
3794978-1-7281-4094-0/19/$31.00 ©2019 IEEE

Multi-Objective Neural Architecture Search for
Light-Weight Model

Nannan Li1 Yaran Chen1 Zixiang Ding1 Dongbin Zhao1 Zhonghua Pang2 Ruisheng Qin2
1State Key Laboratory of Management and Control for Complex Systems,

Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 101408, China

linannan2017@ia.ac.cn chenyaran2013@ia.ac.cn dingzixiang2018@ia.ac.cn dongbin.zhao@ia.ac.cn
2Key Laboratory of Fieldbus Technology and Automation of Beijing

North China University of Technology, Beijing 100144, China
zhpang@ncut.edu.cn

Abstract—Neural architecture search (NAS) has achieved su-
perior performance in visual tasks by automatically designing
an effective neural network architecture. In recent years, deep
neural networks are increasingly applied to resource-constrained
devices. As a result, in addition to the model performance,
model size is another very important factor that requires to
consider when designing powerful neural network architectures.
Therefore, we propose the multi-objective neural architecture
search for light-weight model and name it Light-weight NAS. On
one hand, the Light-weight NAS introduces Multiply-ACcumulate
(MAC) into the optimize objective to get the architecture with
fewer parameters. On the other hand, we simplify the search
space and adopt weight sharing to make the search process
more efficient. Experimental results indicate that the searched
architecture can perform competitive classification accuracy with
few parameters on the image classification task, while using less
computation cost than the most existing multi-objective NAS
approaches.

Keywords—Neural architecture search, light-weight, multi-
objective, reinforcement learning, image classification.

I. INTRODUCTION

Because of the feature engineering process is automated,

deep learning has demonstrated impressive results in lots of

areas. For instance, object detection [1], image classification

[2], [3], game artificial intelligence [4], [5], intelligent trans-

portation system, etc. Especially image classification, as one of

the fastest growing area, the presentation of many Convolution

Neural Networks (CNN) is one of the main factors for this

success. Such as AlexNet [6], ResNet [7], DenseNet [8], etc.

However, for the desire to deploy these CNN models on

resource-constrained devices, some high-performance models

with fewer parameters are designed, such as CondenseNet [9],

MobileNets [10], ShuffleNet [11], etc. All of these models

achieve superior performance in computer vision tasks, and

have been widely applied in the image processing area.

However, the design of the network architecture with good

performance mainly depends on expert experience, and can
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be very time-consuming. To solve the problem, NAS begins

to be widely researched as a hotspot of automatic machine

learning. Through the process of automated architecture en-

gineering, NAS has demonstrated prominent performance in

image classification and language models [12]–[15]. Con-

currently, some multi-objective neural architecture has also

made impressive success for the goal of implementing the

high-performance model applications on resource-constrained

devices. For example, NSGA-Net [16], an outstanding work

that achieves the excellent results in CIFAR. However, its

computation cost takes 4 days. It can be seen that the work

is very computing-resource intensive and time-consuming. So

that it is demanding to make multi-objective neural network

architecture search more efficient. At present, one of the

most common methods to improve search efficiency is weight

sharing. Combining multi-objective and weight sharing, we

can search for the smaller model efficiently.

In this paper, we present the Light-weight neural architec-

ture search. As shown in Fig.1, our work is divided into two

stages, search stage and final stage. Search stage is to search

for the optimal architecture while final stage is to construct

the final model. In search stage, we construct a super network

that contains all the candidate operations and connections.

Then we use controller network LSTM to sample the child

network (i.e. sequence code) from the super network. Child

network is the subnetwork of super network. In Fig. 2, we

show a mini example of the relationship of super network and

child network. Of course, The super network is larger than the

example in Fig. 2. To optimize the sampled child network, we

train the child network and controller network iteratively in

search stage. The sampled child network is trained to update

the weight w of the super network. Concurrently, the controller

network is trained using the policy gradient algorithm with the

precision and MAC of the child network as the reward. In final

stage, we construct the final model through changing the depth

and width of the child network searched in the search stage.

