
ADAPTIVE BIT ALLOCATION HASHING

FOR APPROXIMATE NEAREST NEIGHBOR SEARCH

Qin-Zhen Guo, Zhi Zeng, Shuwu Zhang, Yuan Zhang, Fangyuan Wang

Institute of Automation, Chinese Academy of Sciences

{qinzhen.guo, zhi.zeng, shuwu.zhang, yuan.zhang, fangyuan.wang}@ia.ac.cn

ABSTRACT

Using hashing algorithms to learn binary codes represen-

tation of data for fast approximate nearest neighbor (ANN)

search has attracted more and more attentions. Most existing

hashing methods employ various hash functions to encode

data. The resulting binary codes can be obtained by

concatenating bits produced by those hash functions. These

methods usually have two main steps: projection and

thresholding. One problem of these methods is that every

dimension of the projected data is regarded as the same

importance and represented by one bit, which may result in

ineffective codes. We introduce an adaptive bit allocation

hashing (ABAH) method to encode data for ANN search.

The basic idea is, according to the dispersion of every

dimension after projection we use different number of bits to

encode them. ABAH can effectively preserve the

neighborhood structure in the original data space. Extensive

experiments show that ABAH significantly outperforms

three state-of-the-art methods.

Index Terms— Approximate nearest neighbor search,

hamming embedding, adaptive bit allocation, image retrieval.

1. INTRODUCTION

Nearest neighbor (NN) search has been widely used in

computer vision application, like scene classification, 3D

reconstruction and other related application areas.

Traditional linear search for NN requires scanning all the

data (mostly, vectors) in a dataset and the time complexity is

O(Nd), where N is the size of dataset and d is the dimension

of vectors. Hence, it is computationally prohibitive to adopt

linear search for massive datasets which might contain

millions or even billions of vectors, especially when the

vectors are high-dimensional, like the 128-dimensional SIFT

descriptor [1]. Another problem of NN search in large scale

datasets is the excessive, unacceptable storage consumption

if traditional data formats are used.

In many applications like image retrieval, however, it is

sufficient to return approximate nearest neighbors and

several approximate nearest neighbor (ANN) search

techniques have been developed including tree-based

methods and hash-based methods. Since the tree-based

methods [2] are turned out to be not more efficient than

exhaustive search for high dimensions, hash-based ANN

techniques which aim at embedding the data into Hamming

space have attracted more and more attentions. Specifically

speaking, each vector is encoded as a binary code in the

Hamming space and for preserving the neighborhood

structure in the original data space, similar points in the

original data space should be mapped to similar points in the

Hamming space, i.e. the codes should be locality-sensitive.

Searching similar neighbors is accomplished simply by

finding the vectors that have codes within a small Hamming

distance of the query’s code. One of the advantages of

hashing methods is that the Hamming distance between two

codes can be efficiently computed by XOR operator.

Moreover, the storage will be largely reduced for storing the

binary codes. Therefore, considering the fast query speed

and low storage cost, hashing has been a popular candidate

for efficient ANN search in large scale datasets.

To generate a k-bit binary code, the hashing methods

usually need k hash functions, and each hash function

produces one bit of the binary code in two steps, projection

and thresholding. The resulting binary code can be got by

concatenating bits produced by those hash functions. The

pioneering work locality-sensitive hashing (LSH) [3]

employs simple random projections for the first step.

Spectral hashing (SH) [4], based on spectral graph

partitioning, calculates the bits by thresholding a subset of

eigenvectors of the Laplacian of the similarity graph and it

has demonstrated significant improvements over LSH,

Restricted Boltzmann Machine (RBM) [5, 6] and Boosting

Similarity Sensitive Coding (BoostSSC) [7]. LDAHash [8]

adopts Linear Discriminant Analysis (LDA) to learn the

projection matrix and chooses the threshold by optimizing a

loss function. Iterative quantization (ITQ) [9] introduces a

procrustean approach that minimizes quantization loss to

learn the projection matrix. In Hamming Embedding (HE)

[10], Jégou et al. randomly draws a matrix of Gaussian

values and then apply a QR factorization to it. The

projection matrix is formed by the first rows of the

orthogonal matrix obtained by this decomposition. Finally,

use median value to binarize every dimension. Similarly, in

order to computes k-bit hash codes, PCA Hashing [11]

projects data to the k principal components, and then use

average value to binarize the coefficients. Most hashing

methods regard every dimension of vectors as the same

importance and allocate one bit to represent every dimension.

