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Abstract—Non-stationary environment is general in real en-
vironment, including adversarial environment and multi-agent
problem. Multi-agent environment is a typical non-stationary
environment. Each agent of the shared environment must learn
a efficient interaction for maximizing the expected reward.
Independent reinforcement learning (InRL) is the simplest form
in which each agent treats other agents as part of environment.
In this paper, we present Max-Mean-Learning-Win-or-Learn-
Fast (MML-WoLF), which is an independent on-policy learning
algorithm based on reinforcement clustering. A variational auto-
encoder method based on reinforcement learning is proposed to
extract features for unsupervised clustering. Based on clustering
results, MML-WoLF uses statistics and the dominated factor
to calculate the values of the states that belong to a certain
category. The agent policy is iteratively updated by the value. We
apply our algorithm to multi-agent problems including matrix-
game, grid world, and continuous world game. The clustering
results are able to show the strategies distribution under the
agent’s current policy. The experiment results suggest that our
method significantly improves average performance over other
independent learning algorithms in multi-agent problems.

Keywords—reinforcement learning; unsupervised clustering;
matrix game; multi-agent.

I. INTRODUCTION

In Multi-Agent Reinforcement Learning (MARL), each

agent expects to learn a mixed strategy that is able to maximize

its return in the repeated games. Due to the change and

exploration of agent strategies, the multi-agent environment is

non-stationary. One kind of MARL algorithms is independent

RL (InRL), where each agent treats other agents’ policies

as part of its environment [1] [2] [3]. The agent needs to

have ability of generalization to learn the equilibrium strategy

without any other agents’ information. However, this setting

of local environments is non-stationary and non-Markovian

since other agents may keep changing their policies [4]. It

further leads to the overfitting of agent policy with respect

to other’s policies [5]. Some MARL algorithms address the

challenges of multi-agent problem by adding opponent infor-

mation to avoid imperfect information [6] [7] [8] [9]. While

other algorithms use a centralised critic to estimate advantage

function or baselines such as counterfactual [10], VDN [11]
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and Q-MIX [12]. The main idea is to modify the action-

state value by comparing with others. In a non-stationary

environment, one agent performance can be illustrated by the

advantage function. Sampling while keeping the agent’s policy

fixed, the algorithm calculates the contribution of the current

state by comparing the return with other returns at other

states. According to the contribution value, the agent increases

the probability of state with the maximum contribution [13]

[14]. However, in a model-free environment, the relationship

between states is hard to define. States under the same strategy

should be treated as one category, while states of different

strategies should be compared with each other.

There are several reinforcement learning algorithms use the

cluster to simplify the state space and maximize the probability

of categories that obtain the maximum return [15] [16]. How-

ever, they focus on clustering state into discrete categories by

the return from a stationary environment. If the environment

is non-stationary such as multi-agent environment, it’s hard

to classify states by their value, because values are affected

by the policy of other agents. In other words, there is an

optimal distribution and classification of the state to maximize

the expected return. Another problem is that mixed strategies

are often difficult to interpret, and the distribution of states by

a mixed strategy is difficult to be correlated to the agent’s

strategy. There are several methods to explain the strategy

from latent code clustering results [17] [18]. These algorithms

mainly focus on explaining the relationship between the latent

variables of neural network and states, or the distribution of

behavior and latent variables. Besides, there are few methods

to obtain the specific number or distribution of strategies in a

training agent.

In this paper, a new algorithm called Max-Mean-Learning-

Win-or-Learn-Fast (MML-WoLF) is proposed based on cluster

and statistics to solve the two-player game. MML-WoLF

has a fixed probability distribution of sampling policy. The

unsupervised clustering algorithm optimizes the distribution

of state to maximize the expected return. The policy uses an

actor-critic structure, in which the actor is trained along the

gradient estimated by the critic. Based on the results of the

clustering algorithm, the maximum return of the state will be

compared with the mean return of other states to obtain the

state contribution. The contribution of the state can be back-

propagated to tune the policy. The clustering result is able to
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show the approximate number of strategies.

