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Abstract—Tracking-and-inserting a moving peg using a 
robot manipulator is a challenging task in manufacturing. 
In the past decades, various visual-based methods have 
been proposed for robotic manipulating static targets, 
which usually ignore the time delay in robot command 
transmission and image processing. However, for tracking 
and inserting a moving peg, time delays cannot be 
overlooked because they can reduce the tracking 
performance and even cause manipulations to fail. In this 
paper, a robot visual-based control with a time-delay 
compensator is presented to solve the problem of inserting 
a moving peg. The time-delay compensator was designed 
using RBFNNs, a feedback compensator aimed at 
eliminating the tracking errors caused by the time delays. 
Thus, we could manipulate a moving object using a 
commercial industry robot, even with the time-variant 
delays in the control loop. Furthermore, the visual-based 
controller with the pseudo-inverse image Jacobian matrix 
was designed using a linearization model. Thus, the matrix 
could be efficiently updated using the model. In the 
experiment, we inserted a peg into a moving hole using an 
eye-in-hand robot with precision. 

 
Index Terms—Tracking-and-inserting, Visual-based control, 

Time-delay compensator. 

I. Introduction 

RACKING-AND-INSERTING a moving peg is an important 

task in manufacturing. In some cases, such as robot 

assembly tasks, a robot manipulator is required to follow a 

moving hole and then insert a peg into it. Visual-based robot 

controllers focus on controlling the motion of a robot with 

visual feedback and had been used in robot tracking-and-

manipulating tasks. The visual-based robot control is generally 

classified into two categories [1], i.e., position-based visual 

servo (PBVS) and image-based visual servo (IBVS). IBVS 

methods are less sensitive to calibration errors and thus have 

advanced in recent years. This work would employ IBVS as the 

robot visual-based controller. 

A. Tracking-and-manipulating a static target  

A typical robot visual-based task is to track-and-manipulate 

a static object or follow a predefined trajectory, and the 
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performance of the visual-based control mainly depends on the 

estimated speed and precision of the robot Jacobian matrix. 

Thus, online image Jacobian matrix identification is an 

important problem to be addressed in manipulating a static 

object. Kosmopoulos [2] presented a method for the robust 

estimation of the feature Jacobian matrix by training the feature 

Jacobian for visual-based robot manipulating systems. With 

uncertain robot kinematics, dynamic models, and camera depth, 

Cheah et al. [3] used an adaptive Jacobian SP-ID setpoint 

controller, where the depth parameters were updated online. 

Wang [4] proposed two adaptive controllers based on image-

space observers that realized the image-space tracking objective 

without relying on the image-space velocity measurement and 

requiring the inversion of the estimated camera depth. 

Lizarralde [5] formulated the visual tracking problem as a 

relative degree two multiple-input multiple-output adaptive 

controller problem, where the robot kinematics and camera 

parameters of the Jacobian matrix were indirectly updated in 

the adaptive scheme. Khan et al. [6] proposed a linear matrix 

inequality approach to estimate the camera parameters and 

inverse kinematics, thus circumventing the calibration of 

camera parameters for pseudo-inverse or inverse Jacobian 

matrices. Zhang and Li [7] proposed an inversion-free IBVS 

method for an eye-in-hand camera configuration; they designed 

the robot controller using a recurrent neural network in joint 

space for tracking a static object.  Hu et al. [8] used a quaternion 

formulation to represent the rotation tracking error and then 

developed an adaptive homography-based visual tracking 

controller. Liu et al. [9] adopted an adaptive algorithm to 

calibrate the camera parameters online and employed fuzzy 

logic systems to approximate the unmodeled nonlinear robot 

dynamics and external disturbances. Hwang et al. [25] used the 

reinforcement learning method to resolve system noise and 

uncertainties in the estimation of the robotic Jacobian and 

interaction matrices and implemented the method in tracking a 

target using an eye-in-hand configuration. However, they only 

tested the method in the simulation environment. 

The aforementioned methods exhibited competent tracking 

precision in visual-based manipulations, despite the uncertain 

camera calibration parameters, robot kinematics, and dynamics. 

However, most of them focused mainly on tracking a 

predefined trajectory or a static object. A few of them 
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considered the tracking of a moving object due to the limited 

field of view of the camera.  

B. Tracking-and-manipulating a moving target  

On the other hand, some researchers aim to tracking-and-

manipulating a moving object, where the trajectory is first 

predicted, following which the object is manipulated at the 

estimated intercept point. To address the problem of tracking 

and grasping a moving object using the robot eye-to-hand 

configuration, Allen et al. [10] first computed the motion 

parameter of the object from vision, then moved the robotic arm 

to track the intercept and grasp the object through predictive 

control. However, the accuracy of the manipulation was not 

examined in their work. Gong et al. [23] used a geometric 

particle filter to track a moving object and updated the robot's 

motion using dynamic motor primitives until the robot could 

grasp a moving object. Salehian et al. [11] focused on catching 

a flying object by estimating its trajectory, then intercepting it 

at the estimated intercept point. For hitting a ball with a table 

tennis robot, Zhang et al. [12] predicted the trajectories of the 

ball before and after being hit based on its visual measurement 

and motion model and then estimated the hitting point based on 

the ball's trajectory. Chen and Lu [13] employed a Soft-Actor-

Critic deep learning algorithm to learn the robot's action directly 

from the image for grasping a moving object.   