Different with this, Anchor Graph Hashing (AGH) [12] uses

a two-layer hash functions to quantize every dimension. But

in AGH, every dimension is still encoded by the same

number of bits.

In this paper, we propose an adaptive bit allocation

hashing (ABAH) approach to adaptively allocating different

number of bits to encode every dimension for ANN search.

The neighborhood structure in the original space can be

better preserved in the Hamming space. Extensive experi-

ments demonstrate the superiority of our method. The rest of

the paper is organized as follows. In Section 2, we describe

the details of our ABAH method. Experimental results are

presented in Section 3. The paper is concluded in Section 4.

2. ADAPTIVE BIT ALLOCATION HASHING

This section describes the details of our ABAH method.

First, we introduce the motivation of ABAH. Then, the

ABAH scheme is proposed. After that, the whole learning

procedure for ABAH will be summarized. Finally, we do

some discussions about ABAH.

2.1. Motivation

Given x = (x1, x2, …, xd) and y = (y1, y2, …, yd), which are

two randomly chosen d-dim data, the Euclidean distance

between x and y, D(x, y) = sqrt((x1 – y1)
2
+(x2 – y2)

2
+…+(xd

– yd)
2
) is mainly determined by those dimensions that have a

larger value of (xi – yi)
2
. Hence, if the data on some

dimensions have a larger E((xi – yi)
2
), which is related to the

dispersion of the ith dimension, those dimensions will be

more important for computing Euclidean distance. When

embedding the data into Hamming space, in order to

maintain the neighborhood structure, important dimensions

in the Euclidean space should be also important in the

Hamming space. To achieve this goal, we adaptively

allocate bits to encode dimensions according their dispersion.

If we use the same, fewer bits to encode every dimension,

the information loss of dimensions with larger dispersion

caused by encoding will increase. But using the same, more

bits to encode all the dimensions will be superfluous for

dimensions with less dispersion.

As illustrated in Figure 1, the projection values of the

data on direction w1 have a larger dispersion and are

dominant for Euclidean distance computation. More bits will

be allocated to encode that dimension (after projection) for

preserving neighborhood structure.

2.2. ABAH Scheme

Figure 1. Illustration of different dimensions’ effect on Euclidean

distance. Obviously, after projection, the values on direction w1

have a larger dispersion and are dominant for Euclidean distance

computation.

In this subsection, we introduce the details of our algorithm.

Firstly, we use a projection to preprocess the original data to

find the principal components. Secondly, in order to deter-

mine which dimension is more important after projection,

dimension’s dispersion is calculated. Then according to the

dispersion of every dimension, different number of bits are

allocated to encode corresponding dimension.

2.2.1. Projection

We adopt PCA to project the original data for two reasons.

One is that the dimensions of vectors after PCA projection

are irrelevant and the first k dimensions are the principal

components which can better describe the original data. The

other is that the eigenvalues used in PCA algorithm serve as

a measurement of dispersion (see Section 2.2.2) and can be

easily used to compute every component’s code length (see

Section 2.2.3).

It’s important to note that all the data discussed below

are PCA-projected data.

2.2.2. Dispersion Measurement

As proved below, variance is equivalent to E((xi – yi)
2
) and

better to measure dispersion for maintaining neighborhood

structure under the assumption that the training data are

uncorrelated.

First of all, we introduce some notations. We have a set

of N data {x1, x2, …, xN}, xi
d , that form the rows of the

data matrix X N d .

