
  

  

Abstract—This work proposes a three dimensional (3D) robot 

grasp pose generation method for robot manipulator from the 

predicted two dimensional (2D) anchors and the depth 

information of local surface. Compared to the traditional image 

based grasp area detection methods in which the grasp pose are 

only presented by two contacts, the proposed method is able to 

generate more accurate 3D grasp pose. Furthermore, different 

from the 6-DoF object pose regression methods in which the 

point cloud of the whole objects is considered, the proposed 

method is very lightweight, since the 3D computation is only 

processed on the depth information of the local grasp surface. 

The method consists of three steps: (1) detecting the 2D grasp 

anchor and extracting the local grasp surface from image; (2) 

obtaining the normal vector of the objects’ local grasp surface 

from the objects’ local point cloud; (3) generating the 3D grasp 

pose from 2D grasp anchor based on the normal vector of local 

grasp surface. The experiments are carried on the Cornell and 

Jacquard grasp datasets. It is found that the proposed method 

yields improvement on the grasp accuracy compared to the 

state-of-art 2D anchor methods. And the proposed method is 

also validated on the practical grasp tasks deployed on a UR5 

arm with Robotiq Grippers F85. It outperforms the state-of-art 

2D anchor methods on the grasp success rate for dozens of 

piratical grasp tasks.  

I. INTRODUCTION 

With the rapid development of robotic grasp detection 
techniques, the deep architecture based grasp detection 
methods are able to predict the objects’ grasp areas accurately 
in real-time from images [1-4]. These traditional image based 
grasp area detection methods output the 2D grasp contact 
points for robot gripper. In this way, the gripper is able to 
grasp the objects along the directions orthogonal to the image 
planes. However, in practical grasp task, the appropriate grasp 
pose in 3D space is not always orthogonal to the image planes 
because of the various object pose in the scenes. Fig. 1 
presents an example from Jacquard, an open grasp dataset [5]. 
The box in Fig. 1(a) presents the predicted 2D grasp anchor, 
where the line segments in red present the range of two 
contacts of the gripper. The red lines in Fig. 1(b) present the 
grasp pose of a simulated gripper whose grasp direction is 
orthogonal to the 2D image planes. In Fig. 1(c), the lines in 
blue present the generated 3D grasp pose of the simulated 
gripper, whose grasp direction is parallel to the normal vector 
of the local grasp surface around the anchor area. Quite a few 
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researchers have discussed that the appropriate grasp pose 
near to the objects should be given by the normal distribution 
of the objects’ surfaces [6-9]. In Fig.1(c), the big green arrow 
presents the normal vector of the local grasp surface. It is 
reasonable that the grasp pose presented in Fig.1(c) is better 
than the one given in Fig.1(b). 

The case presented in Fig.1 indicates it is necessary to 
generate more accurate 3D grasp pose from images. In term of 
this, various 6-DoF object pose estimation methods have been 
proposed [7, 9-13]. However, these methods focus on 
estimating the objects’ pose without grasp details, at the same 
time, these 6-DoF methods are usually rather time cost since 
the whole object point cloud is considered in the 6-DoF 
parameters estimation. 

We can see that despite the various 2D grasp anchor 
detection methods and 6-DoF objects pose regression methods, 
a faster and more efficient 3D grasp pose generation strategy 
from image is still needed. This work proposes a 3D grasp 
pose generation method from the 2D grasp area. The 
contributions of the proposed method include: 

• Methodologically, it is a novel strategy to generate 
robust 3D grasp pose from the candidate grasp 
anchors in images and the depth information of local 
grasp surfaces. 

• In the terms of effect, the proposed method yields 
accuracy improvement on grasp compared to the 
state-of-art 2D grasp area detection methods. It also 
outperforms the state-of-art methods on the grasp 
success rate on dozens of real objects grasp tasks in 
the practical grasp scenes. 