However, the eye-to-hand configuration (the camera 

observed the robot within its workspace) had a less precise but 

global sight of the scene, whereas eye-in-hand configuration 

(the camera was mounted on the robot end-effector) has a 

partial but precise sight of the scene [30]. In order to perform 

tracking-and-inserting tasks, this work employed eye-in-hand 

configuration to achieve precise target localization. The limited 

field of view of eye-in-hand configuration required the robot to 

move as soon as it has seen the target, but the time delays would 

significantly reduce the tracking performance [29]. Recently, 

researchers developed methods for grasping moving objects 

with eye-in-hand configuration. For example, Peng et al. [31] 

estimated the position of the moving target with an improved 

kernel correlation filter algorithm and then controlled an eye-

in-hand robot arm to reach the position. The grasping was 

performed when the pose error between the target and the end 

of the robot arm was lower than a predefined threshold. Chen 

et al. [32] predicted the motion of the target by the combination 

of Kalman filter and interpolation and then employed a refined 

PID controller for adjusting the error between the desired and 

actual pose of the robot end-effector. Note that both methods 

were position-based visual servo controllers, where the 

estimation of the moving target position was important for 

manipulating the target. But we directly computed the desired 

position of the robot arm according to the image tracking error 

and then performed the robot insertion when the tracking error 

was less than the threshold. That is, we employed an image-

based servoing control approach that did not need to estimate 

the motion of the target. Wong et al. [33] estimated the moving 

target using Long Short-Term Memory (LSTM) based network 

and predicted the grasping point of the moving object with a 

Convolutional Neural Network (CNN) based on the captured 

image. Their work was very similar to an open-loop method that 

generated the robot motion without feedback. But our method 

was a close-loop control method using the feedback. Note that 

all three works [31-33] also focused on the grasping of a 

moving object, which allowed greater tracking error than that 

of the insertion in our work. For example, the average perdition 

error of reference [33] was about 2𝑚𝑚 , while our average 

tracking error of ours was about 0.3𝑚𝑚 . Therefore, we 

developed a leaning-based method to compensate for 

unmodeled aberrations to achieve precision manipulation. 

C. The purpose of this work 

The time delay of a robot manipulator is generally the result 

of image processing and the transmission of the external 

command as a setpoint to the inner control loop. To neutralize 

the time delay, some compensation methods have been 

proposed to improve visual tracking accuracy. For example, 

Laiacker et al. [27] measured the time delay between the object 

localization and manipulator control with a target marker and 

then compensated it based on the predicted motion of the robot 

manipulator. In the proposed method, the manipulator 

repeatedly grasped an object with an accuracy higher than 2 𝑐𝑚. 

However, the time delay in the system was assumed to be a 

constant value and the target object was static. Fujimoto et al. 

[26] applied a disturbance observer to compensate for the time 

delay in image processing. They proposed a multi-rate 

controller to achieve smaller tracking errors than that single-

rate controllers. However, it was necessary to know the time 

delay 𝑇𝑑 for the design of the observer. 

To precisely track and insert a moving target using an eye-

in-hand robot under time-variant delays, we propose a radial 

basis function neural network (RBFNN)-based adaptive visual-

servo control method. The method was realized by adjusting the 

image Jacobian matrix online and compensating for time delays 

using the RBFNNs. The proposed controller can track and 

assemble a moving object using a robot eye-in-hand 

configuration. The major contributions of this work are as 

follows. 

a) To the best of our knowledge, the problem of tracking-

and-inserting a moving object based on the robot eye-in-hand 

configuration is under-researched. To closely follow the target 

object, we designed a feedback time-delay compensator using 

RBFNNs to eliminate the tracking errors caused by the time 

delays in the robot's visual servo control loop. Some neural 

networks (NNs), such as RBFNNs, multi-layer feedforward 

NNs, and recurrent NNs, have been employed to approximate a 

system inverse for dynamical compensation attributable to the 

time delays in command transmission [14]. However, the 

compensator is a feedforward compensator and also needs 

samples to train the parameters of the NNs. We designed a 

feedback compensator, where the output of the NNs was 

computed online according to the tracking performance, to 

compensate for the time delays in the robot visual servo control 

loop, as well as in the command transmitting and the image 

processing. 

b) To address the uncertain camera parameters, we derived 

the visual servoing controller with the pseudo-inverse of the 

image Jacobian as a linearization model, and then adjusted the 

matrix by the linear model. The update of the matrix was related 
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only to the previous state of the visual servoing system; thus, it 

afforded computational efficiency.  

The rest of this paper is arranged as follows. In Section II, 

the tracking problem is presented and the Jacobian matrix 

adaptive method is proposed in Section III. The time-delay 

compensator is discussed in Section VI. Finally, the comparison 

of several conducted experiments of the proposed method with 

traditional image-based tracking methods is discussed. 

II. PROBLEM STATEMENT 

The focus of this work was on tracking-and-inserting a 

moving object using an eye-in-hand robot manipulator. The 

robot manipulator was required to closely follow the target 

object such that it was unable to escape from the view field of 

the camera. Thus, the peg held by the robot could be precisely 

inserted into the moving hole, where the clearance between the 

peg and the hole was 1 𝑐𝑚. The control scheme of the tracking 

and inserting system, which includes a master controller, a 

robot controller, and several joints controller, is shown in Fig. 

1. The master controller was designed to calculate the trajectory 

of the robot with visual feedback. The robot controller was used 

to receive and process the commands from the master controller 

by communication channels such as TCP/IP. 

The command transmission and image processing are often 

prone to time delay, whose values are often varying and 

imprecise, rather than deterministic. Generally, the uncertain 

time delays affect the performance of the robot, especially in 

tracking-and-inserting a moving peg.  

 

Fig. 1. Structure of the visual-based robot control. 

To solve the problem, a feedback compensator was 

developed in this study to eliminate time delays arising in the 

course of command transmission and image processing in the 

robot's visual-based control loop. Furthermore, we employed 

the adaptive image Jacobian matrix to address the uncertainties 

of hand-eye parameters. We called the proposed method image-

based visual servoing control with a time-delay compensator 

(IBVS-TDC). The objective of the IBVS-TDC was to minimize 

tracking errors due to the uncertainty concerning the matrix 

𝑒𝐽𝑎𝑐(𝑡) and time delay in command transmission 𝑒𝑑𝑒𝑙𝑎𝑦(𝑡). In 

the following sections, the details of the IBVS-TDC method are 

discussed. 

