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Abstract
Accurate and rapid pattern recognition of epilepsy from intracranial electroencephalogram (iEEG) recordings is important
for medical diagnostics. In this paper, three algorithms based on discrete wavelet transform (DWT) analysis and parallel
probabilistic neural network, SA-PNN, SA-PPNN, and LSA-PPNN, are presented to identify iEEG recordings and detect
epileptic seizures. Simulated annealing (SA) and local simulated annealing (LSA) are utilized to optimize network
parameters of probabilistic neural network classifier, respectively. The combinations of different features are utilized as
the input vectors of classifiers to complete classification tasks. Experiments are conducted to deal with five different
classification tasks. Compared with non-parallel probabilistic neural network algorithm (SA-PNN), the running time of
parallel probabilistic neural network algorithm (SA-PPNN) is shortened by 2.18 times. Compared with SA-PPNN, the
average operating time of LSA-PPNN is reduced by 9.97 times. The reason is that LSA-PPNN trains and optimizes
parameters with local data firstly and then brings the parameters into the global training data sets to train the network for
a test. As the amount of data increases, the superiority over LSA-PPNN is getting more distinct. Our methods are also
compared with other existing relative research. Experimental results prove that our methods are much more competitive. In
particular, for the classification task C-D, the classification accuracy of our method reaches 83.3%, which is much higher
than previous results.

Keywords Intracranial electroencephalogram (iEEG) · Epilepsy · Discrete wavelet transform (DWT) · Parallel
computing · Local simulated annealing (LSA) · Probabilistic neural network (PNN)

1 Introduction

Recently, epilepsy becomes the most common neurological
diseases in the world. It is result from plenty of abnormal
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activities with nerve cell. Not only can epilepsy make
several potential health problems, but also influence normal
life seriously due to paroxysmal. In clinic, we usually
utilize intracranial EEG (iEEG) signals measuring activities
of nerve cell in our brain. Under epilepsy condition, the
activities of the iEEG are usually divided into four classes:
normal, pre-ictal, post-ictal, epileptic, where ictal is the
stage from the start to the end of epileptic seizure activities
[1]. In epilepsy research, the essential part is how to
distinguish pre-ictal, epileptic seizures, and post-ictal states
with existing iEEG signals [2]. This problem seems simple
enough, but it is so time-consuming that neuroscientists are
supposed to analyze and classify numerous iEEG signals
by visual inspection. Furthermore, according to [3], there
are only 92% of the inter-expert sensitivity achieved with
four human experts, so it is necessary to enhance the
classification accuracy of visible inspection. Nowadays, so
many researches attempt to design an automatic pattern
classification methods for iEEG signals, in order to help
neuroscientists completing the classification tasks simply.
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In automatic epileptic seizure recognition methods,
usually it can be divided into two parts, feature extraction
and signal recognition. Therefore, there are many feature
extraction algorithms combined with classifiers based on
supervised or unsupervised learning that have been utilized
in detection of epileptic seizures recently.

Generally speaking, we often have three groups fea-
ture extraction methods, namely time domain, frequency
domain, and combine time and frequency domain analysis
methods. On the one hand, time-domain analysis meth-
ods usually extract entropy to represent complete signal,
including Shannon entropy [2], Approximate entropy [2, 4,
5], Sample entropy [6], Log energy entropy [2], Wavelet
entropy [7], and so on. On the other hand, frequency-domain
analysis methods includes principal component analysis [8],
autoregressive (AR) model [9], short time fourier transform
(STFT) [10] and so on. As for time-frequency analysis,
Wavelet transform (WT) considers both time and frequency
point of views. So it possible to capture and localize tran-
sient features in the epileptic spikes precisely [11]; multi-
fractional analysis method, discrete wavelet transformation
(DWT), have been utilized to many classification problem,
achieving good performance [12].

After features are extracted from iEEG signals, the
classification algorithms are supposed to focus next. Pattern
classification is the other essential part in our research.
Lots of classifiers have been previously used to solve
the problem, such as support vector machines (SVM)
[13, 14], linear discriminant analysis (LDA) [15], naive
Bayes algorithm [16], and so on. Among them, neural
network (NN) is the most popular method, due to its
amazing performances of adaptability [11, 12]. However,
ANN algorithms contain too much parameters, and the
performance of it depends heavily on parameters’ quality,
so how to select properly parameters become a serious
problem. This paper utilize probabilistic neural network
(PNN) as a classifier analyzing iEEG signals. Considerately,
PNN classifier needs only one parameter whose value can
be determined adaptively. In this paper, the contributions
can be summarised as follows.

