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ABSTRACT 

 

Using hashing algorithms to learn binary codes represen-

tation of data for fast approximate nearest neighbor (ANN) 

search has attracted more and more attentions. Most existing 

hashing methods employ various hash functions to encode 

data. The resulting binary codes can be obtained by 

concatenating bits produced by those hash functions. These 

methods usually have two main steps: projection and 

thresholding. One problem of these methods is that every 

dimension of the projected data is regarded as the same 

importance and represented by one bit, which may result in 

ineffective codes. We introduce an adaptive bit allocation 

hashing (ABAH) method to encode data for ANN search. 

The basic idea is, according to the dispersion of every 

dimension after projection we use different number of bits to 

encode them. ABAH can effectively preserve the 

neighborhood structure in the original data space. Extensive 

experiments show that ABAH significantly outperforms 

three state-of-the-art methods. 

 

Index Terms— Approximate nearest neighbor search, 

hamming embedding, adaptive bit allocation, image retrieval. 

 

1. INTRODUCTION 

 

Nearest neighbor (NN) search has been widely used in 

computer vision application, like scene classification, 3D 

reconstruction and other related application areas. 

Traditional linear search for NN requires scanning all the 

data (mostly, vectors) in a dataset and the time complexity is 

O(Nd), where N is the size of dataset and d is the dimension 

of vectors. Hence, it is computationally prohibitive to adopt 

linear search for massive datasets which might contain 

millions or even billions of vectors, especially when the 

vectors are high-dimensional, like the 128-dimensional SIFT 

descriptor [1]. Another problem of NN search in large scale 

datasets is the excessive, unacceptable storage consumption 

if traditional data formats are used. 

In many applications like image retrieval, however, it is 

sufficient to return approximate nearest neighbors and 

several approximate nearest neighbor (ANN) search 

techniques have been developed including tree-based 

methods and hash-based methods. Since the tree-based 

methods [2] are turned out to be not more efficient than 

exhaustive search for high dimensions, hash-based ANN 

techniques which aim at embedding the data into Hamming 

space have attracted more and more attentions. Specifically 

speaking, each vector is encoded as a binary code in the 

Hamming space and for preserving the neighborhood 

structure in the original data space, similar points in the 

original data space should be mapped to similar points in the 

Hamming space, i.e. the codes should be locality-sensitive. 

Searching similar neighbors is accomplished simply by 

finding the vectors that have codes within a small Hamming 

distance of the query’s code. One of the advantages of 

hashing methods is that the Hamming distance between two 

codes can be efficiently computed by XOR operator. 

Moreover, the storage will be largely reduced for storing the 

binary codes. Therefore, considering the fast query speed 

and low storage cost, hashing has been a popular candidate 

for efficient ANN search in large scale datasets. 

To generate a k-bit binary code, the hashing methods 

usually need k hash functions, and each hash function 

produces one bit of the binary code in two steps, projection 

and thresholding. The resulting binary code can be got by 

concatenating bits produced by those hash functions. The 

pioneering work locality-sensitive hashing (LSH) [3] 

employs simple random projections for the first step. 

Spectral hashing (SH) [4], based on spectral graph 

partitioning, calculates the bits by thresholding a subset of 

eigenvectors of the Laplacian of the similarity graph and it 

has demonstrated significant improvements over LSH, 

Restricted Boltzmann Machine (RBM) [5, 6] and Boosting 

Similarity Sensitive Coding (BoostSSC) [7]. LDAHash [8] 

adopts Linear Discriminant Analysis (LDA) to learn the 

projection matrix and chooses the threshold by optimizing a 

loss function. Iterative quantization (ITQ) [9] introduces a 

procrustean approach that minimizes quantization loss to 

learn the projection matrix. In Hamming Embedding (HE) 

[10], Jégou et al. randomly draws a matrix of Gaussian 

values and then apply a QR factorization to it. The 

projection matrix is formed by the first rows of the 

orthogonal matrix obtained by this decomposition. Finally, 

use median value to binarize every dimension. Similarly, in 

order to computes k-bit hash codes, PCA Hashing [11] 



projects data to the k principal components, and then use 

average value to binarize the coefficients. Most hashing 

methods regard every dimension of vectors as the same 

importance and allocate one bit to represent every dimension. 