• For experimental aspect, the discussions presented in 
this work indicate that the 3D grasp pose orthogonal 
to the object local grasp surface is better than the  2D 
grasp pose presented only by two contacts.  
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Figure. 1.  An grasp example from Jacquard dataset, where the object 

inclines towards table.  
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The reminders of this work are organized as following: 
related works are introduced in section Ⅱ; the idea and the 
details of the proposed method are presented in section Ⅲ; and 
the experiments, discussion and conclusions are given in 
section Ⅳ and Ⅴ respectively. 

II.  RELATED WORK 

Accurate and robust robotic grasping is a challenging task 
in robotic manipulator operation. Before the robot grasps 
objects, it is necessary to know where the target object located 
and how to catch them. In early period, some researchers used 
shape matching methods to detect the objects in the scenes, 
such as Hu moments [14-16], Histogram of oriented gradient 
(HOG) [17, 18], Shape contex (SC) [19, 20], Iterative Closest 
Point (ICP) [21], Point Distribution Model (PMP) [22], etc. 
Once the objects are located, the gripper touch areas are also 
obtained from the object templates [23]. In this period, these 
methods focus more on extracting the shape well from the 
background and matching the candidate shapes accurately 
according to the shape templates. How to generate a more 
robust grasp pose at the grasp area was not well discussed. 

Shape based grasp detection is challenged by the 
self-occlusion situations. Texture or feature points based 
object detection methods are less constrained to occlusions 
scenes, even occlusions happen among the different objects. 
The texture or feature points based object detection, such as 
Harr & Adaboosting [24], histograms of oriented gradients 
(HOG) [17], etc., are able to extract objects in complex scene. 
Recently, with the development of deep learning, deep neural 
network (DNN) based object detection methods, such as Yolo 
v1 - Yolo v4 [25-27], SSD [28] contribute to accurate object 
detections. Inspired by deep learning methods, deep 
architectures have been widely adopt to predict the grasp areas 
from image presentations [3, 29, 30] since 2013 when the deep 
neural network firstly used in grasping areas prediction [1]. In 
these methods, the grasp areas are presented by anchors, 
which are used to lable the ranges of object grasp areas such as 
the width, height and the center point. Recently, deep 
architecture has been expanded in grasp multi-task learning, in 
which not only the grasping anchors, but also the object 
categories, semantic segmentations and grasp styles (pick or 
suction) are obtained simultaneously [4, 31, 32]. These 
methods focus on improving the anchors’ accuracy [30, 33], 

while how to generate detailed 3D pose from 2D grasp anchor 
was not discussed. 

There are some researchers who aim to predict the 6-DoF 
object pose according to the objects’ appearances and 
geometries [34]. This kind of methods provide a different 
approach to obtain the grasp pose through 6-DoF objects pose 
(the objects’ 3D translation and 3D rotation to camera). With 
the pioneer work of SSD-6D [35] and PoseCNN [12], a series 
of deep learning based 6-DoF pose prediction methods, such 
as [13] DenseFusion [36], etc., were able to predict the objects’ 
distances and rotations to the camera accurately as well as the 
objects’ occupied areas in images. In spite of high 
performance of the whole objects’ pose prediction, most of 
these methods did not provide detailed grasp in the images. In 
addition, since the objects appearances and the geometries (or 
point cloud) were needed to estimate the 6-DoF parameters 
simultaneously, the time cost of these methods is considerable, 
for example, the pose estimation and ICP for a single object in 
the scene cost about 0.1 and 0.3 seconds per frame on 
NVIDIA Titan X GPU [13]. 

Our idea is that it is no need to estimate all the 6 
parameters from object to camera, since the image detection 
methods are able to obtain very accurate grasp areas on images. 
Based on the 2D grasp areas, we can obtain the detailed 3D 
grasp pose (the two grasp contacts and the grasp forward 
direction in manipulator’s 3D operation space) by estimating 
the normal vector of the local grasp surface. The local grasp 
surface normal calculation is simple straightforward, which 
could be easily obtained from the depth information of the 
grasp areas using optimal neighborhood from local 
information [37], or the principal component analysis based 
(PCA) normal components computing [38, 39]. 