1. This paper presents three algorithms based on DWT
analysis and PNN, namely SA-PNN, SA-PPNN and
LSA-PPNN to identify iEEG recordings. SA and LSA
algorithm are utilized to optimize network parameters
of probabilistic neural network classifier, respectively.
Comparing with existing relevant work, our methods
can get better classification accuracy.

2. In order to reduce the running time of PNN classifier,
parallel mechanism is adopted in our work. Input
weight is calculated on several different processors

simultaneously. Compared with serial PNN algorithm,
the time consumption of weight computing between
the input layer and the radial base layer can be
reduced significantly. Parallel PNN (PPNN) improves
computing efficiency and it is more suitable than PNN
for large-scale data processing.

3. LSA-PPNN algorithm trains and optimizes parameters
with local data firstly, and then brings the parameters
into the global training data sets to train the network for
test. The LSA algorithm helps to optimize the spreading
factor of the PPNN classifier. Experiment results show
that the LSA-PPNN algorithm not only greatly shortens
the running time, but also obtains better accuracy.

2Material andmethods

2.1 Data segmentation

In this paper, we utilize the public data set which obtain
the data sets previous ictal (C), post ictal (D) and epileptic
(E) from the Department of Epileptology, University of
Bonn. Andrzejak et al. [17]. Set C is obtained from the
hippocampus of the opposite hemisphere of 5 epileptic
patients. Set D is acquired from an epileptogenic zone. Set
E is collected by measuring the pathogenic areas of epilepsy
during epileptic seizures. The description of three data sets
is presented in Table 1. In this paper, we mainly research the
following five tasks.

In this photograph, we will introduce our data segmen-
tation method for efficient use of samples. The data set is
recorded by the 128 channels signal amplifiers. And the
amplifiers are digitized with a sampling rate of 173.61 Hz,
and the band pass filter sets between 0.53 HZ and 40.0 Hz.
Sampling time is 23.6 second . Therefore, there are 4097
samples in each group data. Samples are divided into 8 equal
data segmentation of size 512. Therefore, 800 data segmen-
tation are obtained from 100 single channels. The iEEG
signals from set C to set E are included in the samples,
which are shown in Fig. 1.

2.2 Proposedmethod

In this paper, three kinds of pattern recognition methods
based on PNN classifier (SA-PNN, SA-PPNN and LSA-
PPNN) are proposed to identify iEEG signals and detect
epileptic seizures. The architecture of the whole process
are presented in Fig. 2. First, IEEG signals are processed
by using the DWT, and decomposed into multiple kinds
of sub-signals by the fifth level decomposition with ‘db5’
wavelet function. Then, statistical features from sub-signals,
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Table 1 The summary of data set of Previous ictal, Post ictal and Epileptic

SET C SET D SET E

sampling rate 173.6HZ 173.6HZ 173.6HZ

No. of epochs 100 100 100

Epoch duration 23.6s 23.6s 23.6s

Electrodes
placement

Within epilepto-
genic zone

Opposite to
epileptogenic
zone

Within epilepto-
genic zone

mean absolute value (MAV), root mean square (RMS)
and standard deviation (SD), are extracted. The selection
of those statistical features refer to the Sharmila et al.’s
research [12]. Next, three methods based on PNN, SA-
PNN, SA-PPNN, LSA-PPNN, are proposed and deal with
classification tasks.

2.3 Extracting features by discrete wavelet
transforms (DWT)

2.3.1 Feature extraction

WT has inherited and developed from the idea of short-
time Fourier transform (FT) method. Compared with
original algorithm FT, WT solves the disadvantages
of window size without changing with frequency, and
provide a “time-frequency” window which changes with
frequency so that extracting more effect information from
signals. The characteristic of wavelet transform method
is time-frequency localization and multi-scale refinement
of signal through scale transformation. Simultaneously,
the WT achieves both frequency and time subdivision
for all frequencies, so that WT can adaptively complete
the requirements for the analysis of different time and

frequency [18]. Conclusively,WT is one of the ideal algorithm
for signal process analysis, and especially for the irregular
signals. The DWT [19] for a signal s(t) is defined as (1):

DWT(m, n) =
∫ +∞

−∞
s(t)√|2j |ψ

(
t − 2mn

2j

)
dt (m ∈ Z)