Our contributions can be summarized as follows:

• A RL algorithm based on clustering is proposed (Section

III-A). The algorithm produces clusters that potentially

indicate the number of strategies.

• We design a novel InRL algorithm for multi-agent prob-

lems based on clustering and iteratively eliminated strictly

dominated strategy (IESDS) to improve the efficiency of

learning (Section III-B).

• Our average performance exceeds other multi-agent InRL

algorithms in matrix-game and multi-step game (Section

IV).

II. BACKGROUND AND RELATED WORK

A. Markov Decision Process and Reinforcement Learning

A Markov Decision Process (MDP) can be represented by

four elements and denoted as a tuple as < S,A,R, T >:

state space S, action space A, expected payoff R and tran-

sition function T , where R : S × A → � is the payoff

function. R(s, a) is the expected payoff for taking action a
in state s and T (s, a, s′) is the probability of reaching state

s′ when given action a is taken at state s. At each step t
of MDP, the agent chooses an action according to a proba-

bility distribution which affected by a policy (aka. strategy)

over available actions. To improve agent’s performance, agent

have to maximize its cumulative return Gt =
∑

T
t=t′γ

tRt,

where t is the step and γ ∈ [0, 1) is a discount factor.

A common objective is to iteratively estimate the action-

value function Qi(s, a) = E
π[Gt|St = s,At = a], the

value function Vπ(st) =
∑

a∈Aπ(st, a)Q(st, a) and the

advantage function Aπ(st, at) = Qπ(st, a) − Vπ(st). The

parameter θπ of agent’s policy is updated by gradient g =
E[
∑T

t=0 Aπ(st, at)∇θπ log π(at|st)]. The actor is trained by

a gradient that depends on a critic, which usually estimates a

value function. In particular, Rt is replaced by advantage func-

tion Aπ(st, at) to reduce variance. Another option is to replace

with the Temporal Difference (TD) error rt+γV (st+1)−V (s),
which is an unbiased estimate of Aπ(st, at).

Proximal Policy Optimization (PPO) [19] is an on-

policy reinforcement learning algorithm which limits the

update step size by replacing advantage function with

min(ρtA(xt, at; θold), clip(ρt, 1 − ε, 1 + ε)A(xt, at; θold))

where ρt is a probability ratio ρt =
πθ(at|st)

πθold
(at|st) , and ε > 0 is

a hyper-parameter that determines the threshold.

B. Multi-agent Extensive-form Games

The process of including multiple agents in a sequential

interaction is called an extensive-form games. In imperfect

information games, each agent samples an action according to

a probability distribution over available actions based on its

local observation states. For convenience, the collection of all

possible strategies is Π = (π1, · · · , πn) and π−i represents all

strategies in Π except πi. Any strategy of agent i that achieves

worst payoff performance against fixed strategy profile π−i

is a strictly dominated strategy which should be iteratively

Zero Sum Shapley's Game Chasing Game
0,0 0,0 0,0 0,0 1,0 0,1 1,0 0,1 0,1
0,0 1, 1 1,1 0,1 0,0 1,0 0,0 1,0 0,0
0,0 1,1 1, 1 1,0 0,1 0,0 0,1 0,1 1,0

(a)

(b) (c)

Fig. 1. Example of matrix-game (a) multi-step game on grid

world (b) and continuous game (c).