III. THE PROPOSED METHOD 

The total framework of the proposed method is presented 
in Fig. 2, which consists of three main steps:  

• 2D grasp area detection. The first step aims to find 
the 2D grasp anchors on objects and extract the local 
grasp surface according to the object mask. The box 
labeled with the red-green line segments in Fig.2(b1) 
is a possible anchor for the object in the image of 
Fig.1(a). Fig. 2(b2) is the object mask and Fig. 2(c) 

 

Figure. 2. The outline of the proposed method. 



  

presents the grasp area on the extracted object from 
image background. 

• Obtaining the normal vector of the local grasp 
surface. The second step aims to obtain the normal 
vector of the objects’ local surfaces from the local 
point cloud around the grasp anchor. Fig.2(d) and 
Fig.2(e) present the depth information and the point 
cloud of the object respectively. The big green arrow 
in Fig. 2(f2) presents the normal vector of the points 
in the range of grasp areas obtained in the first step. 
And the Fig. 2(f1) presents the detailed information 
of the normal vectors around the grasp area. 

• 3D grasp pose generation. The third step aims to 
generate the 3D grasp pose according to the normal 
vector of the local grasp surface. Fig. 2(h2) presents 
the final 3D grasp pose where the lines in blue and 
red are the 3D grasp pose of the final 3D simulated 
gripper and the initial one.  

A.  2D Grasp Anchor Detection 

In this step, we adopt the convolutional 
neural networks (CNN) based architecture described in [40] to 
predict the 2D grasp anchors. We call the CNN architecture as 
ENet in this work. It receives RGB image in the size of 
224◊224◊3 as input and generates encoded grasp {x, y, w, h, 

θ}. Fig. 3 presents an outline of ENet, which contains only 4 
convolutional layers and 2 FC layers. With its simple structure, 
the ENet is a lightweight network for 2D grasp anchor 
prediction. 

The predicted 2D grasp areas usually contain the image 
backgrounds which should be excluded. This could be 
processed by the intersection of the 2D grasp anchors and the 
object masks. The green area in Fig. 2(c) presents the local 
surface obtained by the intersection of grasp anchor (Fig. 
2(b1)) and the object mask (Fig.2(b2)). Although most of the 
grasp datasets provide the object mask information, in 
practical grasp tasks, it is necessary to extract the object from 
the image background. In this work, we use the a real-time 
instance segmentation technique YOLACT [41] to extract the 
objects from image background. The segmentation process of 
YOLACT is broken into two parts: geanerating a set of 
prototype masks and predicting pre-instance mask coefficients. 

As the two parts can be computed independently and in 
parallel style, YOLACT runs faster than previous one-stage 
instance segmentation approaches [42]. 

B.  Obtaining the Grasp Local Surface Normal 

The 2D grasp anchors obtained from ENet are not good 
enough for 3D grasping. To generate the 3D grasp pose, this 
work calculates the normal vector from the point cloud in the 
local grasp area. As described in [38, 39], the typical data 
dimensionality reduction method PCA (Principal Component 
Analysis) could be applied to calculate the normal vector of 
the point cloud. 

Based on the 2D grasp anchor and the local surface 
extracted by the intersection of grasp anchor and object mask, 
the corresponding point cloud can be straightforward obtained 
from the whole object point cloud. Fig. 2(d) and Fig. 2(e) 
present the depth information and point cloud for the object 
present in Fig. 2(a). The points in the green area in Fig. 2(f2) 
are the local grasp point cloud, which are used for local 
surface normal vector calculation. We use Principal 
Component Analysis (PCA) [38] method to calculate the 
normal vector of the local grasp point cloud. The local points 
can be stacked in a in a matrix X = [𝑥1, 𝑥2, … , 𝑥𝑘] ∈ ℝ3×𝐾 . 𝑃, 
𝑃′ , 𝑃′′  in Fig. 4(a), Fig. 4(b) and Fig. 4(c) are the normal 
vectors orthogonal to the image plane, the horizontal plane of 
manipulator work space and the local grasp surface 
respectively. Then the normal vector 𝑃′′ of the local grasp 
surface can be represented with the eigenvector of covariance 