(1)

where ψ(·) is a wavelet basis function.
In fact, to realize DWT method, quadrature mirror filters

(QMF) can efficient calculate it simply. QMF utilize a series
of high−pass (HP) and low−pass (LP) filters. The HP and
LP filters are represented by g[·] and h[·] respectively. In
QMF, a signal are decomposed by using a series of HP
and LP filters [19]. In our algorithm, for the first level
decomposition, results D1 and A1 is the output of s(t)

by passing h[n] and g[n], among that A1 is dominant in
frequency of original signal. The approximation coefficient
of each level are supposed to be decomposed continue, and
this process are repetitive executed four times to obtain the
final sub-signals. The results of five level decomposition
with s(t) can be obtained, including D1, D2, D3, D4, D5.
They are the frequency content of primary signals within the
bands with fs/4−fs/2, fs/8−fs/4, fs/16−fs/8, fs/32−fs/16
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Fig. 1 The records of iEEG signal for C to E. Blue line is an example in set C; red line is an example in set D; green line is an example in set E
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Fig. 2 The architecture of the proposed method

and fs/64−fs/32 respectively, among that the fs is 173.6
HZ [11]. The algorithm structure of five level with wavelet
decomposition for iEEG signals is presented in Fig. 3, and
the sub-bands corresponds to the frequency range in details
are presented in Table 2.

2.3.2 Analysis of variance

Analysis of Variance (ANOVA) usually analyzes test results
by mathematical statistics, which is a effective method for
identifying the influence of each factor [20]. In our paper,
ANOVA is used for 18 kinds of features from 6 sub-bands
to confirm the effectiveness of feature extraction method.

2.4 Parallel probabilistic neural network

Probabilistic neural network (PNN) is a kind of radial basis
network (RBF) [21]. As the structure of PNN is simple
and easily design algorithms, PNN has been widely utilized
in pattern classification task [22]. The combinations of
different statistical features are utilized as the input vector
of PNN. Besides, The number of radial basis layer neurons
equals to the number of input vector’s training samples.

The input weights are determined by the jth neuron of
class i in radial basis layer [7],

ψij (x) = 1√
2πσd

e
− (x−xij )(x−xij )T

σ2 (i = 1, 2, . . . , M) (2)

where x is the input of radial basis layer; M is the number
of classes to be classified; d is the dimension of the sample
space; xij is jth center of the class i sample; σ is a spreading
factor, which is key hyper-parameter in our network.

The competitive layer averages the output of radial basis
neurons in the same class,

vi =
∑L

j=1 ψij

L
(3)

where vj is the output of ith class, and L represents the
number of ith class neurons.

The output layer selects the competition layer which has
the maximum value.

y = max{v1, v2, . . . , vN } (4)

We use one-hot coding method in the competitive layer,
so the neuron output is 1 while the neuron has the max
posterior probability density, and the others are 0.

In this paper, a parallel PNN (PPNN) classifier is
designed for improving computing efficiency. In PPNN

method, the calculation of ϕij (x) is divided into several
parts, and every part is calculated on different processors
simultaneously. Therefore, PPNN is more suitable than
PNN method for large-scale data processing. The CPU
with four processors is used for running PPNN. The data
sets are separated into two parts. 70% of data are used to
train the network, and 30% are used to test the network’s
performance. Our results are average by 10 times cross
validation. The architecture of this PPNN classifier is
illustrated in Fig. 4.

2.5 PPNN combined with simulated annealing
algorithm

Due to the largely dependent on the value of σ for
the performance of PNN, this paper proposes simulated
annealing (SA), and local simulated annealing (LSA) to
optimize parameter σ for the PPNN classifier.

The idea of SA algorithm was proposed by Metropolis
in 1953. Kirkpatrick applied it to solving optimization
problems firstly in 1983 [7]. SA is a stochastic optimization
algorithm based on Monte-Carlo iterative solution strategy.
The origin of SA is based on the similarity between
the annealing process of solid matter in physics and the
general combinatorial optimization problem. The core idea
of the SA algorithm is to reject the solution of the local
minimum problemwith a certain probability. In this way, the
local optimal solution could be abandoned, and other state
solutions of the state space could be explored. The global
optimal solution of the problem could be found [7].