Different with this, Anchor Graph Hashing (AGH) [12] uses 

a two-layer hash functions to quantize every dimension. But 

in AGH, every dimension is still encoded by the same 

number of bits. 

In this paper, we propose an adaptive bit allocation 

hashing (ABAH) approach to adaptively allocating different 

number of bits to encode every dimension for ANN search. 

The neighborhood structure in the original space can be 

better preserved in the Hamming space. Extensive experi-

ments demonstrate the superiority of our method. The rest of 

the paper is organized as follows. In Section 2, we describe 

the details of our ABAH method. Experimental results are 

presented in Section 3. The paper is concluded in Section 4. 

 

2. ADAPTIVE BIT ALLOCATION HASHING 

 

This section describes the details of our ABAH method. 

First, we introduce the motivation of ABAH. Then, the 

ABAH scheme is proposed. After that, the whole learning 

procedure for ABAH will be summarized. Finally, we do 

some discussions about ABAH. 

 

2.1. Motivation 

 

Given x = (x1, x2, …, xd) and y = (y1, y2, …, yd), which are 

two randomly chosen d-dim data, the Euclidean distance 

between x and y, D(x, y) = sqrt((x1 – y1)
2
+( x2 – y2)

2
+…+( xd 

– yd)
2
) is mainly determined by those dimensions that have a 

larger value of (xi – yi)
2
. Hence, if the data on some 

dimensions have a larger E((xi – yi)
2
), which is related to the 

dispersion of the ith dimension, those dimensions will be 

more important for computing Euclidean distance. When 

embedding the data into Hamming space, in order to 

maintain the neighborhood structure, important dimensions 

in the Euclidean space should be also important in the 

Hamming space. To achieve this goal, we adaptively 

allocate bits to encode dimensions according their dispersion. 

If we use the same, fewer bits to encode every dimension, 

the information loss of dimensions with larger dispersion 

caused by encoding will increase. But using the same, more 

bits to encode all the dimensions will be superfluous for 

dimensions with less dispersion.  

As illustrated in Figure 1, the projection values of the 

data on direction w1 have a larger dispersion and are 

dominant for Euclidean distance computation. More bits will 

be allocated to encode that dimension (after projection) for 

preserving neighborhood structure. 

 

2.2. ABAH Scheme 

 

 
 

Figure 1. Illustration of different dimensions’ effect on Euclidean 

distance. Obviously, after projection, the values on direction w1 

have a larger dispersion and are dominant for Euclidean distance 

computation. 

 

In this subsection, we introduce the details of our algorithm. 

Firstly, we use a projection to preprocess the original data to 

find the principal components. Secondly, in order to deter-

mine which dimension is more important after projection, 

dimension’s dispersion is calculated. Then according to the 

dispersion of every dimension, different number of bits are 

allocated to encode corresponding dimension. 

 

2.2.1. Projection 

 

We adopt PCA to project the original data for two reasons. 

One is that the dimensions of vectors after PCA projection 

are irrelevant and the first k dimensions are the principal 

components which can better describe the original data. The 

other is that the eigenvalues used in PCA algorithm serve as 

a measurement of dispersion (see Section 2.2.2) and can be 

easily used to compute every component’s code length (see 

Section 2.2.3). 

It’s important to note that all the data discussed below 

are PCA-projected data. 

 

2.2.2. Dispersion Measurement 

 

As proved below, variance is equivalent to E((xi – yi)
2
) and 

better to measure dispersion for maintaining neighborhood 

structure under the assumption that the training data are 

uncorrelated. 

First of all, we introduce some notations. We have a set 

of N data {x1, x2, …, xN}, xi 
d , that form the rows of the 

data matrix X N d . 

