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Abstract—Open set domain adaptation focuses on transferring
the information from a richly labeled domain called source
domain to a scarcely labeled domain called target domain, while
classifying the unseen target samples as one unknown class
in an unsupervised way. Compared with the close set domain
adaptation, where the source domain and the target domain
share the same class space, the classification of the unknown class
makes it easy to adapt to the real environment. Particularly, after
the recognition of the unknown samples, the model can either
ask for manually labeling or further develop the classification
ability of the unknown classes based on pre-stored knowledge.
Inspired by this idea, we propose a model for open set domain
adaptation with zero-shot learning on the unknown classes in this
paper. We utilize adversarial learning to align the two domains
while rejecting the unknown classes. Then the knowledge graph
is introduced to generate the classifiers for the unknown classes
with the employment of the graph convolution network (GCN).
Thus the classification ability of the source domain is transferred
to the target domain, and the model can distinguish the unknown
classes in detail with prior knowledge. We evaluate our model
on digits datasets and the result shows superior performance.

Index Terms—open set domain adaptation, zero-shot learn-
ing, knowledge graph, graph convolutional network, adversarial
learning

I. INTRODUCTION

In the last decades, deep learning models have shown good
performance in various tasks, especially in visual perception.
The training of the deep learning network relies on plenty
of labeled data. However, most of the existing large labeled
datasets are collected from the Internet. The images in these
datasets are normative and unified, which are different from the
images relevant for a specific application. Besides, depending
on the application, the images may be obtained by different
typed of visual sensors or with different perspectives of
sensors. It costs a lot to retrain the classification model in
different situations. Thus it is important to deal with the gap
among domains. They should be able to utilize the well-
labeled samples in the source domain to classify the samples
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in the unlabeled target domain, which is related to domain
adaptation. There are already some researches on domain
adaptation, such as [1], [2], [3], and [4]. The alignment of
the domain gap makes the robot adapt well to dynamic and
unstructured environments.

Fig. 1. An overview of the proposed domain adaptation with zero-shot
learning. Close set domain adaptation aligns the target domain to the source
domain. Open set domain adaptation not only aligns the domain gap but also
rejects the unknown classes as one class. Open set domain adaptation with
zero-shot learning further gives detailed classification on the unknown classes,
which is more complex and valuable.

Except for the domain gap among different datasets, the
variation of the classes also makes it hard for the model to
adapt to a new dataset. Depending on the application and
the scale of different datasets, the model may come across
classes that are not contained in the source domains. With the
traditional domain adaptation methods, the unknown classes
are mistakenly aligned due to the absence of training samples
of unknown classes in the source domain. The imbalance of the
types of classes brings over-fitting problems and is not suitable
for classification in the open world. Thus it is important for
the robot to reject the unknown classes and only align the
shared classes. This problem is known as open set domain
adaptation, which is first proposed by [5] and followed by for
instance [6], and [2]. In the setting of the open set domain
adaptation, the target domain contains both the classes of the
source domain and the additional new classes. The model not
only aligns the target domain to the source domain but also



rejects the unknown classes.
It is worth noting that previous open set domain adaptation

methods typically classify all the additional new classes into
one unknown class. However, the unknown class may contain
classes that are worth learning. It may be more valuable to
detect the unknown classes in detail and develop the ability to
classify them with the former information. Since the unknown
classes are not included in the source domain, the model
lacks the labeled information for the new classes. Current
open set domain adaptation methods can not give detailed
classification on the unknown part with no labeled images.
This problem is related to zero-shot learning. In the zero-shot
learning problem, complementary information is collected to
transfer the knowledge from the base classes to classify the
unknown ones. Inspired by this, with the knowledge stored in
the knowledge graph, the classifiers of the unknown classes
can be obtained in the target domain with no labeled samples.