In order to make all the solutions acceptable and to
avoid the algorithm falling into the local optimal solution,
the value of initial temperature T is supposed to be high
enough. Here it is set to 100, the maximum number of
iterations num max. The set of states is defined as S =
{s1, s2, s3, · · · , sn}. The spreading factor σ is discretized
and updated as follows in each iteration,

σk+1 = σk − (ε × 2 − 1) × 0.02 (5)

where ε ∼ U(0, 1). The energy function of solutions in
time step k is E(σk). The CA of PNN classifier is calculated
with the spreading factor σk . The value of CA equals to
the value of energy function E(σk) in our algorithm. The
global optimal solution is denoted by σ ∗ and E(σ ∗) =
min{σi |σi ∈ S}.

The concrete steps of SA are listed below:

1. Select the initial solution s0 and set the initial
temperature to 100.

2. The states produce random perturbations Δs. The
change of energy function is calculated by (6).

ΔE = E(σk+1) − E(σk) (6)
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Fig. 3 Fifth level wavelet decomposition of iEEG

3. The probability of P(σk+1 = σk) is calculated by (7)

P(σk+1 = σk) =

⎧⎪⎨
⎪⎩

1 ΔE ≤ 0

exp

{
−ΔE

T

}
ΔE > 0

(7)

4. Choose a noise from a uniform distribution: ε ∼
U(0, 1). According to P(σk+1 = σk), σk+1 is selected
as follow

σk+1 =
{

σk − (ε × 2 − 1) × 0.02 ε < P (σk+1 = σk)

σk else

(8)

5. Check the stability of the system at temperature T . If
the system is unstable, the second step will be executed.

6. Temperature T is declined by T = λT , where λ is equal
to 0.98. If the termination condition of the algorithm is
satisfied (k ≥ num max), the annealing process ends.
Otherwise move to step 2.

In order to reduce computational overhead while ensur-
ing classification performance, local simulated annealing
(LSA) is proposed to optimize parameter σ for the PPNN
classifier. Compared with the previous strategy that uses all
the data in data sets for training, LSA samples only a small
amount of data from data sets for training and testing. In this
work, the data is divided into training data set and test data
set. In each iteration, 20% of data is randomly selected as
the training data sets. About 50% of the rest data is selected

Table 2 Frequency band of iEEG signals using DWT

Decomposition levels Sub-bands Frequency range (HZ)

1 D1 43.4-86.8

2 D2 21.7-43.4

3 D3 10.8-21.7

4 D4 5.4-10.8

5 D5 2.7-5.4

6 A5 0-2.7

to form test data sets. Partial data is enough to calculate
parameters in our model and avoids over fitting problem.

These sub data sets are used to train the model and test
the performance of networks. The initial value of σ is set to
0.5. Classification accuracy (CA) of PPNN is used as energy
function in LSA. LSA algorithm decides whether to change
the value of σ or accept the current value of σ as the result
of the algorithm. Then repeat the process until the anneal
process is accomplished. After LSA algorithm, the value of
σ with the highest CA is selected in PPNN. Then, PPNN is
trained with training data sets. At last, the performance of
PPNN is tested by using the test data sets. LSA algorithm
utilizes local data for training and testing, and obtains the
optimal parameter in shorter time.

2.6 Performance evaluation parameters

The performance of the proposed method can be evaluated
by the following parameters [23]. Sensitivity, Specificity,
Classification Accuracy are mainly used to describe the
performance of accuracy, and Running Time and Speedup
are implemented to describe performance in terms of time.
Speedup represents the radio of the running time with

Fig. 4 The architecture of a PPNN
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the single computing, and the running time with parallel
computing.

3 Results

3.1 The results of feature extraction

The statistical features are extracted the A5, D1, D2, D3,
D4, and D5 coefficients by using DWT [24]. According to
the results in this table, the value of epileptic is so much
higher than that of pre-ictal and post-ictal in the 18 features,
while the value of post-ictal is slightly higher than that of
pre-ictal. The results also point out that the pre-ictal features
could be applied to the prediction of epilepsy [25]. The post-
ictal values help researchers realize the clinical significance
of post-ictal EEG activity [26]. ANOVA is utilized to 18
features, which can be proved that the features are effective
in classification, as p-value ≤ 0.0001 for all combinations
[20].

3.2 The result of SA-PNN, SA-PPNN, and LSA-PPNN

In this subsection, PNN based on SA algorithm (SA-PNN),
PPNN based on SA algorithm (SA-PPNN), and PPNN
based on LSA algorithm (LSA-PPNN), are used to do the
five classification tasks with seven different combinations

of statistics features including RMS, SD, MAV, SD+RMS,
MAV+RMS, MAV+SD, and MAV+SD+RMS.