matrix 𝑆= ∑ (𝑥𝑖 − 𝑚)(𝑥𝑖 − 𝑚)𝑇𝐾
𝑖=1 =𝑌𝑌𝑇  with the maximum 

eigenvalue, where 𝑚 =
1

𝐾
∑ 𝑥𝑖

𝐾
𝑖=1  is the centroid of local point 

cloud. 𝑆 is a 3 × 3 matrix, its eigenvectors can be computed 
by SVD (singular value decomposition). The normal vector 
illustrates the direction orthogonal to the local point cloud 
surface. The normal vector illustrates the direction orthogonal 
to the local grasp surface. 

 

Figure. 3. The backbone strcuture of ENet used for 2D grasp anchor 
detection. 

 
 

Figure. 4. The process of 3D grasp pose generation.  



  

C.  3D Grasp Pose Generation 

After the normal vector 𝑃′′ is obtained, the 3D grasp pose 
can be estimated from 2D grasp anchor. Supposing 𝐺2𝐷 =
(𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾, 𝑤, ℎ) presents  the 2D grasp anchor predicted 
by ENet [40], which is expanded from the traditional 2D grasp 
anchor (𝑥, 𝑦, 𝛼, 𝑤, ℎ), where the  𝑥, 𝑦, 𝑧  are the coordinates of 
anchor center, 𝑤, ℎ are the width and height of grasp anchor, 
and 𝛼, 𝛽, 𝛾 are the yaw, pitch and roll angle of anchor rotation. 
Since the point (𝑥, 𝑦, 𝑧) is located in image plane, the values of 
𝑧, 𝛽 and 𝛾 are zero. Let the anchors along the normal vector 
𝑃′ and  𝑃′′ be presented by 𝐺3𝐷

′ = (x′, y′, z′, 𝛼′, 𝛽′, 𝛾′, w′, h′) 
and 𝐺3𝐷

′′ =(𝑥′′, 𝑦′′, 𝑧′′, 𝛼′′, 𝛽′′, 𝛾′′, w′′, h′′) respectively, where 
the parameters in  𝐺3𝐷

′  is equal to those in 𝐺2𝐷 since the image 
plane is the horizontal plane of manipulator work space. In 
term of the conversion from 𝐺3𝐷

′  to 𝐺3𝐷
′′ , the values of 

𝑥′′, 𝑦′′, 𝑧′′, w′′, h′′ are equal to x′, y′, z′, w′, h′. Then 𝛼′′, 𝛽′′ 
and 𝛾′′  could be obtained by (1)~(3) according to the 
conversion from axis-angle to Euler  [43]. 

𝛼′′ =  𝑎𝑟𝑐𝑡𝑎𝑛 
𝑦𝑢sin𝜔−𝑥𝑢𝑧𝑢(1−cos 𝜔)

1−(𝑦𝑢
2+𝑧𝑢

2)(1−cos 𝜔)
                    (1) 

𝛽′′= 𝑎𝑟𝑐𝑠𝑖𝑛 (𝑥𝑢𝑦𝑢(1 − cos 𝜔)) + 𝑧𝑢𝑠𝑖𝑛𝜔       (2) 

𝛾′′ = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑥𝑢𝑠𝑖𝑛𝜔−𝑦𝑢𝑧𝑢(1−cos 𝜔)

1−(𝑥𝑢
2+𝑧𝑢

2)(1−cos 𝜔)
                      (3) 

In (1)~(3), 𝜔 and 𝑈 =(𝑥𝑢 , 𝑦𝑢 𝑧𝑢) are the rotation angle and 
rotation axis from 𝐺3𝐷

′  to 𝐺3𝐷
′′ , which can be obtained using (4) 

and (5) [44]. 