III. IMAGE JACOBIAN MATRIX ADAPTATION 

In this section, we briefly describe the traditional visual-

based robot control method and present a control with a pseudo-

inverse image Jacobian matrix adaptation algorithm. 

A. Pseudo-inverse image Jacobian matrix  

We employed a pinhole camera model to describe the visual 

serving system. Assuming that 𝒙𝑖 ∈ ℝ2  (𝑖 =  1, . . . , 𝑚)is the 

coordinate of the projection of the 𝑖th feature point on the image 

plane and  �̇� ∈ ℝ6   is the spatial velocity of the camera 

corresponding to the robot base frame. The relationship 

between the velocity of the feature point on the image plane and 

the velocity of the camera can be described as follows [3, 4, 15]: 

�̇�𝑖(𝑡) = 𝑱𝑟𝑖
�̇�𝑖(𝑡),                               (1) 

where 𝑱𝑟𝑖
 is the image Jacobian matrix. 

Assuming that 𝑚 feature points 𝒙𝑖(𝑖 = 1, … , 𝑚) are selected 

by the feature extraction algorithm and the positions of the 

desired feature points and the corresponding velocities are 

𝒙𝑖
∗ (𝑖 = 1, … , 𝑚) and �̇�𝑖

∗ (𝑖 = 1, … , 𝑚), respectively. Thus, the 

tracking error is defined by the following: 

𝑬 = [
𝒙1

∗ − 𝒙1

⋯
𝒙𝑚

∗ − 𝒙𝑚

] , �̇� = [

𝑱𝑟1
(�̇�1

∗ − �̇�1)
⋯

𝑱𝑟𝑚
(�̇�𝑚

∗ − �̇�𝑚)
] ∈ ℝ2𝑚×1  (2) 

The trajectory tracking model employed in this work is the 

sliding-model control method, a typical method used in robot 

tracking control [16]: 

𝒔(𝑡) = �̇� + 𝐾𝑖 ∫ 𝑬𝑑𝑡 + 𝐾𝑝𝑬, 𝐾𝑖 , 𝐾𝑝 > 0.            (3) 

 Note that 𝑠(𝑡) = 0  defines a stable sliding surface. The 

purpose of designing a sliding-mode controller is to push the 

system onto the sliding surface by making 𝑠(𝑡) small.  

Setting 𝑠(𝑡) = 0 in (3) yields: 

�̇� + 𝐾𝑖 ∫ 𝑬𝑑𝑡 + 𝐾𝑝𝑬 = 0.                             (4) 

Substituting (1) and (3) into (4) yields: 

𝑱𝐫(�̇�∗ − �̇�) + 𝐾𝑖 ∫ 𝑬𝑑𝑡 + 𝐾𝑝𝑬 = 0,                        (5) 

with 

 𝑱𝐫 = 𝑑𝑖𝑎𝑔(𝑱𝑟1
, … , 𝑱𝑟𝑚

) ∈ ℝ2𝑚×6𝑚, 

 �̇�   = [�̇�1, … , �̇�𝑚]𝑇 ∈ ℝ6𝑚×1,  �̇�∗ = [�̇�1
∗ , … , �̇�𝑚

∗ ]𝑇 ∈ ℝ6𝑚×1. 

Then, multiplying both sides of the equation by 𝑱𝐫
† ∈

ℝ6𝑚×2𝑚 gives 

�̇� = 𝑱𝐫
†(�̇�∗ + 𝐾𝑝𝑬 + 𝐾𝑖 ∫ 𝑬𝑑𝑡),                   (6) 

where �̇�∗ = [�̇�1
∗ , … , �̇�𝑚

∗ ]𝑇 ∈ ℝ2𝑚×1 , and  𝑱𝐫
† ∈ ℝ6𝑚×2𝑚 is the 

pseudo-inverse of the image Jacobian.   

B. Pseudo-inverse image Jacobian Matrix Adaptation 

By utilizing the traditional linear controller design formula, 

we derived the control equation using the pseudo-inverse of the 

image Jacobian as: 

𝒖(𝑡) = �̇�(𝑡) 

= 𝑱𝐫
†(𝑡) (�̇�∗(𝑡 − 1) + 𝐾𝑝𝑬(𝑡 − 1) + 𝐾𝑖 ∫ 𝑬(𝒕 − 𝟏)𝑑𝑡).   (7) 

The tracking control problem in the task space consists of the 

tracking error of the desired feature point trajectories 

𝒙𝑖
∗ (𝑖 = 1, … , 𝑚) and the desired velocity of the feature points 
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�̇�𝑖
∗ (𝑖 = 1, … , 𝑚) in the image plane. We rewrote (7) as follows:  

𝒖(𝑡) = 𝑱𝐫
†(𝑡)𝑴(𝑡 − 1),                              (8) 

with 𝑴(𝑡 − 1) = �̇�∗(𝑡 − 1) + 𝐾𝑝𝑬(𝑡 − 1) + 𝐾𝑖 ∫ 𝑬(𝑡 − 1)𝑑𝑡. 

Although the kinematics and dynamics of the commercial 

industry robot are constant and precise, the hand-eye 

parameters vary due to the long operation duration. Thus, a 

pseudo-inverse Jacobian adaptation method was proposed.  

Inspired by work [17], the adaption of the pseudo-inverse 

image Jacobian matrix  𝑱𝐫
†
 was designed as follows: 

�̂�𝐫
†(𝑡) = 𝑱𝐫𝟎

† (𝑡) +
𝛼�̂�(𝑡 − 1)𝑴𝑇(𝑡 − 1)

𝑐𝑰 + 𝑴(𝑡 − 1)𝑴𝑇(𝑡 − 1)
,         (9) 

where α, 𝑐 ∈ (0,1) ,  𝑡  denotes the current state, and (𝑡 − 1) 

denotes the previous state, 𝑰 is a unit diagonal matrix, 𝑱𝐫𝟎
†

 is the 

initial pseudo-inverse image Jacobian matrix.  