The results obtained by the SA-PNN classifier are shown
in Table 3. For the classification tasks C-D, C-E, D-E, CD-
E, and C-D-E, the highest CA values are 83.33%, 99.79%,
99.17%, 98.75% and 85.73%, respectively. They are
obtained by different combinations of features (MAV+SD,
MAV, MAV+RMS, RMS+SD, and MAV+SD). The range of
CA for all the classification tasks using a PNN based on SA
algorithm is 83.33% to 99.79%. The shortest running time
in different combinations of features for C-D, C-E, D-E,
CD-E and C-D-E classification tasks are 2270.21, 2320.80,
2298.54, 5131.98, and 5115.80 seconds, respectively.

The results obtained by the SA-PPNN classifier are
shown in Table 4. For C-D, C-E, D-E, CD-E, and C-D-E
classification tasks, the highest CA are 83.33%, 99.79%,
99.17%, 98.75%, and 85.73% obtained by the different
combinations of features: MAV+SD, MAV, RMS+SD,
MAV+RMS, and MAV+SD, respectively. The shortest
running time in different combinations of features for C-D,
C-E, D-E, CD-E and C-D-E classification tasks are 1106.04,
1104.42, 1159.71, 2151.70, and 2216.21 seconds.

What is different from SA-PNN to SA-PPNN is that the
calculation of ϕij (x) in SA-PPNN is divided into several
parts, and every part is calculated on different processors
simultaneously. But the calculation of ϕij (x) is assigned to
the only processor in SA-PNN. Through Tables 3 and 4, we

Table 3 Performance for the combinations of different features using SA-PNN

Task MAV RMS SD MAV+SD RMS+MAV RMS+SD MAV+SD+RMS

C-D Running Time (s) 2280.29 2270.21 2300.56 2332.20 2309.27 2304.24 2339.19

CA(%) 80.42 78.96 79.58 83.33 80.42 79.79 81.67

Sensitivity(%) 77.92 80.42 83.33 85.00 81.25 83.33 83.33

Specificity(%) 82.92 77.50 75.83 81.67 79.58 76.25 80.00

C-E Running Time (s) 2300.59 2359.24 2324.75 2390.31 2320.80 2310.03 2441.35

CA(%) 99.79 99.38 99.17 99.38 99.58 99.17 99.38

Sensitivity(%) 100.00 99.58 99.58 99.58 100.00 99.58 100.00

Specificity(%) 99.58 99.17 98.75 99.17 99.17 98.75 98.75

D-E

Running Time (s) 2561.41 2298.54 2311.66 2357.53 2399.30 2453.87 2464.23

CA(%) 98.33 98.96 98.75 98.54 98.75 99.17 98.33

Sensitivity(%) 98.33 98.75 99.17 98.33 98.17 99.17 97.92

Specificity(%) 98.33 99.17 98.33 98.75 98.75 99.17 98.75

CD-E Running Time (s) 5131.98 5321.63 5267.33 5162.39 5201.16 5197.45 5245.93

CA(%) 92.36 98.19 97.92 98.75 98.75 98.06 98.47

Sensitivity(%) 98.13 98.33 97.92 98.96 98.96 97.92 98.75

Specificity(%) 80.83 97.92 97.92 98.33 98.33 98.33 97.92

C-D-E Running Time (s) 5128.79 5130.177 5115.80 5236.11 5152.70 5279.96 5184.32

CA(%) 82.64 80.28 80.28 85.73 83.19 82.36 83.61
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Table 4 Summary of performance for different features combination using SA-PPNN