eliminated. A best response is any strategy that achieves op-

timal performance against fixed strategy profile π−i. If a sub-

optimal strategy approximates best response by no more than

ζ, the sub-optimal is called ζ best response. An equilibrium

in a repeated game is called Nash equilibrium if no agent can

gain from deviating. A strategy set is a Nash equilibrium if

the strategy of all the agent is the best response to the other

strategies. Similarly, an approximate of ζ Nash equilibrium

is a set of ζ best response. Fig. 1(a) shows examples of

single-step matrix games, the Zero-Sum game, the Shapley’s

Game and Chasing Game. The Chasing Game has one Nash

equilibrium (0.5, 0, 0.5) with a dominated strategy that needs

to be iteratively eliminated. Choosing the middle is a strictly

dominated strategy for the thief. When the thief eliminates

choosing middle, choosing the middle is a strictly dominated

strategy for the police. We upgrade the matrix game to a multi-

step extensive-form game as shown in Figs. 1(b) and 1(c). The

payoff matrix determines the reward of the locations marked

with T.

Serval self-play MARL algorithms find equilibrium strate-

gies without the knowledge of other players’ actions or policy

information [20]. These include GIGA-WoLF [21], PGA-APP

[22], WPL [23], WoLF-PHC [24] and EMA-QL [25]. These

algorithms use techniques, including minimize-regret, win-or-

learning-fast, adaptive learning rates, policy prediction, and

fictitious self-play (FSP) [26] to find Nash equilibrium. In

order to reduce the cyclical learning dynamics arises in the

gradient ascent, the WoLF-PHC introduces the win-or-learn-

fast principle. GIGA-WoLF contains two policies, one of

which is updated faster than the other to the convergence

and has properties of no-regret and convergence. PGA-APP

uses policy prediction to augment the basic gradient ascent.

With a variable learning rate, WPL ensure the approach of

agent to the equilibrium strategy. EMA-QL uses two learning

principle with different learning speeds. WPL and EMA-QL

are able to converge in Shapley’s Game and Biased Game

but failed to learn in simpler games with the requirement

of iterative eliminating strictly dominated strategies (IESDS).

Since these algorithms are derived from tabular Q-learning,
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they cannot handle the high-dimensional environments. Other

rapidly developed multi-agent algorithms are based on meta-

strategy learning, including policy-space response oracles [27],

and Neural Fictitious Self-Play (NFSP) [28]. These methods

are also based on efficient algorithms to solve the best re-

sponse.

C. Reinforcement Learning with Clustering

In reinforcement learning with state aggregation, the number

of categories is set to separate the space of return to reduce

state dimension. There are several state aggregation methods

include Bayesian clustering [29], K-means cluster [30], and

value-based supervised learning [31]. Depending on the ex-

pected reward, the state is classified into a certain category

or a probability distribution over categories. This is a discrete

estimate of the value function and the state function. Other

similar algorithms estimate the transition function to get the

probability distribution of the V or Q value, such as C51 [32],

IQN [33], APE-X DQN [34].

Density-based-spatial-clustering of applications with noise

(DBSCAN) is the most widely used density-based clustering

method (DBSCAN) [35]. It is a density-based clustering

non-parametric algorithm based on establishing relationships

between points within a certain distance threshold ε. The

complexity of DBSCAN is quite low because it performs a

linear range query on the database and only needs to be run

once. Combining the above two points, DBSC is very suitable

for the state or strategy clustering in reinforcement learning.

DBSCAN classifies sample points S′ as three different types:

core points, density-reachable points and outliers for cluster-

ing. A core point sp are directly reachable from at least minPts

points within distance ε. A point sq is directly reachable from

sp if Nε(sp) = {sq ∈ S′|dist(sp, sq) ≥ Nε}. If there is a path

sp+1, · · · , sp+n to reach point sp+n = sq from sp+1 = p, and

each sp+k+1 is directly reachable from sp+k, the point sq is a

reachable point. All points not reachable from any other points

are outliers or noise points.

III. PROPOSED ALGORITHM

In this Section , we propose our reinforcement clustering

algorithm MML-WoLF, which combines the DBSC and value-

based RL. We incorporate reinforcement clustering with the

Bellman Equation and describe the basic idea of reinforcement

clustering. Then we explain the MML-WoLF method.