For the pth column of X, 
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Assume the training data are independent and identi-

cally distributed (i.i.d.), and then we have, 
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The variance of the pth column of X is, 
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From the derivation, we can see that variance is 

equivalent to E((xi – yi)
2
).  is the mean of the pth column of 

X. 

Besides, the variance of every dimension is easy to 

obtain since we use PCA projection to project the data and 

the eigenvalue associated with a dimension indicates the 

variance of this dimension. So we use variance to measure 

dispersion. If one dimension has a larger variance, more bits 

will be allocated to encode this dimension; otherwise, fewer 

bits.  

 

2.2.3. Calculating Code Length 

 

To maintain the neighborhood structure, we use more bits to 

encode those dimensions having larger variance. In other 

words, if the eigenvalue corresponding to the ith column of 

the PCA projection matrix is larger, we will use more bits to 

encode the vector’s ith dimension.  

Simply and intuitively, given total code length k, the ith 

dimension’s code length will be  

1
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                       (4) 

λi is the eigenvalue corresponding to the ith dimension of the 

PCA projection matrix and [x] means floor(x). One problem 

of (4) is that if someλi are very close to each other and they 

are not large enough, e.g., 10.5 1/ d

i n nk   （ ） , this will result 

in those ci = 0 and 1

d

i ic k  . To handle this problem, we 

use a variant strategy as follows, 
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Then, every dimension is encoded sequentially. Since 

PCA will find the principal components with degressive 

variance, the codes length of every dimension have a 

downward trend. If ci = 0 according to (5), and -1

1

i

t tc k  , 

we set ci = 1. 

The proposed method in Eq. 5 is not an optimal solution. 

For example, if the first i-1 components use less than k bits, 

the ith component which may not be large enough to use one 

bit will be assigned one. In the future, we will tackle this. 

 

2.2.4. Encoding Every Dimension 

 

If two vectors are close to each other, the Hamming distance 

between their binary codes should be small. We achieve this 

goal by making every dimension’s subcode close to each 

other for similar data. Details are illustrated as follows.  

For a training vector xp = (xp1, xp2, …, xpd), ci bits are 

allocated to encode the ith dimension. Firstly, we divide the 

range of the ith dimension into ci+1 parts by ci thresholds. 

The ci thresholds are chosen in a simple way,  
min max min( / ( 1)) ( )i

j i i i it x j c x x              (6) 

i

jt  is the jth threshold of the ith dimension, for 1≤j≤ci. 
min

ix  

and max

ix  indicate the minimum value and maximum value of 

the ith column of the training matrix X. If 
-1

i i

j pi jt x t  , for 

2≤j≤ci , we encode xpi with subcode si which consists of (ci-

j+1) zeros followed by (j-1) ones. If 
i

i

pi cx t , si will consist of 

ci ones. If 
1

i

pix t , si will consist of ci zeros. In this way, the 

Hamming distance between two subcodes corresponding to 

two values that close to each other will be small. And the 

final binary code HABAH(xp) of xp can be obtained by 

concatenating all the subcodes, i.e., HABAH(xp) = (s1, s2,…, 

st), subject to 1

t

i ic k  . 

       This simple algorithm has one limitation. The thresholds 

are chosen uniformly from the range of every dimension. 

This may divide two values close to each other into two 

different regions. We have experimented with k-means 

method to find out every dimension’s “thresholds”. 

Specifically speaking, for the ith dimension we use 1-dim k-

means algorithm to find (ci+1) centroids with ascending 

order. Values belong to the ith cluster will be encoded by 

subcode si, which consists of (ci-i+1) zeros followed by (i-1) 

ones. The k-means algorithm can give a better partition and 

the centroids are better representation of every parts. It 

achieves better results and we name it ABAH_KM. 

 

2.3. Summary of ABAH Learning 

 

Given a training set {xi} and a desired code length k, the 

whole simple learning procedure of ABAH can be 

summarized as follows: 

 Finding the principal components of the original data 

using PCA. 

 Calculating the code length of every dimension in the 

way described in Section 2.2.3. 