Once the velocity of the robot end-effector was obtained 

using Eq. 7, the desired position of the robot was computed as: 

𝒓(𝑡) = 𝒓(𝑡 − 1) +  �̇�(𝑡)𝑇,                (10)  

where 𝑇 is the command output cycle of the robot controller. 

IV. TIME-DELAY COMPENSATOR USING RBFNNS 

For a visual-based robot control system, the time delays in 

command transmission via TCP/IP affect the robot's cycle times. 

We generally have no direct access to the time delays in the 

robot system, that is, there is no mathematical model to describe 

the time delays. To solve the problem, an NN-based 

compensator was employed to decrease the cycle times for 

tracking and manipulating a moving object.  

As described in the following section, an RBFNN-based 

time-delay compensator was employed to compensate for the 

time delays to ensure the tracking of a moving object.   

A. RBFNN  

NN control methods have received considerable attention for 

use in robot control and unknown robot dynamic models [18]. 

RBFNNs have a simple architecture that is mathematically 

tractable and has the merits of a fast-learning speed and good 

approximation capabilities [19]. Thus, we selected the RBFNNs 

for predicting the time delay and other disturbances in visual 

servo control systems. The input signals of RBFNNs are 𝑥 =
[𝑥1, 𝑥2, … , 𝑥𝑛]. In this work, we used the positions of the end-

effector in Cartesian coordinate system and image feature in 

image coordinate system, respectively, as the input to the NNs, 

that is 𝑥 = [𝑥𝑡 , 𝑦𝑡 , 𝑝𝑥𝑡
, 𝑝𝑦𝑡

]. And the output of the network was 

the position error of the image feature in image coordinate 

system at the next moment, that is 𝑦 = [𝑒𝑥𝑡+1
, 𝑒𝑦𝑡+1

]. 

The vector in the hidden layer of the radial basis function 

(RBF) is 𝒉 = [ℎ𝑗]𝑇 , where ℎ𝑗  is generally determined by a 

Gaussian function: 

ℎ𝑗(𝒙) = exp (−
‖𝒙 − 𝑐𝑗‖

2

2𝑏𝑗
2 ),                     (11) 

where 𝑐𝑗 is the center vector of the Gaussian function of neural 

net 𝑗, and 𝑏𝑗 represents the width of the 𝑗th RBF. 

The output of the RBFNNs can be rewritten using the 

following vector: 

𝑦𝑚(𝒙) = ∑ 𝑤𝑗ℎ𝑗(𝒙)

𝑚

𝑗=1

,                         (12) 

where 𝑤𝑗  is the weight connecting the 𝑗th hidden node to the 

output. 

The RBFNN-based compensator is represented as [20]:  

𝒚(𝑡) = 𝑾𝑇𝒉(𝒙),                                 (13) 

where 𝒚(𝑡) ∈ ℝ6𝑚×1  is the time-delay compensation by the 

RBFNNs. 

B. RBFNN-based time-delay compensator 

Generally, a delay can be effectively handled by applying the 

Smith predictor [28], if the information on its delay, at least, is 

known and constant [24]. However, the time delays in 

command transmission in a robot system are difficult to 

measure; thus, the Smith predictor's parameter is hard to 

determine and apply. We employed RBFNNs to compensate for 

the time delay of the robot system. As described in the next 

section, the validity of the time-delay compensator was 

illustrated by tracking a moving object and comparing the 

results to those of the traditional image Jacobian matrix method 

without compensation. 

 

Fig. 2. Proposed IBVS-TDC controller. 

We provided the IBVS-TDC controller, as shown in Fig. 2, 

where 𝑋∗ is the desired position in the image plane, 𝑋 is the 

position measured by the camera, 𝑒−𝜏𝑠  is the time delay 

between the controller and robot actuator, 𝒖  and 𝒚  are the 

outputs of the robot controller and compensator, respectively, 𝜆 

is the weight, 𝑃 denotes the position of the robot end-effector, 

and 𝑱𝐫
†

 is the pseudo-inverse image Jacobian matrix. The 

control system is continuous. The output of the image Jacobian 

matrix controller is a delay output, which could induce a 

disturbance in the robot system. The time-delay compensator 

estimated the disturbance and added it to the feedback of the 

robot's position for compensation. Thus, we obtained the 

equation of IBVS-TDC as follows:  

        �̂�(𝑡) = �̂�𝐫
†(𝑡) (�̇�∗(𝑡 − 1) + 𝐾𝑝(𝑬(𝑡 − 1) + 𝜆𝒚(𝑡 − 1))

+ 𝐾𝑖 ∫(𝑬(𝑡 − 1) + 𝜆𝒚(𝑡 − 1))𝑑𝑡),      (14) 

We employed RBFNNs as a compensator because of its 
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simple structure and fast learning speed. We used the positions 

of the end-effector and image feature in the Cartesian and image 

spaces, respectively, at the current moment as the input to the 

NNs and the output of the networks was the position error of 

the image feature in the image space at the next moment. Thus, 

the robot's movement depended on the image error at the 

current moment as well as the estimated image error at the next 

moment. The prediction of the image error was considered a 

time-delay compensator to reduce the tracking error and 

improve the robot manipulation performance. We trained the 

network using supervised learning by collecting data and then 

used the trained model for online compensation. The training of 

the network was similar to other traditional types of training. 