A. Reinforcement Clustering

Suppose there is a classifier C that divides the state space

into n categories. Each category ci has a sampling probability

p(ci). The probability of the state s in category i is qi(s). The

value of current state can be described as follow:

V p,q(s) =
∑
i

∑
s′

p(ci)qi(s)((R(s, a, s′)) + γV p,q(s′)) (1)

The probability of reaching the state sk can be described as

P (sk) =
∑

i p(ci)qi(sk). It’s obvious that value of state can

be increased by adjusting the sampling probability p(ci) of

category, or increasing the expected return of category. Let

the sampling probability of category pi be fixed as p̂i. The

probability of an agent taking an action ak that can reach

state sk can be described as π(a|s) =
∑

i p̂(ci)qi(sk). The

optimal value of the state can be defined by optimal probability

distribution of the state q∗i (sk).

V p̂,q∗(s) =
∑
i

∑
s′

p̂(ci)q
∗
i (s

′)((R(s, a, s′)) + γV p̂,q∗(s′))

(2)

Suppose the classifier C changes the q from q0 to q1. The

change in action probability of reaching state sk is as follow

g(sk) = P 1(sk)− P 0(sk) =
∑
i

p̂i(q
1
i (sk)− q0i (sk)) (3)

Suppose there is an optimal state s∗. To increase the value

of each category, the probability of reaching low value state

slow should be decreased. The updated probability distribution

should make g(slow) ≤ 0 and g(s∗) ≥ 0. When the state

distribution tends to be optimal, the agent strategy converges.

In model-free environment, the agent has no knowledge of

the number of categories. Futhermore, the relationship of states

is nonlinear and determined by environment. Therefore, we

can only use an unsupervised learning algorithm to classify

the state without any prior information and parameters. We

choose VAE neural network with encoder E, decoder D and

latent variable z for measuring the distance between states.

The encoder extracts the features of the state and expresses

them by latent variable z. The clustering results are obtained

by the clustering of latent variables z. By statistics of the

clustering results, the current probability of the category pi
can be calculated. The agent’s policy is updated to minimize

the difference between pi and p̂i, which consequently impacts

the g(s).
The result of clustering depends on the encoder E. To opti-

mize E, we consider the encoder as an agent and optimization

process as a MDP. The MDP can be described as a tuple

< s, z, re >, where the state s of the encoder is the observation

of the agent, the action is the latent variable z, and the reward

re is the different between expected return of the next sampling

batch and current sampling batch.

B. Max Mean Learning Win or Learn Fast (MML-WoLF)

In our algorithm, the latent variables z are defined as a

Gaussian distributions composed of mean μ and variance σ.

The encoder is updated by PPO. When the agent’s policy needs

to be updated, a certain feature variable of the observation is

sampled from the gaussian distribution of the encoder output.

We introduce DBSC algorithm to unsupervised clustering.

DBSC is chosen becasue it is a non-parametric algorithm

based on distance between connecting points and certain

distance tresholds ε. In a reinforcement learning environment,

each state is a true sample of the environment. There is no need

to consider the optimization of denoise. The distance between

each sample is defined by the encoder. Finally, the complexity

is fairly low, and the result of clustering is essentially the

same results in each run. The loss function of the encoder is
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described as follow:

LE = αvae(st −D(zt))
2 − αrlre(st) + αnumCnum (4)

where αvae is the hyper-parameter of the mean square error,

and αrl is the hyper-parameter of reinforcement learning,

Cnum is the total number of categories in current clustering

results, and αnum is the hyper-parameter. The gradient of the

MSE function is used to initialize the encoder. In the training

process, the gradient of MSE function is optional. The con-

straint term αnumCnum limits the number of clustering results.

If LE is zero, the maximum number of categories c∗num can

be calculated by αnum−αrlre(st) = Gmean(c∗num)P (c∗num).
If the category is strictly related to the policy, (c∗num) approx-

imates the number of the strategies.