Task MAV RMS SD MAV+SD MAV+RMS SD+RMS MAV+RMS+SD

C-D Running Time (s) 1106.78 1155.90 1163.16 1157.14 1261.37 1162.69 1155.22

CA(%) 80.42 78.96 79.58 83.33 80.42 79.79 81.67

Sensitivity(%) 77.92 80.42 83.33 85.00 81.25 83.33 83.33

Specificity(%) 82.92 77.50 75.83 81.67 79.58 76.25 80.00

C-E Running Time (s) 1251.74 1116.06 1139.76 1104.42 1241.48 1130.80 1131.32

CA(%) 99.79 99.38 99.17 99.38 99.58 99.17 99.38

Sensitivity(%) 100.00 99.58 99.58 99.58 100.00 99.58 100.00

Specificity(%) 99.58 99.17 98.75 99.17 99.17 98.75 98.75

D-E Running Time (s) 1253.11 1220.53 1272.97 1229.31 1168.38 1281.22 1159.71

CA(%) 98.33 98.96 98.75 98.54 98.75 99.17 98.33

Sensitivity(%) 98.33 98.75 99.17 98.33 98.17 99.17 97.92

Specificity(%) 98.33 99.17 98.33 98.75 98.75 99.17 98.75

CD-E Running Time (s) 2151.70 2275.01 2332.29 2318.26 1168.38 2416.72 2237.92

CA(%) 92.36 98.19 97.92 98.75 98.75 98.06 98.47

Sensitivity(%) 98.13 98.33 97.92 98.96 98.96 97.92 98.75

Specificity(%) 80.83 97.92 97.92 98.33 98.33 98.33 97.92

C-D-E Running Time (s) 2216.21 2244.04 2121.64 2298.49 2342.93 2234.8 2289.53

CA(%) 82.64 80.28 80.28 85.73 83.19 82.36 83.61

can observe that the results are samely expect the running
time. Since parallel computing is chunking the matrix, the
running time of the computing can be shorten.

The results obtained by the LSA-PPNN classifier
shown in Table 5. For C-D, C-E, D-E, CD-E, and C-
D-E classification tasks, the highest CA are 83.33%,

99.79%, 98.96%, 98.61%, and 84.61% obtained by the
different combinations of features: MAV+SD, MAV, RMS,
MAV+SD, andMAV+SD, respectively. The shortest running
time in different combinations of features for C-D, C-E,
D-E, CD-E, and C-D-E classification tasks are 305.61,
303.92, 304.36, 415.23, and 414.18 seconds. The CA of

Table 5 Summary of performance for different features combination using LSA-PPNN

Task MAV RMS SD MAV+SD MAV+RMS SD+RMS MAV+RMS+SD

C-D Running Time (s) 308.24 309.37 309.19 308.98 308.37 308.72 305.61

CA(%) 80.21 57.50 75.42 83.33 63.33 79.38 81.46

Sensitivity(%) 77.92 99.58 87.50 85.40 91.25 83.33 84.17

Specificity(%) 82.50 15.42 63.33 81.25 35.42 75.42 78.75

C-E Running Time (s) 306.40 306.13 303.30 305.17 303.92 303.07 305.64

CA(%) 99.79 98.54 99.17 99.17 99.17 99.17 99.38

Sensitivity(%) 100.00 99.17 99.58 100.00 100.00 99.58 100.00

Specificity(%) 99.58 97.92 98.75 98.33 98.33 98.75 98.75

D-E Running Time (s) 305.42 306.96 308.37 306.72 306.53 306.96 304.36

CA(%) 97.29 98.54 98.33 97.92 98.33 98.54 98.13

Sensitivity(%) 99.58 99.17 98.33 97.08 98.33 99.17 97.92

Specificity(%) 95.00 97.92 98.33 98.75 98.33 97.92 98.33

CD-E Running Time (s) 415.39 420.59 415.23 448.61 423.88 417.93 422.78

CA(%) 98.19 98.19 97.92 98.61 97.78 97.78 98.47

Sensitivity(%) 99.17 98.13 97.92 99.17 99.17 97.92 99.17

Specificity(%) 97.92 98.33 97.92 97.92 97.92 97.50 97.92

C-D-E Running Time (s) 442.12 417.72 568.84 451.76 418.84 424.64 417.78

CA(%) 81.67 79.17 77.78 84.61 82.22 82.22 83.61



C. Gong et al.

Fig. 5 The best performance achieved by SA-PNN, SA-PPNN, and LSA-PPNN. Left figure is the running time for different methods and right
figure is CA

classification results obtained by LSA-PPNN classifier
is similar to that obtained by the SA-PPNN classifier.
However, the running time is much shorter than the SA-
PNN and the SA-PPNN classifiers. The best performance
achieved by SA-PNN, SA-PPNN, and LSA-PPNN is shown
in Table 7 (see Appendix) and Fig. 5. The average CA
of SA-PNN, SA-PPNN and LSA-PPNN is quite similar
(93.35%, 93.35%, and 93.06%, respectively). LSA-PPNN
uses the idea of training and optimizing parameters with
local data firstly, and then brings the parameters into the
global training data sets to train the network for testing.
Therefore, the running time will be greatly reduced.