For the pth column of X,
2 2 2

2

((-)) (- 2)

 2 - 2

ip jp ip jp ip jp

ip ip jp

E x x E x x x x

Ex Ex x

 


 (1)

Assume the training data are independent and identi-

cally distributed (i.i.d.), and then we have,
2 2

2

2 2

((-)) 2 - 2

 2 - 2

 2 - 2

ip jp ip ip jp

ip ip jp

ip

E x x Ex Ex x

Ex Ex Ex

Ex 







 (2)

The variance of the pth column of X is,
2

2 2

2 2

2 2

((-))

 (- 2)

 - 2

 -

p ip

ip ip

ip ip

ip

Var E x

E x x

Ex Ex

Ex



 

 





 

 



 (3)

From the derivation, we can see that variance is

equivalent to E((xi – yi)
2
).  is the mean of the pth column of

X.

Besides, the variance of every dimension is easy to

obtain since we use PCA projection to project the data and

the eigenvalue associated with a dimension indicates the

variance of this dimension. So we use variance to measure

dispersion. If one dimension has a larger variance, more bits

will be allocated to encode this dimension; otherwise, fewer

bits.

2.2.3. Calculating Code Length

To maintain the neighborhood structure, we use more bits to

encode those dimensions having larger variance. In other

words, if the eigenvalue corresponding to the ith column of

the PCA projection matrix is larger, we will use more bits to

encode the vector’s ith dimension.

Simply and intuitively, given total code length k, the ith

dimension’s code length will be

1

0.5i
i d

n n

c k




 
   
  

 (4)

λi is the eigenvalue corresponding to the ith dimension of the

PCA projection matrix and [x] means floor(x). One problem

of (4) is that if someλi are very close to each other and they

are not large enough, e.g., 10.5 1/ d

i n nk   （ ） , this will result

in those ci = 0 and 1

d

i ic k  . To handle this problem, we

use a variant strategy as follows,

=

-1

=1

=

0.5 1

2() 0.5

i

d

n i n

i

i i
t t d

n i n

k i

c

ik c









  
    

   
 

     
  






 (5)

Then, every dimension is encoded sequentially. Since

PCA will find the principal components with degressive

variance, the codes length of every dimension have a

downward trend. If ci = 0 according to (5), and -1

1

i

t tc k  ,

we set ci = 1.

The proposed method in Eq. 5 is not an optimal solution.

For example, if the first i-1 components use less than k bits,

the ith component which may not be large enough to use one

bit will be assigned one. In the future, we will tackle this.

2.2.4. Encoding Every Dimension

If two vectors are close to each other, the Hamming distance

between their binary codes should be small. We achieve this

goal by making every dimension’s subcode close to each

other for similar data. Details are illustrated as follows.

For a training vector xp = (xp1, xp2, …, xpd), ci bits are

allocated to encode the ith dimension. Firstly, we divide the

range of the ith dimension into ci+1 parts by ci thresholds.

The ci thresholds are chosen in a simple way,
min max min(/ (1)) ()i

j i i i it x j c x x     (6)

i

jt is the jth threshold of the ith dimension, for 1≤j≤ci.
min

ix

and max

ix indicate the minimum value and maximum value of

the ith column of the training matrix X. If
-1

i i

j pi jt x t  , for

2≤j≤ci , we encode xpi with subcode si which consists of (ci-

j+1) zeros followed by (j-1) ones. If
i

i

pi cx t , si will consist of

ci ones. If
1

i

pix t , si will consist of ci zeros. In this way, the

Hamming distance between two subcodes corresponding to

two values that close to each other will be small. And the

final binary code HABAH(xp) of xp can be obtained by

concatenating all the subcodes, i.e., HABAH(xp) = (s1, s2,…,

st), subject to 1

t

i ic k  .

 This simple algorithm has one limitation. The thresholds

are chosen uniformly from the range of every dimension.

This may divide two values close to each other into two

different regions. We have experimented with k-means

method to find out every dimension’s “thresholds”.

Specifically speaking, for the ith dimension we use 1-dim k-

means algorithm to find (ci+1) centroids with ascending

order. Values belong to the ith cluster will be encoded by

subcode si, which consists of (ci-i+1) zeros followed by (i-1)

ones. The k-means algorithm can give a better partition and

the centroids are better representation of every parts. It

achieves better results and we name it ABAH_KM.