And we retrain the final model in final stage. Our method

can get the high-performance network architecture with fewer

parameters and only need 0.8 GPU-days on single NVIDIA

Tesla P100. On CIFAR-10, our model reaches 3.30% test
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Fig. 1. The overview of the work: Our work establishes a controller network, and use it to sample and train the child network to get the performance to
train the controller network. Then we stack the child network to get the final model.

Fig. 2. The mini example of the super network and child network. The green
nodes and connections are activated and trained in child model.

error with only 2.3M parameters. On CIFAR-100, our model

achieves 18.04% test error with only 2.4M parameters. Our

contributions are summarized as follows:

• Reward Function: Considering both the MAC and ac-

curacy as the reward function, we optimize them by the

policy gradient, which guides the controller network to

sample the lighter architecture with competitive perfor-

mance.

• Simplified Search Space: Due to the limited computing-

resource, we redesign the search space of NAS under the

guidance of expert experience. And by combining the

search space and the weight sharing, our work greatly

accelerates the performance-evaluation process.

• Transferable Architecture: The architecture searched

on CIFAR10 can be transferred to CIFAR-100 and can

also achieve competitive performance but with smaller

parameters.

II. RELATED WORKS

We first review the related works on NAS, especially ENAS

[17]. Then we outline the main works about multi-objective

NAS.

Neural Architecture Search: Recently, NAS has obtained

plentiful achievements, especially in the image classification

task. And most of the models searched by these works beyond

the human-designed models. The current mainstream search

strategy mainly includes evolutionary algorithm (EA) and

reinforcement learning (RL). There are plentiful representative

works of EA-based NAS. The variants of NEAT [18], CoDeep-

NEAT [19] and rtNEAT [20]. Besides, Google proposes the

large scale evolution in [21] and AmoebaNet [22] that achieves

state-of-the-art results on CIFAR-10 and ImageNet. RL-based

NAS also have many remarkable results. MetaQNN [23]

search for optimal architecture through an ε-greedy Q-learning

strategy with experience replay. BlockQNN [24] extends above

work. In [12], Google uses the policy gradient algorithm to

search for the entire network. And there are many extension

of it, such as NASNet [13], ENAS [17], etc. Of course, other

search algorithms (e.g. gradient-based algorithms) also achieve

outstanding performance in NAS. For example, DARTS [25],

NAO [26], SMASH [27] and so on.

Efficient Neural Architecture Search: The key idea of

the ENAS [17] is that it presents the weight sharing which

greatly speeds up the architecture search process. In NAS, the

weights of network architecture are all randomly initialized

and trained from scratch. Different from previous work, ENAS

shares these parameters among all architectures. The trained

weights of the previous network are retained, and the repeated

nodes of new network don’t need to resume training. Such

that ENAS can quickly search for a set of architectures with

high performance. For consideration of speeding up the search

process, we adopt the weight sharing to our works.

Multi-Objective Neural Architecture Search: Multi-

objective NAS is also mainly based on EA and RL. Multi-

objective optimization algorithm based on genetic algorithm

(e.g. NSGA) optimizes multiple targets simultaneously to

obtain Pareto optimal solutions. And EA-based multi-objective

NAS get the decent performance, such as NSGA-Net [16],

LEMONADE [28], etc. Versus the EA-based multi-objective

NAS, RL-based multi-objective NAS tends to transform the

multi-objective optimization to the single-objective optimiza-

tion problem through incorporating different objects into the

reward function. For example, MnasNet [29], RENA [30], etc.

There are also some works that use other algorithms.

III. METHODS

In this section, we detail our approach. Generally speaking,

multi-objective NAS aims to get the Pareto optimal architec-
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Fig. 3. The example architecture of convolution block and reduction block.

tures in a certain search space with a defined search strategy.

Such that the Light-weight NAS is organized around three

main factors: search space, search procedure, and reward

function design.

A. Search Space

The search space is critical in NAS. And it determines the

paradigm of the searched architecture. Thus the design of

search space is mainly up to the target task. And the relatively

large search space on the image classification task is proposed

by NASNet [13], which consists of thirteen operations. Such

a large search space leads to the difficulty of convergence

and time-consuming. Indeed, NASNet spends 1800 GPU-days,

which is partly caused by its search space.