Some other network structures could also be used as the 

compensator, as long as the data fit is optimal. In this study, a 

feedback compensator for tracking a moving object was used, 

where the parameters of the network were trained to fit the time-

varying delays induced by command transmission, image 

processing, and motor driving. However, the compensators in 

[14] are feedforward compensators, which are generally used in 

the tracking of a predefined trajectory. 

C. Stability analysis 

Theorem. Consider the visual servoing controller described 

in Eq. 14 with the RBFNN-based time-delay compensator in Eq. 

13, adaptive Pseudo-inverse image Jacobian Matrix laws in Eq. 

9, the robot manipulator can track the moving object and the 

closed-loop system can achieve asymptotic stability.  

Proof: We rewrite the error function as: 

�̇� = −𝐾𝑝𝑬 − 𝜆�̇� − 𝜆𝐾𝑝𝒚,                     (15) 

 A Lyapunov function 𝑉 was designed: 

𝑉 =
1

2
𝑬𝑇𝑬 +

𝜆𝐾𝑝

2𝜂𝒉𝑇𝒉
(𝑾𝑇𝒉)𝑇(𝑾𝑇𝒉),          (16) 

Thus, the time derivative of the Lyapunov function is: 

�̇� =
�̇�𝑇𝑬

2
+

𝑬𝑇�̇�

2
+

𝝀𝐾𝑝𝒉𝑇�̇�𝑾𝑇𝒉

2𝜂𝒉𝑇𝒉
+

𝝀𝐾𝑝𝒉𝑇𝑾�̇�𝑇𝒉

2𝜂𝒉𝑇𝒉
, (17) 

The adaptive rate of weight was proposed as: 

�̇� = 𝜂𝒉𝑬𝑇 , �̇�𝑇 = 𝜂𝑬𝒉𝑇 , 𝜂 > 0,           (18) 

 (15) and (18) were substituted into (17) 

�̇� = −𝐾𝑝𝑬𝑇𝑬 − 𝜆𝜂𝒉𝑇𝒉𝑬𝑇𝑬 < 0.             (19) 

Therefore, the Lyapunov function 𝑉  will continuously 

decrease until 𝑬 =  0. Then, the visual servoing system with the 

proposed controller will be stable. 

D. Simulation studies 

In this subsection, the influence of the time delay between 

the master controller and the robot controller was discussed. A 

time delay will cause instability in the tracking system using the 

normal image Jacobian controller. We simplified the transfer 

function of the robot system with a time-variant delay of 

𝐺0(𝑠) =
2.4

𝑠2+5𝑠+6
𝑒−3𝑘𝑠 , where 𝑘 ∈ (0,1)  is a time-variant 

variable. We set 𝐾𝑝 = 100 and 𝐾𝑖 = 0.01, set α = 0.8 and c =

0.35. These parameters were set identically in the following 

five tracking ablation experiments. We set λ = 1.2  in only 

RBFNN-based time-delay compensator experiment and set λ =
0.4 in the proposed IBVS-TDC to get the best tracking results 

respectively. Figure 3 showed the results of the tracking 

ablation experiments using the traditional visual-based 

controller (Tra-IBVS), the visual-based controller with the 

Smith predictor (IBVS-SP), the visual-based controller with 

pseudo-inverse image Jacobian adaption (IBVS-AD), the 

visual-based controller with only the RBFNN-based time-delay 

compensator (IBVS-RBF) and the proposed IBVS-TDC 

method, respectively. Note that the dashed lines were the 

desired trajectories and the solid lines were the tracking 

trajectories in the image coordinate system. The mean tracking 

errors were shown in Table I. Our proposed method was able to 

follow the desired trajectory effectively with the smallest mean 

tracking error. 

{
𝑢∗ = 0.05𝑡 ∙ cos (𝑡/200) +  0.05𝑡 ∙ sin (𝑡/200)
𝑣∗ = 0.05𝑡 ∙ cos(𝑡/200) −  0.05𝑡 ∙ sin(𝑡/200)

 

 

 

(a) 

 
(b) 

      

(c) 

  

(d) 

 

(e) 

Fig. 3: (a) shows the results of the Tra-IBVS; (b) shows the result of the 
IBVS-SP; (c) shows the result of the IBVS-AD; (d) shows the results of 

the IBVS-RBF; (e) shows the results of the proposed IBVS-TDC method. 

Note that the left picture shows the tracking results and the middle 
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picture shows the tracking errors in x- and y-directions, and the right 

picture shows the tracking results in the image plane. 

TABLE I  MEAN TRACKING ERRORS OF FIG.3 

                  Error(pixels) 
Methods 

Mean(x) Mean(y) 

Tra-IBVS 3.97 5.60 
IBVS-SP 1.64 2.39 
IBVS-AD 0.63 0.84 

IBVS-RBF 0.82 1.02 
IBVS-TDC (ours) 0.46 0.68 

V. SIMULATIONS AND EXPERIMENTS 

We initially conducted two simulation experiments on the 

manipulation of a moving object to illustrate the validity of the 

proposed method. We also used a Universal Robot (UR) for 

tracking a moving hole and then inserting a peg into the hole in 

a real experiment. 

A. Tracking and manipulating simulation 

We conducted simulation experiments in V-Rep [21] using 

Bullet 2.78 for dynamics and V-Rep's internal inverse 

kinematics module for robot motion planning. The simulation 

environment included a UR5 robot, a camera mounted on the 

robot end-effector, and a moving hole on the ground. The 

camera identified and transferred the position of the target hole 

to the UR5 robot. The UR5 robot held the peg and followed the 

target, guided by the visual information, trying to keep the 

target in the center of the image. Each test was run for 𝑛 = 80 

tracked steps in the simulation. We ignored the image noise in 

the simulations. We set 𝐾𝑝 = 8 and 𝐾𝑖 = 0.002, set  α = 0.25 

and c = 0.03 . These parameters were set identically in the 

following experiments. We set λ = 0.5 in IBVS-RBF and set 

λ = 0.34  in IBVS-TDC to get the best tracking results 

respectively. We conducted four sets of experiments using the 

Tra-IBVS, IBVS-AD, IBVS-RBF, and proposed IBVS-TDC 

controllers. For the first simulation, the hole moved along a 

circular trajectory to facilitate the observation of the tracking 

performance. The execution of the robot in the simulation was 

different from that of a physical robot, that is, the time required 

for the robot to execute the control signal was very short. Note 

that in this study, the input to the RBFNNs was a 4-dimensional 

vector, where one element was the position (𝑥, 𝑦) of the feature 

point in the image coordinate system and the other was the 

position (𝑃𝑥 , 𝑃𝑦) of the robot end-effector. 