Towards this end, we propose a generic model to align the
gap between the labeled source domain and the unlabeled
target domain while classifying the unknown classes in the
target domain, which we call open set domain adaptation with
zero-shot learning. The contributions of this paper mainly lie
in tackling the following two difficulties.

First, since the unknown classes are not contained in the
source domain, we have no labeled samples for supervised
training. The lack of labeled data may cause the over-fitting
problem of the model, which means the model only classi-
fies the samples as the known classes and can not classify
the unknown ones. It is necessary to utilize complementary
information to support the inference. Thus we employ the
knowledge graph to store some prior knowledge of the known
classes and the unknown classes, which contains the structural
relations between different classes, beyond the individual at-
tribute representation of each class. The structural information
offers a bridge for the inference from the known classes to the
unknown ones. With the employment of the graph convolution
network, the information propagates among the graph, and the
unknown classes gather the information from their neighbor
to generate their classifiers. These inference classifiers work
as the initial classifiers of the classification model.

The second difficulty is how to adapt the inference classi-
fiers to the target domain. The inference classifiers are suitable
to the source domain. It is not able to classify the unknown
samples in the target domain because of the domain gap.
Thus we introduce adversarial learning to align the domain
gap. The classification model consists of two modules, the
feature generator and the classifier. Since the generator works
to extract the features of the samples and the classifier works
to output the class probability, we train them simultaneously in
an adversarial way. The classifier is trained to find a boundary
for unknown classes, while the generator is trained to make
the samples far from the boundary. With adversarial learning,
the generator can deceive the classifier into generating aligned
features in both domains and reject the unknown classes
according to the unknown boundary. Thus the feature of
shared classes is aligned in both domains, and the unknown

classes are rejected as one class. With the adaptation in both
domain gap and class gap, our model is able to classify
objects in the dynamic and complex open world. We utilize
the knowledge graph and the adversarial learning in a jointly
trained framework. We further evaluate our method on digits
datasets and demonstrate its effectiveness.

II. RELATED WORKS

A. Open Set Domain Adaptation

Open set domain adaptation goes beyond traditional close
set domain adaptation. It considers a more realistic classi-
fication task in which the target domain contains unknown
samples that are not present in the source domain. Open set
domain adaptation is first proposed by [5]. They measure the
distance between the target sample and the center of the source
class to decide whether a target sample belongs to one of the
source classes or the unknown class. However, they require
the source domain to have unknown samples as well. Later
on, [6] propose open set back-propagation (OSBP) for target
domain with no unknown samples. They utilize adversarial
learning to align the domain gap. The learnable information
in the unknown space deserves deep exploitation. We have
found few papers that consider the fine-grained classification
of the unknown classes in open set domain adaptation, and we
aim to fill in the blanks.

B. Zero-shot Learning

Zero-shot learning aims at generating classifiers for un-
known classes with no labeled samples. Several pieces of
research have been done on this area, such as [7] [8]. Due
to the limitation of the available samples, some researchers
extract complementary information from the related known
classes to support the inference of the unknown ones. Among
these methods, building the relationship between classes in
the form of a graph seems more reasonable. The special
geometry of graphs well shows the complicated relationship,
and the unknown classes can gather adequate information from
the known ones. [9] built an unweighted knowledge graph
combined with word embedding upon the graph convolutional
network. With information propagation, novel nodes generate
predictive classifiers with common sense. [10] improve upon
this model and propose a dense graph propagation to prevent
dilution of knowledge from distant nodes.

III. APPROACH

A. Problem Definition

In open set domain adaptation with zero-shot learning, we
have a source domain Ds = {(xs

i , y
s
i )}

ns
i=1, which contains ns

labeled samples, and xs
i refers to the ith source images and yi

refers to its label. Target domain is denoted as Dt = {xt
j}

nt
j=1,

which contains nt unlabeled samples. The class space in the
source domain is Cs which we call known classes and contains
M classes. The known classes are shared by the class space
of the target domain Ct, which contains N classes. It is worth
noting that Ct further contains N −M unknown classes Cu,
that is Ct = Cs ∨ Cu. The distribution of the source domain



and target domain is different. Note that the samples in the
target domain are all unlabeled and the samples in the source
domain are all labeled.