𝜔 = 𝑃′ ∙ 𝑃′′                                                        (4) 

𝑈 = 𝑃′ × 𝑃′′                                                      (5) 

 

IV. EXPERIMENTS 

We first evaluate the proposed method on two 
widely-recognized open grasp datasets and then on dozens of 
practical grasp tasks. These two datasets are Cornell [45] and 
Jacquard [46] datasets. On these two datasets, we compare the 
proposed methods with some state-of-art methods both on the 
3D grasp accuracy and time-cost. In practical grasp tasks, we 
mainly compare the grasp success rate between the proposed 
method and some state-of-art 2D grasp detection methods. 
The proposed method is deployed on a PC with CPU core at 
3.60GHz, 32G RAM. The 2D anchor prediction network ENet 
runs on the MindSpore AI framework [47] deployed on  
Ascend 910. 

A. Grasp Pose Prediction 

Cornell grasp dataset contains 885 images of 240 grasp 
objects, and Jacquard contains 54k images of 11k objects. The 
labels are presented with 2D oriented rectangles with metric 
𝐺2𝐷 = (𝑥, 𝑦, 0, 𝛼, 0, 0, 𝑤, ℎ). In 3D space, the 2D anchor is 
lack of one dimension along the grasp forward direction to the 
touch areas of objects. Therefore, in this section, we adopt a 
3D box based grasp accuracy estimation method (G-index for 
short) to estimate the performances of the proposed method on 
3D grasp accuracy. 

Let B𝑙 , Bℎ, B𝑡  be the length, width and thickness of the 
grasp box in 3D space, where B𝑙, Bℎ are  equal to the values of  
w′′, h′′in 𝐺3𝐷

′′ . The direction of box thickness is parallel to the 
gripper forward direction. B𝑡  =(max(∀𝑖𝑑𝑖) − min (∀𝑖𝑑𝑖)) is 

the differences between the maximal and minimal depth 
values of all local surface points along 𝑃′ (𝐺3𝐷

′ ), 𝑃′′ (𝐺3𝐷
′′ ), 

where 𝑑𝑖  is the depth value of point 𝑝𝑖 (1 ≤ 𝑖 ≤ 𝐼). 𝐼  is the 
number of the points in the local surface. We call the box with 
size of B𝑙 × Bℎ × B𝑡 as the target box (TBox). In addition, let 
𝑥𝑚𝑎𝑥 , 𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑎𝑥 , 𝑦𝑚𝑖𝑛 ,  𝑧𝑚𝑎𝑥 , 𝑧𝑚𝑖𝑛  be the maximal and 
minimal values of the surface points along the generated 
normal vector 𝑃′′  in TBox, and an cube under the volume 
restrict of these parameters is defined as ideal grasp box 
(GBox). Fig. 5(a) and Fig. 5(b) present the examples of the 3D 
configuration of the TBox and GBox around the objects’ 
surface. In Fig. 5, the GBox is labeled with black lines, and the 
box labeled with blue and green lines in Fig. 5(b) are the 
TBoxes generated by the proposed method, while red and 
green one in Fig. 5(a) for that before generated. 

G-index could be obtained by (6), where Ω𝐺  is the volume 
of GBox and Ω𝑇  is that of TBox. The value of G-index (δ) is 
in the range of (0, 1), larger value mean better grasping. 