TABLE II MEAN TRACKING ERRORS OF FIG.4 AND FIG.5 
  Error(cm) 

Methods 

Circular trajectory Arbitrary trajectory 

Mean (x) Mean (y) Mean (x) Mean (y) 

Tra-IBVS 1.90 1.94 2.73 4.01 

IBVS-AD 1.32 1.36 2.04 2.78 

IBVS-RBF 1.07 1.25 1.46 1.58 

IBVS-TDC 0.69 0.73 1.26 1.15 

In the simulations, we described the tracking performance in 

the world coordinate system as the positions of the target and 

the robot end-effector can be easily obtained in the world 

coordinate system from V-Rep.  The tracking performances of 

the IBVS-AD in Fig. 4(b) and IBVS-RBF in Fig. 4(c), 

outperformed the Tra-IBVS controller in Fig. 4(a). The IBVS-

TDC controller in Fig. 4(d) achieved the best performance. The 

mean tracking errors of different methods for tracking circular 

trajectories are shown in Table II. Note that the errors in Table 

II are described in the world coordinate system. 

       

     (a)                                                 (b) 

     
   (c)                                                 (d) 

Fig. 4. Tracking a target moving along a circular trajectory. The dashed 

lines and solid lines represent the position of the moving hole and the 

robot end-effector in the 𝑥- and 𝑦- directions, respectively. (a) shows the 

results of the Tra-IBVS; (b) shows the results of the IBVS-AD; (c) shows 

the results of the IBVS-RBF; (d) shows the results of the proposed IBVS-

TDC controller. Note that the solid lines were the desired trajectories and 

the dashed lines were the tracking trajectories in the world coordinate 

system. 

We used the proposed IBVS-TDC method to track a moving 

hole with an arbitrary trajectory designed using the PATH 

module in V-Rep. The tracking position curve of the world 

coordinate system is shown in Fig. 5(a). The mean tracking 

errors of various methods for tracking irregular trajectories 

were shown in Table II.  

      
(a)                                                 (b) 

      
(c)                                                 (d) 

Fig. 5. Tracking a target moving along an arbitrary trajectory. (a) shows 

the results of the Tra-IBVS; (b) shows the results of the IBVS-AD; (c) 

shows the results of the IBVS-RBF; (d) shows the results of the 

proposed IBVS-TDC controller. 

The process of tracking and inserting an object into a moving 

hole was shown in Fig. 6. The robot manipulator followed the 
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moving hole and inserted the peg into it when the position error 

between it and the end-effector was less than a pre-defined 

threshold value. 

        
(a)                                          (b)         

Fig. 6. Process of tracking a moving hole, (a) shows the initial state, (b) 
shows the robot successfully tracking the moving hole and inserting the 
peg into it. 

We tested the mean and maximum tracking errors of the Tra-

IBVS and the proposed IBVS-TDC method at different speeds 

of the moving target, as shown in Table III. Note that the errors 

in Table III were in the world coordinate system. As shown in 

Table III, the IBVS-TDC method reduced both the average and 

maximum tracking errors. However, although the tracking 

speed of 1.0 𝑚/𝑠  was achievable in the simulation 

environment, it was hard to realize in the physical environment, 

as a hole of that size can easily escape from the small view field 

of the camera at the initial stage. 

TABLE III MEAN TRACKING ERRORS AT VARIOUS MOVING SPEEDS 

Method Tra-IBVS Ours 

                       Error (cm) 
Speed (𝑚/𝑠) 

Mean Max Mean Max 
𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 𝑥 𝑦 

0.1 0.7227 0.6110 1.4465 1.4638 0.1786 0.3342 0.4715 0.6575 

0.2 1.0745 1.5424 2.6456 2.6673 0.4335 0.5681 1.2396 1.1264 

0.3 1.8670 2.1970 3.7835 3.7942 0.7912 0.6847 1.6048 1.7349 

0.5 2.9931 3.7970 6.3982 5.6633 1.0223 1.3784 2.4224 2.5657 
0.8 4.6358 6.3741 10.5236 9.5060 2.1951 1.6492 5.4165 4.4157 
1.0  6.0432 8.1041 13.4998 12.3390 2.0585 2.0592 5.6150 7.5503 

B. Tracking and inserting a peg into a moving hole in 

the real world 

In another experiment, we tracked and inserted a peg into a 

moving hole using a real UR5 robot. And a UR3 robot was used 

to hold the hole and propel it. An overview of the system was 

shown in Fig. 7. The UR5 and UR3 were both 6-DoF Universal 

robots with position repeatability of 0.03 𝑚𝑚 . The Robotiq 

grippers mounted on the end-effector of UR5 and UR3 were 

used to pick up the peg and hole respectively. In addition, the 

digital camera (MER-041-436U3M) with a resolution of 

720 × 540 pixels was used to capture the target image. Note 

that the UR5 robot did not know the trajectory of the hole. Thus, 

we employed the proposed method to enable the UR5 robot to 

track the hole, following which we inserted the peg into the 

moving hole. For the image features, we used the AprilTag [22], 

which was easily and robustly identified, to represent the target 

hole position in the image. When the center point of AprilTag 

appeared in the center of the image, the peg was also aligned 

with the center of the hole. We set 𝐾𝑝 = 10 and 𝐾𝑖 = 0.005, 

set  α = 0.35  and c = 0.1 . These parameters were set 

identically in the following experiments. We set λ = 0.6  in 

IBVS-RBF and set λ = 0.5  in IBVS-TDC to get the best 

tracking results respectively. 