 According to every dimension’s thresholds, using 

different number of bits to encode them in the way 

described in Section 2.2.4. 

 Concatenating the subcodes to obtain the final binary 

code. 

 

2.4. Discussion 

 

Now let us discuss the time complexity of ABAH. The 

training time is mainly determined by the step of encoding 

every dimension (see Section 2.2.4). Once we get the codes 

length of every dimension, the subcodes can be calculated 

and stored in a table before converting data to binary codes. 

Using thresholds to encode every dimension by subcodes 

can be achieved in constant time by looking up the table. To 

find the thresholds, in the worst case, the time consuming is 

O(kN). k is the total bits number and N is the number of 

training samples. Since our methods can generate codes 

longer than data dimensions, if k is larger than data 

dimension d, the time consuming of computing thresholds is 

at most O(dN). For one dimension, it only needs O(N) time 

to compute the thresholds. But since PCA will find the 

principal components and more bits will be allocated to 

those components, in reality, the thresholds computing time 

is far less than O(kN). 

When testing, there are two strategies. One is that we 

linearly search every code in the database to find the nearest 

neighbor. The other is using hash table or inverted list to 

organize the database, which can achieve sub-linear search 

time. For simplicity, we adopt the first method and the time 

complexity is O(kN). 

 

3. EXPERIMENT 

 

In this section we evaluate and compare our two methods 

with three state-of-the-art methods. 

 

3.1. Datasets 

 

For ANN search task, we perform experiments with the 

following four datasets: 

 ANN-GIST-150K: A set of 960 dimensional, 150K 

GIST descriptors, which consist of a subset of ANN-

GIST-1M [13]. 

 ANN-SIFT-150K: A set of 128 dimensional, 150K 

SIFT descriptors, which consist of a subset of ANN-

SIFT-1M [13]. 

 ANN-GIST-1M: A set of 960 dimensional, 1M GIST 

descriptors. 

 ANN-SIFT-1M: A set of 128 dimensional, 1M SIFT 

descriptors. 

 

For datasets ANN-GIST-150K, ANN-SIFT-150K, 

100K vectors randomly chosen are used as training set and 

the rest 50K vectors are used as test set. For ANN-GIST-1M 

and ANN-SIFT-1M, we randomly choose 200K vectors as 

queries. The rest 800K vectors are used as training set. The 

ground truth is defined by k nearest neighbors computed by 

the exhaustive, linear scan based on the Euclidean distance. 

The performance is measured by mean Average Precision 

(mAP).  

Finally, we employ our methods for practical 

application for image retrieval on the dataset UKB. 

 UKB: The University of Kentucky Benchmark (UKB) 

[14] contains 10,200 images of 2,550 objects. 4 

pictures correspond to each object, taken from different 

angles.  

We represent each image with a 512 (4×8×16) 

dimensional GIST descriptor [15]. Each image is used in 

turn as query to search through the 10,200 images. The 

accuracy is measured in terms of the number of relevant 

images retrieved in the top 4, i.e. 4×precision@4. For 

learning purpose, we use an independent image set to learn 

the parameters (codes length and thresholds of every 

dimension). One important thing we should know is that the 

retrieval results not only depend on the hashing method, but 

also are affected by the image representation to a great 

extent. 

For all the experiments, we use a machine consisting of 

i7-2600 CPU and 16GB main memory.  

 

3.2. Compared Methods 

 

 SH: Spectral Hashing [4] 

 PCA Hashing: PCA Hashing [11] uses the average 

value of every dimension to binarize this dimension 

with one bit after PCA projection.  

 HE: Hamming Embedding (HE) [10]. For simplicity, 

we use PCA projection matrix. Different from PCA 

Hashing, HE uses the median value of every 

dimension as the threshold.  

 ABAH:  The hashing method is proposed in this paper 

with the thresholds obtained uniformly. 

 ABAH_KM: An improved version of our ABAH with 

the thresholds obtained by k-means algorithm. 