The speedup between SA-PNN and SA-PPNN, SA-PNN
and LSA-PPNN is shown in Table 8 (see Appendix) and
Fig. 6. For five classification tasks, the highest speedups
between SA-PNN and SA-PPNN, are 2.06, 2.16, 2.12, 2.39,
and 2.41 respectively. The highest speedups between SA-
PNN and LSA-PPNN, are 7.65, 7.99, 8.39, 12.51, and

12.41 respectively. The CPU with 4 processors is used for
running the procedures of SA-PPNN. However, in parallel
computing, processors need to pass messages to each other,
and it requires consumption. Obviously, it is impossible
that the running time is reduced by many times as many
processors. In general, for the same type of calculation, the
speedup will increase as the data increases, because the ratio
of the spending time of processors’ communication and the
reduced time of parallel computing becomes smaller and
smaller. As a result, the speedups of tasks with 3 data sets
(CD-E, C-D-E) are higher than tasks with 2 data sets (C-D,
C-E, D-E).

3.3 Discussion

We compare the performance of our methods with other
previous methods [2, 7, 12, 13] and [27–29]. The results
obtained from the proposed methods and others on the iEEG

Fig. 6 The speedup between SA-PNN and SA-PPNN, SA-PNN and LSA-PPNN for different classification tasks
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Table 6 The comparison results of the proposed method and other previous algorithms

Year Method Task CA(%) References

2012 Permutation entropy combining with SVM C-E 88.00 [13]

D-E 79.94

2012 DWT combined with ApEn, SVM as
classifier

C-E 99.00 [7]

D-E 95.94

2012 DWT combined with Relative wavelet
energy (RWE) andWavelet entropy (WE),
SVM for classification

C-E 97.50 [7]

D-E 97.50

2014 DWT based on ApEn neural network for
classification

C-E 98.00 [11]

D-E 94.00

2014 One-dimensional local binary pattern CD-E 97.67

2015 Empirical mode decomposition (EMD)
and LS-SVM

CD-E 98.67 [29]

2016 DWT-Naive Bayes classifer com-
bined with k-NN classifiers

C-E 99.62 [12]

D-E 95.62

CD-E 98.75

2016 Wavelet-based nonlinear analysis and
SVM

CD-E 85.00 [28]

2017 Log energy, Shannon, Renyi
entropy and Spectral using MLP
for classification

C-E 97.68 [2]

D-E 94.56

C-D-E 84.58

C-D 57.80

2019 DWT extract features using elman neural
network models

C-E 99.37 [24]

D-E 98.25

CD-E 97.50

C-D 71.25

C-D-E 73.25

2020 DWT extract features using LSTM C-E 100.00 [30]

2020 DWT extract features using Simulated
Annealing-Based Parallel Probabilistic
Neural Network (SA-PPNN)

C-E 99.79

D-E 99.17

CD-E 98.75

C-D 83.33

C-D-E 85.73

2020 DWT extract features using Rondom Sim-
ulated Annealing-Based P-arallel Proba-
bilistic Neural Network (LSA-PPNN)

C-E 99.79

D-E 98.54

CD-E 98.61

C-D 83.33

C-D-E 84.61
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signal classification tasks are presented in Table 6. It can
be observed that the SA-PPNN obtains the best CA for
all classification tasks. The CA of LSA-PPNN for tasks
C-E, D-E, C-D and C-D-E is also higher than existing
methods. However, the CA of LSA-PPNN for task CD-E is
0.14% lower than A. Sharmila’s work [12], and the CA of
LSA-PPNN for task C-E is 0.21% lower than the research
in [30]. There are some methods using deep learning as
classifiers, which can achieve accuracies of 100% in the task
of detecting epileptic seizures [30]. In this paper, we studied
pattern recognition of iEEG signals for pre-ictal, post-ictal,
and epileptic, not only detection of epileptic seizures. For
the classification of detection of epileptic seizures (C-E),
we achieved accuracy of 99.79%, which is a little lower
than that achieved by some deep learning methods, but the
structure of our method is much simpler than deep learning
methods.