2.3. Summary of ABAH Learning

Given a training set {xi} and a desired code length k, the

whole simple learning procedure of ABAH can be

summarized as follows:

 Finding the principal components of the original data

using PCA.

 Calculating the code length of every dimension in the

way described in Section 2.2.3.

 According to every dimension’s thresholds, using

different number of bits to encode them in the way

described in Section 2.2.4.

 Concatenating the subcodes to obtain the final binary

code.

2.4. Discussion

Now let us discuss the time complexity of ABAH. The

training time is mainly determined by the step of encoding

every dimension (see Section 2.2.4). Once we get the codes

length of every dimension, the subcodes can be calculated

and stored in a table before converting data to binary codes.

Using thresholds to encode every dimension by subcodes

can be achieved in constant time by looking up the table. To

find the thresholds, in the worst case, the time consuming is

O(kN). k is the total bits number and N is the number of

training samples. Since our methods can generate codes

longer than data dimensions, if k is larger than data

dimension d, the time consuming of computing thresholds is

at most O(dN). For one dimension, it only needs O(N) time

to compute the thresholds. But since PCA will find the

principal components and more bits will be allocated to

those components, in reality, the thresholds computing time

is far less than O(kN).

When testing, there are two strategies. One is that we

linearly search every code in the database to find the nearest

neighbor. The other is using hash table or inverted list to

organize the database, which can achieve sub-linear search

time. For simplicity, we adopt the first method and the time

complexity is O(kN).

3. EXPERIMENT

In this section we evaluate and compare our two methods

with three state-of-the-art methods.

3.1. Datasets

For ANN search task, we perform experiments with the

following four datasets:

 ANN-GIST-150K: A set of 960 dimensional, 150K

GIST descriptors, which consist of a subset of ANN-

GIST-1M [13].

 ANN-SIFT-150K: A set of 128 dimensional, 150K

SIFT descriptors, which consist of a subset of ANN-

SIFT-1M [13].

 ANN-GIST-1M: A set of 960 dimensional, 1M GIST

descriptors.

 ANN-SIFT-1M: A set of 128 dimensional, 1M SIFT

descriptors.

For datasets ANN-GIST-150K, ANN-SIFT-150K,

100K vectors randomly chosen are used as training set and

the rest 50K vectors are used as test set. For ANN-GIST-1M

and ANN-SIFT-1M, we randomly choose 200K vectors as

queries. The rest 800K vectors are used as training set. The

ground truth is defined by k nearest neighbors computed by

the exhaustive, linear scan based on the Euclidean distance.

The performance is measured by mean Average Precision

(mAP).

Finally, we employ our methods for practical

application for image retrieval on the dataset UKB.

 UKB: The University of Kentucky Benchmark (UKB)

[14] contains 10,200 images of 2,550 objects. 4

pictures correspond to each object, taken from different

angles.

We represent each image with a 512 (4×8×16)

dimensional GIST descriptor [15]. Each image is used in

turn as query to search through the 10,200 images. The

accuracy is measured in terms of the number of relevant

images retrieved in the top 4, i.e. 4×precision@4. For

learning purpose, we use an independent image set to learn

the parameters (codes length and thresholds of every

dimension). One important thing we should know is that the

retrieval results not only depend on the hashing method, but

also are affected by the image representation to a great

extent.

For all the experiments, we use a machine consisting of

i7-2600 CPU and 16GB main memory.

3.2. Compared Methods

 SH: Spectral Hashing [4]

 PCA Hashing: PCA Hashing [11] uses the average

value of every dimension to binarize this dimension

with one bit after PCA projection.

 HE: Hamming Embedding (HE) [10]. For simplicity,

we use PCA projection matrix. Different from PCA

Hashing, HE uses the median value of every

dimension as the threshold.

 ABAH: The hashing method is proposed in this paper

with the thresholds obtained uniformly.

 ABAH_KM: An improved version of our ABAH with

the thresholds obtained by k-means algorithm.