δ= Ω𝐺 Ω𝑇⁄                                  (6) 

Table 1 lists the experiment results of grasp accuracy 
between the proposed method and state-of-art methods on 
Cornell and Jacquard datasets. The datasets were divided into 
train-set, validation-set and test-set in the ratio of 6:2:2. We 
can see from Table 1 that [2], [40], [48], [49] achieve 
image-wise accuracy of 42.5% to 51.6% on Cornell dataset 
and 51.7% to 58.9% on Jacquard dataset under the 
measurement of G-index. While the proposed method yields 
image-wise accuracy of 69.5% and 72.1% on these two 
datasets respectively. As for object-wise accuracy, the 
proposed method reaches 61.5% on Cornell dataset and 68.2% 
on Jacquard dataset, which are also obviously higher than  
other methods such as ENet  [40], which gets 49.2 % and 53.6% 
on Cornell and Jacquard. 

 
(a) 

 
(b) 

 

Figure. 5. Demonstrations of G-index measurement.  



  

B. Grasp Success Rate in Practical Tasks 

We use a UR5 arm with Robotiq Grippers F85 in practical 
grasp tasks. The system performance is explored with 50 
common household objects in different sizes and shapes. 
Some samples of these objects are listed in Fig. 6. The robot 
executed 80 grasp trails on each object for various placements. 
A Kinect 2 horizontally fixed on the top of work space is used 
to obtain RGB and depth images simultaneously. 

The grasp success rate 𝑅𝑖 for each object is calculated by 
(7). In (7), the 𝐺𝑖

𝑠  and 𝐺𝑖
𝑢are the number of successful and 

unsuccessful grasps for the 𝑖th(1≤ 𝑖 ≤50) object, where (𝐺𝑖
𝑠 + 

𝐺𝑖
𝑢)= 80. And 𝑅̃=(∑ 𝑅𝑖) 80⁄80

𝑖=1  is the average success rate for 
all grasps. 

𝑅𝑖=  𝐺𝑖
𝑠 (𝐺𝑖

𝑠 + 𝐺𝑖
𝑢)⁄                          (7) 

Table 2 lists the success rate of the proposed method and  
[2], [40], [50] on practical grasp tasks. All the methods were 
trained with the same dataset mixed with all Cornell data and 
Jacquard data. In the grasps of [2], [40], [50] methods, the 
gripper grasps the objects according to the detected 2D grasp 
anchors in image and along the direction orthogonal to the 
image planes. While the gripper driven by the proposed 
method grasp the object along the directions orthogonal to the 
3D local grasp surface. We can see from Table 2 that [2], [40], 
[50] obtain 61.5%, 76.5% and 81.3% on practical grasp tasks. 
The proposed method achieves a success rate of 87.2%, which 
is obviously higher than those of previous methods. 

Fig. 7(a) lists some objects whose main axes at the grasp 
anchors are not parallel or vertical to the work plane. The 
images in Fig. 7(b) present their depth information. And Fig. 
7(c) lists the successful grasp situations guided by the 2D 
grasp pose 𝐺2𝐷. Fig. 7(d) presents the point cloud generated 
from depth information, which is viewed along horizontal 
plane. The blue arrows in Fig. 7(d) indicate the normal vectors 
of the local grasp surfaces. Fig. 7(e) presents the successful 
grasp situations guided by the 3D grasp pose 𝐺3𝐷

′′  generated 
from the proposed method. We can see from Fig. 7(e) that the 
Robotiq F85 gripper hold the objects more stablely than those 

in Fig. 7(c). It indicates that the proposed method is effective 
to generate 3D grasp pose orthogonal to local grasp surfaces. 

Fig. 8 lists the average success rate of each object among 
80 trails for each object. The success rates of all the objects are 
more than 65.0%, which illustrates the effectiveness of the 
proposed method. It is worth mentioning that the efficacy of 
the proposed method relies on the accuracy of the captured 
point cloud. In terms of the objects with more than 90% 
success rate such as pot, ink box and can, these objects have 
two characters: (1) obvious contours or shapes for accurate 2D 

TABLE 2. THE GRASP SUCCESS RATE IN PRACTICAL GRASP TASKS.  