Therefore, in order to shorten the search time, we redesign

the search space. Considering that our network is geared

towards mobile devices and the experience from the human-

designed networks, we design a search space with only five

candidate operations. The specific operations are shown as

below:

• 1×1 depthwise-separable convolution

• 3×3 depthwise-separable convolution

• 3×3 average pooling

• 3×3 max pooling

• identity

Inspired by the models like ResNet [7] and DenseNet [8],

which just select 1 and 3 as convolution kernel size. Thus

we discard the convolution operation with large kernel size,

Fig. 4. The form of stacking the convolution block and reduction block.

and only choose the 1×1 and 3×3 convolution operations.

Besides, in order to reduce model parameters, we only retain

the depthwise-separable convolution operations. Though the

search space is very disadvantageous in terms of architectural

diversity, it is good for searching architectures with few-

parameters and high-precision.

B. Search Procedure

The search strategy adopted by Light-weight NAS is policy

gradient algorithm. We optimize the architectures through

updating the hyperparameters of controller network, which

samples the child network in aforementioned candidate oper-

ations. Bellow, we introduce entire search procedure through

three aspects: controller network, policy gradient algorithm,

and weight sharing.

1) Controller network: The architecture is encoded as se-

quences, and the LSTM is good at generating the string with

different length. Thus we choose the LSTM structure as the

controller network. The output of the controller network will

be as the input of the controller network in next step to predict

the new sequence code (i.e. new architecture). The controller

network samples architectures via generating the sequence

code that represents two types of the blocks. One is the

convolution block with operation (convolution, pooling) stride

as 1, while the other is the reduction block with operation

stride as 2 and double channel number for reducing the size

of images (i.e. the feature map). The example architecture

is shown in Fig. 3. Then we stack convolution block and

reduction block in turns to construct the child network, as

shown in Fig. 4. The number of the convolution block N
determines the depth of the network. And the performance

of child network is used to guide the training of controller

network to sample the architectures with better performance.

2) Policy gradient algorithm: In view of the correlation

between the child network and controller network LSTM, we

choose the policy gradient algorithm, REINFORCE [31], to

optimize hyperparameters of the LSTM with the performance

of child network as reward. The specific steps are as follows:

Step 1: The controller network samples the child network

by generating the sequence code. And the sequence

code can be viewed as a list of action a1:L.

Step 2: Training the sampled child network to update the

weights w of the super network and get reward r that
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consists of model classification ACCuracy (ACC) and

the model MAC, defined by:

r = ACC − MAC

T
,

where T is the constraint factor on the MAC. The

ACC is the classification accuracy of the child

network on CIFAR-10. The MAC of depthwise-

separable convolution is calculated as follows:

MAC = Cin ×H ×W × (K ×K + Cout),

where K is the kernel size of filter, H/W is the

height/width of the output feature and Cin, Cout is

the channels number of input and output. We don’t

take MAC of fully connected layer into account

because that each sampled child network has the

same fully connected layer as the output layer.

Step 3: Updating the hyperparameters θ of the controller

network using the policy gradient algorithm. To be

specific, with r as reward, the expected reward J(θ)
with respect to the LSTM is maximized by using

the REINFORCE rule to compute the policy gradient

∇θJ(θ). J(θ) can be computed as follows:

J(θ) = Eπ(a1:L;θ)[r(m;w)],

where r(m;w) means r of the model m with weight

parameters w, π(a1:L; θ) is the probability distribu-

tion that LSTM predicts the model m with param-

eters θ. a1:L is a list of action, i.e. sampled child

network. And the gradient ∇θJ(θ) can be described

as follows:

∇θJ(θ)

=

L∑
l=1

Eπ(a1:L;θ)[∇θ log π(al | al−1:1; θ)r(m;w)].

Step 4: Repeating Step 1 to 4 until the stop condition (e.g.

max epochs of the algorithm) is met.

3) Weight sharing: With an eye to improve the search

efficiency, we adopt the weight sharing proposed by ENAS.

The specific principle of acceleration is the trained weights

of the previous child network are retained, and the repeat-

edly sampled nodes of new child network share the retained

weights instead of resume training. Just because of this, search

efficiency gets a great breakthrough.