Fig. 2. An overview of our model for domain adaptation with zero-shot
learning.

B. classifier inference module

With few labeled samples, humans can make good in-
ferences on unfamiliar things with the related information
obtained from books. Our model also extracts the task-based
knowledge from a prestored knowledge graph. The knowledge
graph is denoted as G = (V,E), where V = {v1, v2, ..., vN}
is a node-set of all classes including known classes and
unknown classes. The nodes features in the knowledge graph
are word embedding attributes vi of different classes. Edge
set E = {ei,j = (vi, vj)} refers to the relationship among
classes. The edges in the knowledge graph are decided by the
similarity of the attributes between different classes.

Since the labeled samples in the source domain are avail-
able. The original recognition model is first trained on the
source samples Ds, which is denoted as C(F (·|θ)|W s). The
recognition model consists of two parts, feature extractor
F (·|θ) and classifier C(·|W s), where θ and W s indicate the
parameters of the model trained on Ds. Feature extractor
F (xi|θ) takes an image as input and figures out the feature
vector as zi. The classifier C(zi|W s) works to compute the
classification score which is denoted as

[s1, s2, ..., sM ] = [zTw1, z
Tw2, ..., z

TwM ] (1)

Thus the inference of the classifiers on unknown classes turns
to inference of the classification weights ws on the unknown
classes.

With the framework of the graph convolutional network
(GCN), our model propagates information among nodes by
exploring the class relationship. For one layer in GCN, a
node aggregates information from its neighbors. GCN can also
be extended to multiple layers to perform a deeper spread.
Therefore, the unknown classes can utilize the information
from the related known classes and predict the classification
weights of their own. The mechanism of GCN is described as

H(l+1) = ReLu(D̂− 1
2 ÊD̂− 1

2H(l)U (l)) (2)

where H(l) denotes the output of the lth layer, while for the
first layer H0 = V . It uses Leaky ReLu as the nonlinear
activation function. To reserve the self-information of the
nodes, self-loops are added among the propagation, Ê = E+I ,
where E ∈ RN×N is the symmetric adjacency matrix and
I ∈ RN×N represents identity matrix. Dii =

∑
j Eij normal-

izes rows in E to prevent the scale of input modified by E.
The matrix U l is the weight matrix of the lth layer, which
GCN regulates constantly to achieve better performance.

Our model conducts two layers of GCN on the knowledge
graph. Unknown classes learn the mechanism of end-to-end
learning from known classes through propagation. The output
of the GCN is trained by minimizing the loss between the
predicted classification weights and the ground-truth weights.
The ground-truth weights refer to the classifiers of the known
classes, which are extracted from the original recognition
model on the source domain.

W inf = softmax(A(relu(AV U (0)))U (1)), (3)

A = D̂− 1
2 ÊD̂− 1

2 , (4)

LGCN =
1

M

M∑
i=1

(winf
i − ws

i )
2 (5)

where W inf = {winf
1 , winf

2 , ..., winf
N } refers to inference

classifiers of all the classes, and W s = {ws
1, w

s
2, ..., w

s
M}

denotes the ground truth classifiers of the known classes
obtained from the original recognition model. We utilize the
M classifiers of known classes from the output of GCN to
evaluate the loss. With the supervision of the known classes,
the unknown nodes in the inference graph can also generate
classifier weights of their own. Finally, with the employment
of GCN, the classifier inference module not only generates
predictive classifiers of the unknown classes in the target
domain but also provides more general classifiers of the known
ones.

C. domain adaptation module

With the employment of the classifier inference module,
classifiers of the unknown classes are generated. However,
these classifiers are only suitable for the source domain since
the ground-truth classifiers are extracted from the original
model trained on the source domain. Thus the domain adapta-
tion module attempts to align the domain gap between the
source domain and target domain, which can transfer the
generated classifiers to the target domain.