3.3. Results and Analysis

Figure 2 shows the mAP of k nearest search of all the tested

methods for k = 1000 on ANN-GIST-150K, ANN-SIFT-

150K. Our ABAH_KM method performs better over all the

tested methods across all the tested bit lengths ranging from

10 bits to 60 bits. Similar to that reported in [16], PCA

Hashing performs worse when using more bits encode the

data. And so is HE. Although HE uses median value to

binarize every dimension while PCA Hashing uses average

value, they almost have the same results (actually, PCA

Hashing performs slightly better than HE).

As we can see, ABAH_KM achieves constantly better

results than ABAH on the two datasets from 10 bits to 60

10 15 20 25 30 35 40 45 50 55 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Binary code length (#bits)

1
0
0
0
-N

N
 m

A
P

SH

HE

PCA Hashing

ABAH

ABAH_KM

(a)

10 15 20 25 30 35 40 45 50 55 60
0

0.05

0.1

0.15

0.2

0.25

Binary code length (#bits)

1
0
0
0
-N

N
 m

A
P

SH

HE

PCA Hashing

ABAH

ABAH_KM

(b)

Figure 2. Comparison of ABAH to state-of-the-art methods: (a)

experiment on ANN-GIST-150K dataset. (b) experiment on ANN-

SIFT-150K dataset.

16 32 64 128 256 512 750 1024
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Binary code length (#bits)

1
0
0
0
-N

N
 m

A
P

SH

HE

PCA Hashing

ABAH

ABAH_KM

(a)

bits, especially when using fewer bits to encode the data.

This is mainly because the cluster centers got by k-means

16 32 64 128 256 512
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Binary code length (#bits)

1
0
0
0
-N

N
 m

A
P

SH

HE

PCA Hashing

ABAH

ABAH_KM

(b)

Figure 3. Comparison of ABAH to state-of-the-art methods: (a)

experiment on ANN-GIST-1M dataset. (b) experiment on ANN-

SIFT-1M dataset.

algorithm are better representations of the data and can give

a better partition.

One phenomenon worthy our attention is that a 10-bit

code can’t represent one vector uniquely. Because 10-bit

codes at most have 1024 different representations while we

have far more vectors in the dataset. Our ABAH_KM

method also gets significantly better results in this case.

In Figure 3, experimental results on dataset ANN-GIST-

1M and ANN-SIFT-1M are presented. For dataset ANN-

GIST-1M, PCA projection is used to project the data to 512

dimensions. Since SH, HE, PCA Hashing can’t generate

codes longer than data dimension while our ABAH and

ABAH_KM can, we don’t plot the results when codes are

longer than 512 bits for SH, HE, PCA Hashing. By the same

token, we don’t plot the results of 256-bit and 512-bit for SH,

HE, PCA Hashing in Fig. 3(b). We can see that our

ABAH_KM method achieves the best results most of time.

With codes longer than data dimension for ABAH and

ABAH_KM, better results are obtained. One can strike a

balance between accuracy and efficiency by choosing

appropriate number of bits. Experimental results about

precision and recall on dataset ANN-GIST-1M can be seen

in the supplemental material.

Figure 4 shows the search performance in terms of

1000-NN mAP as a function of the size of the dataset (up to

1M). All the compared methods use 40 bits to encode the

vectors. One can observe that our ABAH_KM approach

achieves the best results on different size of dataset. We also

experiment on two small datasets, ANN-GIST-15K and

ANN-GIST-60K. The results are presented in the supple-

mental material.

Finally, for image retrieval task, we test our methods on

dataset UKB.

As shown in Figure 5. Our ABAH_KM hashing

approach outperforms other compared methods in all ranges

15K 60K 150K 1M
0

0.05

0.1

0.15

0.2

0.25

database size (number of vectors)

1
0
0
0
-N

N
 p

re
c
is

io
n

SH 40 bits

HE 40 bits

PCA Hashing 40 bits

ABAH 40 bits

ABAH_KM 40 bits

Figure 4. Comparison of ABAH to state-of-the-art methods. 1000-

NN mAP for ANN-GIST-1M as function of the size of the dataset.