C. Network Training

As shown in Fig.1, there are two phases in our work, the

search stage and final stage. The search stage is the core of the

experiment to get the optimal architecture and the final stage is

to verify the performance of final model. And it is worth noting

that we use a proxy in the search stage with the purpose of

efficiency. Concretely speaking, there are some points need to

be explained in train process of child network and final model.

i) The child network used in search stage is small for reducing

the train time, while the final model is deeper and wider. Both

of them are the stack of the architecture which is the decoding

of sequence code predicted by the LSTM. Differences between

them are the depth and width of the network. Specifically, we

change them through adjusting the number of the convolution

block N and number of channels. ii) The model for CIFAR-

100 is searched on CIFAR-10. This proves the generalization

of the light-weight model we searched.

IV. EXPERIMENTS

This section demonstrates the availability of the Light-

weight NAS on two benchmark datasets (CIFAR-10 and

CIFAR-100) for image classification task.

A. Datasets

CIFAR-10: The CIFAR-10 dataset contains 10 types of

RGB images with size as 32 × 32. And there are 60,000

images, the training images and validation images are 50,000

and 10,000 respectively. We also use some pre-processing

on the data, e.g. randomly flipping, centrally padding and

randomly cropping.

CIFAR-100: The CIFAR-100 dataset contains 100 types

of images with number as 60,000, and training images and

validation images are 50,000 and 10,000 respectively.

B. Details

The experiment contains two phases. In search stage, we set

N as 2. The output channel number of first convolution block

is set to 20, and it doubles when processing the reduction

block. The constraint factor T is set to 5× 106. Moreover, we

use Nesterov momentum [32] train the weight parameters of

the super network, and we use the cosine schedule change the

learning rate. The max learning rate is set to 0.05 while the

min is 0.001. The epoch and batch size are set to 310 and

160 respectively. The hyperparameters θ of LSTM are trained

by using Adam optimizer with learning rate set to 0.00035. In

final stage, the experimental settings are consistent for CIFAR-

10 and CIFAR-100, N is set to 5, output channel number is

set to 36, the epoch is set to 630 and 200, respectively. Other

settings are consistent with the training of child network in

search stage.

C. Results

Fig. 5 shows the influence of constraint factor T on search

results, precision and MAC of the child network. As shown

in Fig. 5 (a), the MAC of the architecture with MAC limit is

obviously smaller than architecture without MAC limit. we can

see that when there is no limit, MAC is on the rise in initial

to get higher accuracy and then gradually stabilizes. After

adding restrictions on the MAC, the trend of MAC is inverse to

meet the limit. Fig. 5 (b) demonstrates the ACC comparison.

The sudden decrease of ACC arises from the learning rate

schedule, cosine schedule. The architecture with MAC limit

have lower ACC by reason of the smaller MAC. Moreover, the

training of searched architecture doesn’t completely converge

so as to reduce the search cost. In conclusion, the results are

comforting. Not only the MAC can be limited to a smaller

value, but also the ACC can achieve a competitive value.
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Fig. 5. Comparison results of search stage with and without MAC limit: (a) The MAC comparison. (b) The ACC comparison.

TABLE I and II summarize the objectives (e.g. test error,

parameters) of our work and other approaches on CIFAR-

10 and CIFAR-100 respectively. In these two tables, the first

block presents the results of models that designed by human.

And the second block presents the performance of the other

multi-objective NAS. As shown in Table II, Light-weight

NAS can get competitive results. On CIFAR-10, our model

reaches 3.30% test error with 2.3M parameters. On CIFAR-

100, our model achieves 18.04% test error with only 2.4M

parameters. Besides, our approach only costs 0.8 GPU-days

to search the architecture better than most NAS works. Our

model performance can outperform manual-design networks

and most works of NAS. And the model can be applied in the

resource-constrained device for its light-weight. We can get

that appropriate design of search space improves both of the

search efficiency and model performance, while the restriction

of the MAC greatly reduce the model parameters.

V. CONCLUSION

This paper presents the Light-weight NAS, which can effi-

ciently search for the excellent model with the fewer parame-

ters by policy gradient. Our main ideas are incorporating MAC
into the reward function and improving a simplified search

space for light-weight model with best trade-offs between

model parameters and performance. We show that the Light-

weight NAS can obtain the excellent models that perform

better than many existing approaches on two benchmark

datasets. In the future, we will consider searching the most

suitable architecture of the model with different size.
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