The inference classifiers W inf are applied to the orig-
inal recognition model, denoted as C(F (·|θ)|W inf ). Note
that the number of the classifiers expands from M to N .
As mentioned above, the recognition model consists of two
parts, the feature generator and the classifiers. To align the
domain gap, we employ adversarial learning on the classifiers
and the feature generator. The classifiers are trained to set
a boundary for the unknown classes in the target domain.
With the boundary, unknown classes can be picked out. The
proportion of unknown classes in the target domain is denoted



as pun =
N∑

i=M+1

p(y = yi|xt) The classifiers are trained to

output pun = t, where t is the boundary. The feature generator
tries to generate features that can deceive the classifier. That is,
the generator tries to generate features far from the boundary. It
can choose to decrease or increase pun far from t. Besides, the
classification ability on the known classes should be reserved.
Thus we also consider the classification accuracy on the source
domain during the training process. We use a standard cross-
entropy loss for this purpose.

Ls(xs, ys) = − log(p(y = ys|xs)) (6)

p(y = ys|xs) = (C(F (xs)))ys
(7)

With the cross-entropy loss, the model ensures the classifi-
cation accuracy on known classes. For the boundary of the
unknown classes, we follow the settings in the OSBP and
utilize binary cross-entropy loss.

Ladv(xt) = −t log(pun)− (1− t) log(1− pun)) (8)

To train the classifier inference module and the domain
adaptation module jointly, the overall objective of our model
is,

min
C

Ls(xs, ys) + Ladv(xt) + LGCN (9)

min
G

Ls(xs, ys)− Ladv(xt) + LGCN (10)

With the domain adaptation module, the unknown classes
in the target domain are separated, and the features of both
domains are aligned. We also suggest iterating the classifier
inference module and the domain adaptation module for better
performance.

IV. EXPERIMENTS

A. Datasets

We test our model on three digits datasets. Compared to the
traditional dataset on domain adaptation. The digits datasets
contain a fewer number of classes, which means the number
of the known classes is fewer. The task turns to a more
difficult zero-shot learning problem. The three digits datasets
are MNIST [11], USPS [12], and SVHN [13]. For the class
space, we have two settings of unknown classes. In the 3-way
setting, the source domain contains seven classes (0-6), while
the target domain contains ten classes (0-9). While in the 2-
way setting, the source domain contains seven classes (0-7),
while the target domain contains ten classes (0-9). In both
settings, our goal is to align the known classes in the target
domain to the source domain and have the ability to classify
the unknown ones.

B. Comparison

To test the performance of our model, we conduct ex-
periments under several settings. However, since there are
few models that work on the domain adaptation with zero-
shot learning, we compare our model with zero-shot learning
models. Besides verifying the value of the inference classifiers,

we also compare our model to open set domain adaptation
methods with random initialization unknown classifiers. The
results are shown in the following table.

TABLE I
COMPARATION RESULTS

Task SVHN → MNIST
Setting 2-way 3-way

all unknown all unknown
z-GCN [9] 48.4% 6.2% 39.5% 13.2%
OSBP [6] 58.2% 17.4% 54.0 % 24.3%
our model 67.0% 38.2% 64.3% 46.4%
Task USPS → MNIST
Setting 2-way 3-way

all unknown all unknown
z-GCN [9] 60.5% 9.5% 54.1% 10.4%
OSBP [6] 61.4% 8.5% 62.3 % 12.4%
our model 67.4% 26.5% 69.2% 24.1%
Task MNIST → USPS
Setting 2-way 3-way

all unknown all unknown
z-GCN [9] 63.4% 8.6% 62.0% 12.3%
OSBP [6] 51.3% 7.6% 42.2% 13.3%
our model 73.6% 49.3% 68.2% 23.5%

The comparison between our model and other exiting meth-
ods is reported in table 1. The 2-way and 3-way settings mean
the number of unknown classes is 2 and 3. The class type
setting: all and unknown, refer to the classification accuracy
on the overall 10 classes and the unknown classes only. The
performance is evaluated by the average top-1 accuracy. z-
GCN proposed by [9] is a zero-shot learning model with the
employment of the knowledge graph. It only considers the
class gap while ignoring the domain gap. OSBP proposed by
[6] is a model focusing on open set domain adaptation. For
comparison, we expand it with randomly initialized classifiers
on the unknown classes.