In this study, each iEEG signal is decomposed into six
sub-signals by using the DWT, and statistics features are
extracted from these sub-signals. The ANOVA analysis
indicates that features selected for the experiment distin-
guish between the classes very well. That is, effective fea-
tures are obtained, paving the path for classification. PNN is
selected as the classifier because it has only one key param-
eter, spreading factor. It is much easier to adjust parameter
than most other machine learning algorithms [22]. A LSA
algorithm is proposed to optimize spreading factor, which
helps obtain good results with local data. Finally, the com-
plex matrix computation in PNN is realized by parallel
setting (PPNN), which greatly improves the running speed
of our algorithm. Our algorithm is competitive comparing
with other methods.

4 Conclusions

In order to improve the classification accuracy of iEEG
signals and reduce the running time, three probabilistic

neural network classifier, SA-PNN, SA-PPNN, and LSA-
PPNN, are proposed with different feature combinations as
input vectors. Each of these PNN classifiers has only one
parameter, whose value can be obtained automatically by
simulated annealing algorithm.

Experimental results show that parallel mechanism has
positive impact on reducing the running time. LSA-PPNN
algorithm trains and optimizes parameters with local data,
but achieves a classification effect no less than SA-PPNN.
The running time of LSA-PPNN is much shorter than SA-
PPNN. As the amount of data increases, the superiority over
LSA-PPNN is getting more obvious.

Comparing with other existing methods, the SA-PPNN
obtains the best CA for all classification tasks. The CA of
LSA-PPNN for four tasks C-E, D-E, C-D, and C-D-E is also
higher than existing methods. Especially for classification
task C-D, LSA-PPNN gets 83.3% CA, which is much
higher than previous methods. As a result, the LSA-PPNN
is expected to be an economical and effective algorithm in
the practical application of epilepsy medical diagnosis.
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Appendix

The best performance achieved by SA-PNN, SA-PPNN,
and LSA-PPNN is shown in Table 7. The average CA
of SA-PNN, SA-PPNN, and LSA-PPNN is quite similar
(93.35%, 93.35% and 93.06%, respectively). The speedup
between SA-PNN and SA-PPNN, SA-PNN, and LSA-
PPNN is shown in Table 8. For five classification tasks,
the highest speedups between SA-PNN and SA-PPNN, are
2.06, 2.16, 2.12, 2.39, and 2.41 respectively. The highest
speedups between SA-PNN and LSA-PPNN, are 7.65, 7.99,
8.39, 12.51, and 12.41 respectively.

Table 7 The best performance achieved by SA-PNN, SA-PPNN and LSA-PPNN

Task SA-PNN SA-PPNN LSA-PPNN

C-D Running Time (s) 2270.21 1106.78 304.36

CA(%) 83.33 83.33 83.33

C-E Running Time (s) 2300.59 1104.42 303.07

CA(%) 99.79 99.79 99.79

D-E Running Time (s) 2311.66 1159.71 304.36

CA(%) 99.17 99.17 98.54

CD-E Running Time (s) 5162.39 2151.70 417.93

CA(%) 98.75 98.75 98.61

C-D-E Running Time (s) 5130.17 2216.21 417.72

CA(%) 85.7 85.7 84.61
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Table 8 Speedup between SA-PNN and SA-PPNN, SA-PNN and LSA-PPNN

Task Speedup MAV RMS SD MAV+SD MAV+RMS SD+RMS MAV+RMS+SD

C-D SA-PNN / SA-PPNN 2.06 1.96 1.98 2.02 1.83 1.98 2.02

SA-PNN / LSA-PPNN 7.40 7.34 7.44 7.55 7.49 7.46 7.65

C-E SA-PNN / SA-PPNN 1.84 2.11 2.04 2.16 1.87 2.04 2.16

SA-PNN / LSA-PPNN 7.51 7.71 7.66 7.83 7.64 7.62 7.99

D-E SA-PNN / SA-PPNN 2.04 1.88 1.82 1.92 2.05 1.92 2.12

SA-PNN / LSA-PPNN 8.39 7.49 7.50 7.69 7.83 7.99 8.10

CD-E SA-PNN / SA-PPNN 2.39 2.34 2.26 2.23 2.23 2.15 2.34

SA-PNN / LSA-PPNN 12.35 12.65 12.69 11.51 12.27 12.44 12.41

C-D-E SA-PNN / SA-PPNN 2.31 2.29 2.41 2.28 2.20 2.36 2.26

SA-PNN / LSA-PPNN 11.60 12.28 11.66 11.59 12.30 12.33 12.41
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