Before updating the agent’s policy, we need to define the

fixed sampling probability for each category because the result

of DBSC has no label information and the number of clusters

is changing. To update the encoder and agent, we define a

sampling and updating rule to ensure that the sampling rate

of high-return categories increases. First, the initial sampling

rate is equal to the ratio of total return of the category to

the total return of the sampling batch. But this initial sam-

pling rate is not greedy enough to eliminate the sub-optimal

categories with expected return greater than zero. Second,

we propose the counter-category factor to eliminate the sub-

optimal categories. If the maximum return of a category is

lower than mean return of another, the category is a dominated

category because increasing probability of sampling another

category will increase the total expected return. Therefore, we

set the value of the dominated category to zero by dominated

parameter λi.

λi =

{
0 min(Gmax(ci)−Gmean(c−i)) < 0
1 min(Gmax(ci)−Gmean(c−i)) ≥ 0

(5)

The c−i is any other categories except i. The difference

between current probability of category and fixed sampling

probability can be described as,

G+(ci) = λiG
mean(ci)− P (ci)

∑
i

λiG
mean(ci)) (6)

where P (ci) is the current probability of the agent reaching the

states in the category i. To prevent the zero value from being

denominator, multiply both sides of the equation by the sum

of the category values with dominated factor. The maximum

value of category and the G+ are back-propagated to the state

s of the previous layer with γ as,

G(s) = R(s, a, s′) + γG+(s′)
Gm(s) = R(s, a, s′) + γGmax(s′) (7)

where Gm is temporary maximum return of the state. The

temporary maximum return is used to prevent previous state

from being eliminated. To ensure convergence, we introduce

the WoLF mechanism to reduce the rotation force in self-play.

The gradient for updating agent’s policy can be described as,

g =
T∑

t=0

max(αG+(st), G
+(st))∇θπ log π(at|st) (8)

We train agent with an actor-critic method. The critic

f c(st, θ
c) minimizes the loss Lt(θ

c) = (G+(st)−f c(st, θ
c))2

and reduces the variance during policy updates.

IV. EXPERIMENT ANALYSIS

In this section, we apply the algorithm to the matrix-game,

multi-step game, and continuous game. The payoff matrix in

multi-step games is shown in the Table I. Column elements

represent the reward when the agent is at this location, the first

number in the element represents the case where both agents

are at the same location, and the second number represents

the case where the agents are not at the same location. The

observation is the agent’s own coordinates. In grid world, the

agent can choose up, down, left, right, and stop. In continuous

world, the agent can adjust the angle and speed. If the agent

tries to move out of the map, the action will be ignored. There

are 16 possible reward locations in the continuous problem,

and 5 possible rewards in the grid world. To show the effect of

iterative elimination, we design experiments with 8 dominated

location that could not be completely eliminated due to sam-

pling probability setting. The agents receive rewards at the end

of the game. The reason for choosing this environment is that

their Nash equilibrium solutions and the number of strategies

can be accurately obtained.

We compare our algorithm with EMA-QL, PGA-APP,

GIGA-WoLF and WPL, which also work well in the multi-

agent environment. We use the same hyper-parameters for all

algorithms. In matrix-game, we set the learning rate η = 0.01,

future reward discount factor γ = 0.9, the policy learning rate

ηπ = η
100+step/2000 , the wining policy learning rate ηw = ηπ ,

and the losing policy learning rate ηl = 2ηw. The agent and

cluster’s PPO clip ratio chooses ε = 0.1. The cluster’s hyper-

parameters are set to αnum = 1e − 4,αrl = 1,αvae = 1e − 2.

The neural network has a hidden layer of 18 nodes, the cluster

learning rate and policy learning rate are η = 10−4. Weights

are initialized with the Xavier initializer, and optimized with

the RMSprop optimizer. Although the MML-WoLF update

requires multiple samples, the number of interactions with

environment are the same as other algorithms.