16 32 64 128 256 512 750 1024
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Binary code length (#bits)

4
×

p
re

c
is

io
n
@

4

SH

HE

PCA Hashing

ABAH

ABAH_KM

NN Baseline

Figure 5. Comparison of ABAH to state-of-the-art methods on

UKB dataset.

from 16 bits to 512 bits. NN Baseline is computed by the

exhaustive, linear scan based on the Euclidean distance. HE

and PCA Hashing achieve surprisingly good results with

shorter codes in this dataset. Since images are represented

by 512-bit dimensional vectors, same to the case of ANN-

GIST-1M, we don’t plot the results of 750-bit and 1024-bit

for SH, HE, PCA Hashing. We can see that our ABAH_KM

can better approximate the results of linear search.

4. CONCLUSION

In this work, we propose a new hashing method to embed

the real-value vectors into a neighborhood structure-

preserved hamming space for ANN search. It is very simple

and intuitive. Extensive experiments have demonstrated the

effectiveness of our method. The proposed method can be

combined with some other projection technique like kernel

PCA, LDA. In the future, we will tackle these issues.

5. ACKNOWLEDGMENT

This work has been supported by the National Key

Technology R&D Program of China under Grant No.

2012BAH04F02, and the International S&T Cooperation

Program of China under Grant No. 2013DFG12980.

6. REFERENCES

[1] D. Lowe, “Distinctive image features from scale-

invariant keypoints,” IJCV, vol. 66, pp. 91-110, 2004.

[2] Jon Louis Bentley, “K-d trees for semidynamic point

sets,” in Symposium on Computational Geometry, pp.

187-197, 1990.

[3] M. Datar, N. Immorlica, P. Indyk and V. Mirrokni,

“Locality-sensitive hashing scheme based on p-stable

distributions,” in Symposium on Computational

Geometry, pp. 153-262, 2004.

[4] Y. Weiss, A. Torralba, and R. Fergus, “Spectral

Hashing,” in NIPS, pp. 1753-1760, 2008.

[5] G. Hinton, S. Osindero, and Y. W. Teh, “A fast learning

algorithm for deep belief nets,” Neural Computation,

18(7): 1527-1554, 2006.

[6] G. Hinton, and R. Salakhutdinov, “Reducing the

dimensionality of data with neural networks,” Science,

313(5786): 504-507, 2006.

[7] G. Shakhnarovich, P. A. Viola, and T. Darrell, “Fast

pose estimation with parameter-sensitive hashing,” in

ICCV, pp. 750-759, 2003.

[8] C. Strecha, A. Bronstein, M. Bronstein, and P. Fua,

“Ldahash: Improved matching with smaller des-

criptors,” IEEE TPAMI, vol. 34, no. 1, pp. 66-78, 2012.

[9] Y. Gong and S. Lazebnik, “Iterative quantization: a pro-

crustean approach to learning binary codes,” in CVPR,

2011.

[10] H. Jégou, M. Douze, and C. Schmid, “Hamming

embedding and weak geometric consistency for large

scale image search,” in ECCV, Oct. 2008.

[11] B. Wang, Z. Li, and M. Li, “Efficient duplicate image

detection algorithm for web images and large-scale

database,” Technical report, Microsoft Research, 2005.

[12] W. Liu, J. Wang, S. Kumar, and S. Chang, “Hashing

with graphs,” in ICML, 2011.

[13] H. Jégou, M. Douze, and C. Schmid, “Product

quantization for nearest neighbor search,” IEEE TPAMI,

vol. 33, no. 1, pp. 117-127, 2011.

[14] D. Nistér and H. Stewénius, “Scalable recognition with

a vocabulary tree,” in CVPR, pp. 2161-2168, 2006.

[15] A. Oliva and A. Torralba, “Modeling the shape of the

scene: a holistic representation of the spatial envelop,”

IJCV, 2001.

[16] R.-S. Lin, D. Ross, and J. Yagnik, “Spec hashing:

Similarity preserving algorithm for entropy-based

coding,” in CVPR, pp. 848-854, 2010.