 

Approach 
Redmon 
(2015) [2] 

ENet 
(2021) [40] 

Mousavian 
(2019) [50] 

Proposed 

𝑹̃ 61.5% 76.5% 81.3% 87.2% 

 

 

Figure. 6. Some objects in practical grasp tasks. 

 

 
Figure. 7. Grasping examples in practical grasp tasks. (a) RGB images 
of the grasp objects and the 2D grasp anchors; (b) depth images of grasp 

objects; (c) grasp before 3D grasp pose generated; (d) local grasp point 

cloud (dark gray) with normal vector (blue); (e) grasp using the 3D 
grasp pose generated by the proposed method. 

 

TABLE 1. THE RESULTS OF THE PROPOSED COMPARED WITH SOME STATE-OF-ART METHODS ON THE GRASP ACCURACY MEASURED BY G-INDEX. 

 

Approach Dataset 
Accuracy (G-index) 

Speed (fps) 
Image-wise (%) Object-wise (%) 

Redmon (2015) [2] 

Cornell 

42.5 39.3 13.15 
Zhou (2018) [48] 48.7 46.7 8.51 

ENet (2021) [40] 51.6 49.2 74.07 

Proposed 69.5 61.5 88.42 

Redmon (2015) [2] 

Jacquard 

51.7 45.4 13.15 
Zhang (2019) [49] 54.3 51.9 25.16 

ENet (2021) [40] 58.9 53.6 74.07 

Proposed 72.1 68.2 85.79 

 



  

grasp anchors prediction; (2) enough depth along the camera 
sightline for good touch in local grasp surface. The objects 
with small size or thin thickness structure like earphone, u disk 
or cookie tend to produce low quality depth information, 
which make it difficult to construct enough depth information 
and lead to failure grasp.  

C. Time Cost 

Since the object’s mask and depth information are 
provided in Cornell and Jacquard datasets, two steps remain in 
the proposed method: detecting the 2D grasp anchors and 
calculating the normal vector of local grasp surface. For the 
first step, we use the backbone similar to the structure of ENet  
[40]. ENet costs 13.6ms each frame on NVIDIA GeForce 
GTX 1050 Ti. The proposed method runs on Ascend 910 with 
MindSpore AI framework, and costs 7.3ms on 2D anchor 
prediction per frame. For the second step, 200-300 points 
sampled from the local grasp point cloud are used to calculate 
the surface normal using the PCA. This step costs about 4.0ms 
each frame. Then the time cost for the proposed method is 
about 11.3ms each frame or 88.42fps. The last column of 
Table 1 presents the time cost for the methods in detail. We 
can see that the proposed method is obviously faster. 

D. Discussions 

In experiments, we first compared the proposed method 
with some state-of-art methods on the grasp box accuracy. In 
the proposed method, the vertical direction of the grasp box, or 
the grasp forward direction, is parallel to the normal vector of 
the local grasp surface. While for the other methods, the grasp 
directions are orthogonal to the 2D image planes. With the 
depth information provided by Cornell and Jacquard datasets, 
the GBox volume given by the bounding cube of local grasp 
point cloud in the TBox could be obtained, which is used as 
3D grasp accuracy in this work. The comparison results 
presented in Table 1 indicate that the proposed method 
obviously outperforms other methods. 

We also compared those methods in practical grasp tasks. 
With dozens of grasps on each one in 50 common household 
objects, the success rate of the proposed method is higher than 
other state-of-art methods. 

V. CONCLUSIONS 

This work proposes a 3D grasp pose generation method 
from 2D grasp areas and local grasp surfaces. Compared to the 
traditional 2D image-based grasp detection methods, where 
the grasp direction is orthogonal to the image planes, the 
generated gasp pose is orthogonal to the local grasp surface 
and therefore more suitable to gripper grasping. In addition, 
compared to the traditional 6-DoF object pose estimation 
methods, the proposed method is a very lightweight method 
since its cost time is rather less than the related methods.  
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