Here, the diameters of the peg and holes were 40 𝑚𝑚 and 

50 𝑚𝑚, respectively. Thus, the tolerances between the peg and 

the hole were approximately 10 𝑚𝑚. As the positions of the 

peg and the hole in the world coordinate system were not 

available, it is impossible to compute the position errors 

between the two parts. Therefore, we determined the tracking 

performance by calculating the error between the position of the 

target (AprilTag's center point) in the image and the image 

center point, which was initialized by (0,0). 

 
Fig. 7. Real-world setup of tracking and insertion of a peg into a moving 

hole. 

 In the real experiment, the tracking performance was 

described in the image coordinate system. In the first 

experiment, the hole was designed to move along a circular 

trajectory, with the UR3 robot moving the peg, and tracking the 

hole with the UR5 robot. Take 630 points evenly on the 

circumference as the moving position of the hole. The tracking 

results of Tra-IBVS, IBVS-AD, and IBVS-TDC in the 𝑥  -

direction and 𝑦 -direction are shown in Fig. 8(a) and Fig. 8(b) 

respectively. Taking the 𝑥  direction as an example, the 

maximum tracking error of the Tra-IBVS was 0.462 𝑚𝑚 and 

the average tracking error was 0.270 𝑚𝑚. The proposed IBVS-

TDC method reduced the maximum and average tracking errors 

(the distance between the feature point position and target 

position in the image coordinate system) to 0.194 𝑚𝑚  and 

0.084 𝑚𝑚, respectively, a significant reduction in both cases.                                             
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(a)                                           (b)   

Fig. 8. (a) shows the results in the x-direction; (b) shows the results in 

the y-direction; The ordinate “Position” represents the position in the 

image coordinate system. 

In the second experiment, the hole moved in a sinusoidal 

curve. The trajectory was formed by splicing two sinusoids. The 

mathematical expression of the first segment is 𝑥 = 0.7 ∙
sin(12𝜋 ∙ 𝑦)   the value range of 𝑦  was 0~0.25 𝑚 . The other 

segment was symmetrical to it. Take 600 points evenly on one 

segment as the moving position of the hole. The tracking results 

are presented in Fig. 9(a-b). In the 𝑥 -direction, the maximum 

and average errors of the Tra-IBVS were 0.642 𝑚𝑚  and 

0.374 𝑚𝑚 , respectively. The proposed IBVS-TDC method 

reduced the maximum and average tracking errors to 

0.271 𝑚𝑚 and 0.125 𝑚𝑚, respectively. In the 𝑦 -direction, the 

maximum and average tracking errors of the Tra-IBVS were 

0.437 𝑚𝑚 and 0.083 𝑚𝑚, respectively. The proposed IBVS-

TDC method reduced the maximum tracking error to 

0.251 𝑚𝑚 and the average tracking error to 0.036 𝑚𝑚. 

 
     (a)                                                 (b) 

Fig. 9. (a) shows the results in the x-direction; (c) shows the results in 

the y-direction. 

The steps of the tracking-and-inserting process were 

presented in Fig. 10. The entire visual servo system consisted 

of three steps. First, the image was acquired and the feature 

point position was calculated (assuming that the time was 𝑡1). 

Next, the feature point position was transmitted to the IBVS-

TDC controller and the control law was calculated (assuming 

that the time was 𝑡2). Finally, the robot received the control law 

by TCP/IP (assuming that the time was 𝑡3, which is hard to be 

measured). To enable the robot to track moving targets more 

smoothly, we performed the three steps simultaneously using 

three parallel threads, so that the time of one running cycle is 

𝑚𝑎𝑥(𝑡1, 𝑡2) +  𝑡3. In the actual system we were running as an 

example, the time to execute a cycle was about 50 𝑚𝑠 + 𝑡3. 

   
(a)                                                     (b) 

    
(c)                                                    (d) 

Fig. 10. Tracking-and-inserting process. (a) shows the initial state of the 

peg and hole, (b) shows the UR5 commence tracking as the hole moves 

into camera view. (c) shows the movement of the peg down to the hole, 

and (d) shows that the peg has been inserted into the hole. 

In Experiment 3, there was a hole moving in 3D space, and 

we attempted to let the robot track and insert the peg into a hole. 

The trajectory of the hole in the 𝑥𝑜𝑦 -plane followed the shape 

of the involute, and the movement in the 𝑧  -direction was 

valued according to the sine function. The trajectory formula 

was as follows. The tracking results were presented in Fig. 11(a-

d). The results of the Tra-IBVS method and our proposed 

method were compared in Table IV. The tracking error refers to 

the distance between the feature point positions and target 

positions in the image coordinate system. 

{
𝑥∗ = 0.01 ∙ (𝑠𝑖𝑛 𝜑 − 𝜑 ∙ 𝑐𝑜𝑠𝜑)

𝑦∗ = 0.01 ∙ (𝑐𝑜𝑠𝜑 + 𝜑 ∙ 𝑠𝑖𝑛𝜑)
𝑧∗ = 0.08 ∙ 𝑠𝑖𝑛𝜃

 

where 𝜑 ∈ [0,4𝜋], 𝜃 ∈ [0, 𝜋]. And, 1300 points were uniformly 

taken on each of the three trajectories of 𝑥, 𝑦, and 𝑧 to form the 

moving trajectory of the hole in 3D space. The time interval for 

UR3 to move between every two points was 0.02 𝑠. 