 

3.3. Results and Analysis 

 

Figure 2 shows the mAP of k nearest search of all the tested 

methods for k = 1000 on ANN-GIST-150K, ANN-SIFT-

150K. Our ABAH_KM method performs better over all the 

tested methods across all the tested bit lengths ranging from 

10 bits to 60 bits. Similar to that reported in [16], PCA 

Hashing performs worse when using more bits encode the 

data. And so is HE. Although HE uses median value to 

binarize every dimension while PCA Hashing uses average 

value, they almost have the same results (actually, PCA 

Hashing performs slightly better than HE).  

As we can see, ABAH_KM achieves constantly better 

results than ABAH on the two datasets from 10 bits to 60  
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Figure 2. Comparison of ABAH to state-of-the-art methods: (a) 

experiment on ANN-GIST-150K dataset. (b) experiment on ANN-

SIFT-150K dataset. 
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bits, especially when using fewer bits to encode the data. 

This is mainly because the cluster centers got by k-means  
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Figure 3. Comparison of ABAH to state-of-the-art methods: (a) 

experiment on ANN-GIST-1M dataset. (b) experiment on ANN-

SIFT-1M dataset. 

 

algorithm are better representations of the data and can give 

a better partition. 

One phenomenon worthy our attention is that a 10-bit 

code can’t represent one vector uniquely. Because 10-bit 

codes at most have 1024 different representations while we 

have far more vectors in the dataset. Our ABAH_KM 

method also gets significantly better results in this case. 

In Figure 3, experimental results on dataset ANN-GIST-

1M and ANN-SIFT-1M are presented. For dataset ANN-

GIST-1M, PCA projection is used to project the data to 512 

dimensions. Since SH, HE, PCA Hashing can’t generate 

codes longer than data dimension while our ABAH and 

ABAH_KM can, we don’t plot the results when codes are 

longer than 512 bits for SH, HE, PCA Hashing. By the same 

token, we don’t plot the results of 256-bit and 512-bit for SH, 

HE, PCA Hashing in Fig. 3(b). We can see that our 

ABAH_KM method achieves the best results most of time. 

With codes longer than data dimension for ABAH and 

ABAH_KM, better results are obtained. One can strike a 

balance between accuracy and efficiency by choosing 

appropriate number of bits. Experimental results about 

precision and recall on dataset ANN-GIST-1M can be seen 

in the supplemental material. 

Figure 4 shows the search performance in terms of 

1000-NN mAP as a function of the size of the dataset (up to 

1M). All the compared methods use 40 bits to encode the 

vectors. One can observe that our ABAH_KM approach 

achieves the best results on different size of dataset. We also 

experiment on two small datasets, ANN-GIST-15K and 

ANN-GIST-60K. The results are presented in the supple-

mental material. 

Finally, for image retrieval task, we test our methods on 

dataset UKB. 

As shown in Figure 5. Our ABAH_KM hashing 

approach outperforms other compared methods in all ranges  
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Figure 4. Comparison of ABAH to state-of-the-art methods. 1000-

NN mAP for ANN-GIST-1M as function of the size of the dataset. 
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Figure 5. Comparison of ABAH to state-of-the-art methods on 

UKB dataset. 

 

from 16 bits to 512 bits. NN Baseline is computed by the 

exhaustive, linear scan based on the Euclidean distance. HE 

and PCA Hashing achieve surprisingly good results with 

shorter codes in this dataset. Since images are represented 

by 512-bit dimensional vectors, same to the case of ANN-

GIST-1M, we don’t plot the results of 750-bit and 1024-bit 

for SH, HE, PCA Hashing. We can see that our ABAH_KM 

can better approximate the results of linear search. 

 

4. CONCLUSION 

 

In this work, we propose a new hashing method to embed 

the real-value vectors into a neighborhood structure-

preserved hamming space for ANN search. It is very simple 

and intuitive. Extensive experiments have demonstrated the 

effectiveness of our method. The proposed method can be 

combined with some other projection technique like kernel 

PCA, LDA. In the future, we will tackle these issues. 
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