed for all
training samples: 1) Translation: Translate randomly by a
distance of (0, 0.1) along the x, y and z axes; 2) Rotation:
Rotate by a random angle along the z axis; 3) Downsam-
pling: Sample 5,000 points randomly in the nominal point
cloud as the input of the neural network; 4) Flipping: Flip
the point cloud randomly along the x and y axes.

B. Metric

At the training stage, for a point in the nominal point cloud
P , the point with the closest distance to it in the deformed
point cloud P ′ is regarded as its corresponding point. When
testing, the original correspondence is no longer used. Al-
ternatively, we recalculate the corresponding point from the
deformed point cloud for each item of the predicted point
cloud, and adopt the average value of Euclidean distance as
the metric. Therefore, the metric function is

D =
1

|P ′′|
∑
u∈P ′′

min
v∈P ′

‖u− v‖2, (5)

where P ′′ is the predicted point cloud, and P ′ is the
deformed point cloud. For a point u in P ′′, it finds the nearest
point v in P ′, and then calculates the average Euclidean
distance.

C. Results and Analysis

The experiment is conducted on a workstation with an
Intel Xeon E5-2698 v4 CPU and a Titan V100 Graphics
Processing Unit. The neural network is implemented by
using the PyTorch framework and trained by the Adam
optimizer. In Table I, the quantified errors of the nominal-
deformed and predicted-deformed model pairs are shown.
The size of the dental crown is about 13 mm, and the average
errors between nominal-deformed and predicted-deformed
model pairs are 0.0763 mm and 0.0368 mm, respectively. It
proves that the proposed method can achieve promising error
prediction results. Also, the results of the three-fold cross-
validation are similar, which indicates that there is almost
no effect caused by the unbalanced data set partition. To
show the results more intuitively, the visualization results are
given in Fig. 4, where (a) and (c) show the errors between
nominal and deformed models, (b) and (d) show the errors
between predicted and deformed models. Different colors are
utilized to distinguish the magnitude of the errors, and the
correspondence between the error values and the colors is
shown in the colormap. It can be observed that the neural



TABLE I
ERROR PREDICTION RESULTS IN AM (MILLIMETER)

Error
Errors between

nominal and
deformed models

Errors between
predicted and

deformed models

The first fold 0.0761 0.0368
The second fold 0.0771 0.0371
The third fold 0.0758 0.0366

Average 0.0763 0.0368

(a) (b) (c) (d)

(MILLIMETER)

Fig. 4. Visualization results for error prediction, where (a) and (c) show
the errors between nominal and deformed models, and (b) and (d) show the
errors between predicted and deformed models.

network is able to predict most of the errors. However,
the prediction accuracy is lower at the upper surface and
bottom edge of the crown model. Part of the reason is that
the removal of supports damages the surface structure on
the upper surface. Also, the curvature of the bottom edge
of the dental crown model is large and fewer points are
scanned, resulting in partial distortion during reconstruction.
Therefore, it is essential to further improve the quality of the
collected dataset.

Computational efficiency is an important aspect in assess-
ing the performance of a method. Our model has 1.4 million
trainable parameters. As for the time efficiency, it takes 7.6
milliseconds on average to predict the deformation of a 3D
model. About 132 predictions can be done in one second.
The above results demonstrate the high computational effi-
ciency of our method.

VII. CONCLUSIONS

In this paper, we propose a point-based network for error
prediction in AM. The proposed method extracts multi-
level and multi-scale contextual features for each point to
predict the deviation, which can greatly alleviate the memory
burden caused by the voxel-based approaches. We conduct
experiments on a real-scenario dataset and the results show
that the proposed method achieves promising performance.
In this work, the quality of the dataset is critical. Besides
support structure removal and inaccurate scanning, errors
from the registration of two unilateral scans can affect the
accuracy of the deformed model. As future work, collecting
a larger size and higher quality dataset is desirable. Also, it
is worthwhile to explore self-supervised learning to enhance
the understanding of 3D models by neural networks, and thus

improve the performance of few-shot learning. Moreover,
only error prediction is performed in this paper, and error
compensation will be tested in the system.
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