TABLE IV COMPARISON OF TRA-IBVS AND OURS 

        Error 
Methods 

First feature point Second feature point 

x (mm) y (mm) x (mm) y (mm) 

Tra-IBVS 
mean max mean max mean max mean max 

0.121 0.307 0.106 0.274 0.120 0.307 0.107 0.282 

Ours 0.049 0.149 0.039 0.125 0.049 0.149 0.040 0.124 

  

  (a)                                                   (b)
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(c)                                                    (d) 

Fig. 11. Tracking the hole moving in 3D space. (a) shows the results in 

the x-direction at the first feature point; (b) shows the results in the y-

direction at the first feature point; (c) shows the results in the x-direction 

at the second feature point; (d) shows the results in y-direction at the 

second feature point.  

The process of inserting the peg into the hole in 3D space is 

shown in Fig. 12, where the speed of the hole was 

approximately 8 𝑐𝑚/𝑠.  

   
(a)                                                     (b) 

   
(c)                                                    (d) 

Fig. 12. Process of tracking and inserting the peg into the hole in 3D 

space. (a) shows the initial state of the peg and hole, (b-c) shows the 

movement of the peg with the hole, and (d) shows the insertion of the 

peg into the hole.  

VI. CONCLUSION 

In this paper, we present an image-based visual tracking 

method for the robot manipulation of a moving object. The 

method consists of two parts: a pseudo-inverse image Jacobian 

matrix adaptation and a time-delay compensator. The image 

Jacobian matrix adaption deals with the uncertainties in the robot 

image Jacobian matrix. We describe the robot visual servo 

system using an equivalent linearization model; thus, the linear 

model yields an adaptation of the image Jacobian matrix. The 

time-delay compensator solves the delay in the robot, which is 

useful in tracking a moving object. The image Jacobian 

adaptation and time-delay compensator are integrated using a 

sliding-mode controller, which improves the performance of the 

robot tracking system, in terms of precision and speed. 

We conducted experiments using a virtual robot in V-Rep and 

a UR robot in a real environment. We found that in the image 

coordinate system, the proposed IBVS-TDC reduced the 

maximum and average tracking errors from 0.642 𝑚𝑚  and 

0.374 𝑚𝑚  of the traditional visual-based tracking method to 

0.271 𝑚𝑚  and 0.125 𝑚𝑚 , respectively. We tracked and 

inserted a peg into a moving hole using an eye-in-hand robot (the 

distance between the peg and the hole was 1 𝑐𝑚). In our future 

work, we try to track a moving object even mitting a significant 

delay in the robot control loop, where we will employ a wide-

angle camera to keep the object within the camera view. And, we 

will use a telephoto camera to precisely localize the target for 

robot manipulation. Furthermore, we will decrease the cycle time 

by using a high frame rate camera, and by accelerating the image 

processing algorithm. 

APPENDIX 

We define an objective function as equation (A1) and 

estimate the pseudo-inverse image Jacobian matrix 𝑱𝐫
†

 by its 

optimal solution  

𝑓 =
1

2
‖�̂�(𝑡) − α�̂�(𝑡 − 1) − �̂�0(𝑡)‖2

+
𝑐

2
‖�̂�𝐫

†(𝑡) − 𝑱𝐫𝟎
† (𝑡)‖

2
,                         (𝐴1) 

where α, 𝑐 ∈ (0,1) are weighting constants. 

�̂�(𝑡) = �̂�𝐫
†(𝑡)𝑴(𝑡 − 1) and �̂�0(𝑡) = �̂�𝐫𝟎

† (𝑡)𝑴(𝑡 − 1).    (𝐴2) 

We take the partial derivative with respect to �̂�𝐫
†
, yields 

𝜕𝑓

𝜕�̂�𝐫
† =

1

2

𝜕‖�̂�(𝑡) − α�̂�(𝑡 − 1) − �̂�0(𝑡)‖2

𝜕�̂�𝐫
†   

+
𝑐

2

𝜕‖�̂�𝐫
†(𝑡) − 𝑱𝐫𝟎

† ‖
2

𝜕�̂�𝐫
†  

i.e., 

𝜕𝑓

𝜕�̂�𝐫
† = (�̂�(𝑡) − α�̂�(𝑡 − 1) − �̂�0(𝑡))

𝜕�̂�(𝑡)

𝜕�̂�𝐫
†

+ 𝑐 (�̂�𝐫
†(𝑡) − 𝑱𝐫𝟎

† (𝑡))
𝜕�̂�𝐫

†(𝑡)

𝜕�̂�𝐫
†  

Let the partial derivative 
𝜕𝑓

𝜕𝑱𝐫
† equal to 0, gives 

(�̂�(𝑡) − α�̂�(𝑡 − 1) − �̂�0(𝑡))𝑴𝑇(𝑡 − 1) + 𝑐 (�̂�𝐫
†(𝑡) − 𝑱𝐫𝟎

† (𝑡))

= 0,                                                           (𝐴3) 

Substitute (A2) into (A3), gives  

(�̂�𝐫
†(𝑡) − 𝑱𝐫𝟎

† (𝑡)) (𝑐𝑰 + 𝑴(𝑡 − 1)𝑴𝑇(𝑡 − 1))

− α�̂�(𝑡 − 1)𝑴𝑇(𝑡 − 1) = 0 

Thus, 

�̂�𝐫
†(𝑡) = 𝑱𝐫𝟎

† +
α�̂�(𝑡 − 1)𝑴𝑇(𝑡 − 1)

𝑐𝑰 + 𝑴(𝑡 − 1)𝑴𝑇(𝑡 − 1)
,                 (9) 

where 𝑡 denotes the current state, (𝑡 − 1) denotes the previous 

state, 𝑰  is a unit diagonal matrix, 𝑱𝐫𝟎
†

 is the initial pseudo-

inverse image Jacobian matrix. 
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