Fig. 3. The classification accuracy in the target domain: (a) the result in
3-way SVHN to MNIST experiment (b) the result in 3-way USPS to MNIST
experiment.

From table 1, we notice that the classification accuracy on
z-GCN is about ten to twenty percent lower than our model,
which demonstrates the importance of domain alignment.
Besides, the classification accuracy on the unknown classes
of our model is about twenty percent higher than z-GCN. We
owe that to the domain gap. Since the unknown classifiers
of the z-GCN are generated with the labeled known samples
in the source domain, it is not suitable in the target domain,
which results in a huge decrease in the accuracy. Compared
with zero-shot learning methods, our method transfers the



inference classifiers to the target domain and shows about sixty
percent overall accuracy and thirty percent accuracy on the
unknown classes. As figure 4 shows, the domain gap between
the MNIST and the USPS is large. Overfitting on the source
domain and the lack of labeled training images in the target
domain affect the results a lot. In the SVHN to MNIST tasks
with the 2-way setting, the classification accuracy of z-GCN
on all classes is forty-eight, which is twenty percent lower than
our model. In the USPS to MNIST and MNIST to USPS tasks,
the improvement of our model is about ten percent as well. The
result demonstrates that the adversarial learning employed by
our model is able to transfer the classification ability from the
source domain to the target domain. The domain adaptation is
important for the flexibility of the models.

Fig. 4. In the task setting m2u, the model is trained on the MNIST dataset with
seven or eight classes and transferred to the USPS dataset with ten classes.

To test the effectiveness of the inference classifiers, we
further conduct experiments on the open set domain adaptation
method. From the results in table 1, the classification ability
of our model on the unknown classes is about twenty percent
higher than random-expanded OSBP. The fine-grained classi-
fication accuracy on every class is shown in figure 3. Besides,
we notice that OSBP still shows about ten percent accuracy on
the unknown classes and sometimes even higher than z-GCN.
We owe the classification accuracy on the unknown classes to
the rejection mechanism. Since OSBP has the ability to reject
the unknown classes as one class, the detailed classification in
the one class is much easier. Besides, the inaccurate classifiers
on the unknown classes confuse the classifier on the known
classes and result in a decrease in the accuracy. To avoid
randomness, we perform three different domain adaptation
tasks. From the result shown above, we can come to the
conclusion that our model shows a good performance on open
set domain adaptation with zero-shot learning.

We visualize the output of the model in the target domain
with t-SNE. Figure 5 shows the visualization results. The
samples from the same class are grouped together, while
those belonging to different classes are separated. Besides, the
unknown classes are separated with each other in the visual-
ization, like class seven, eight and nine. Although the domain
adaptation module reject the unknown class as one class, the
inference classifiers still have the fine-grained classification
ability with the support of knowledge graph. The visualization
demonstrates that the inference classifiers generated from the
knowledge graph are discriminative.

Fig. 5. Visualization of the class samples in the target domain.

V. CONCLUSION

In this paper, we propose a model on open set domain adap-
tation with zero-shot learning. Our model not only makes good
performance on the alignment of the domain gap but also gives
detailed classification on the unknown classes. The ability of
the further classification on the unknown classes improves the
visual cognitive development ability of the robot, which is
important for the robot working in a realistic environment. The
experiments show that our model has a good performance on
domain adaptation with zero-shot learning.
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