Fig. 2 demonstrates the average cumulative error between

the probability of the strategy and the exact Nash equilibrium

solution. The result is calculated from the average value of

three data with the best performance. Each cumulative error

is accumulated by all the agent’s error. For each method, we

plot the average cumulative statistic error of 1000 samples. The

results show that MML-WoLF is superior to the GIGA-WoLF,

EMA-QL and WPL in all scenarios. If there is a dominated

strategy which needs to be iteratively eliminated in matrix

game, EMA-QL will hardly converge to Nash equilibrium

because EMA-QL increases the probability of any other ac-

tions that also include the dominated action. WPL algorithm

is susceptible to exploration of the opponent’s policy and

eventually converges to the wrong solution. The WoLF-PHC

and GIGA-WoLF are able to converge to equilibrium strategy

in Chasing Game, but the approximate error of probability
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TABLE. I. EXAMPLE OF MULTI-STEP PAYOFF MATRIX

Name Player1 reward Player2 reward

Chasing Game
[

1, 0 ... 1, 0 0, 0 ... 0, 0
] [

0, 1 ... 0, 1 0, 1 ... 0, 1
]

Cooperative Game
[

n, 0 ... 1, 0 0, 0 ... 0, 0
] [

n, 0 ... 1, 0 0, 0 ... 0, 0
]

0 25 50 75 100 125 150 175 200
Episodes (in thousands)

10-3

10-2

10-1

100

101

Na
sh

Co
nv

(a) Zero-Sum

0 25 50 75 100 125 150 175 200
Episodes (in thousands)

10-1

100

Na
sh

Co
nv

(b) Shapley’s Game

0 25 50 75 100 125 150 175 200
Episodes (in thousands)

10-2

10-1

100

Na
sh

Co
nv

(c) Chasing Game

0 2500 5000 7500 10000
Episodes (in thousands)

0

0.5

1

1.5

2

2.5

3

Na
sh

Co
nv

(d) Multi-Step Zero-Sum

0 25 50 75 100
Episodes (in thousands)

0.5

1

1.5

2

2.5

Na
sh

Co
nv

(e) Multi-Step Chasing Game

0 2500 5000 7500 10000
Episodes (in thousands)

0

0.5

1

1.5

2

2.5

3

3.5

4

Na
sh

Co
nv

(f) Multi-Step Cooperative Game

Fig. 2. The error between agent decision probability and Nash equilibrium solution in four different scenarios. The algorithms

except MML-WoLF prefer reward location near the starting position, which results in the failure of reaching a Nash equilibrium.

TABLE. II. THIEF’S STATES PROBABILITY DISTRIBUTION IN THE MULTI-STEP CHASING GAME

Location 1 2 3 4 5 6 7 8 9 Nash Error

EMA-QL 0.277 0.220 0.226 0.071 0.078 0.073 0.021 0.021 0.013 0.756
GIGA-WoLF 0.342 0.476 0.173 0.008 0 0.001 0 0 0 1.236
PGA-APP 0 0.094 0.166 0.329 0.300 0.111 0 0 0 0.645
Q-learning 0.182 0.203 0.177 0.042 0.102 0.101 0.044 0.071 0.078 0.792
WoLF-PHC 0 0.287 0.112 0.101 0.332 0.168 0 0 0 0.838
WPL 0.059 0.256 0.528 0.02 0.043 0.086 0.002 0 0.006 1.202
MML-WoLF 0.211 0.046 0.185 0.180 0.185 0.193 0 0 0 0.114

Ground truth 0.2 0 0.2 0.2 0.2 0.2 0 0 0

is greater than the MML-WoLF under the same number of

training steps.

Table II shows the thief’s states probability distribution in

the multi-step Chasing Game. At the beginning of training,

the reward locations 4 and 6 are far from the starting location.

Their sampling probability will be diluted by other reward

location. Most algorithms fail in converging to the Nash

equilibrium in such case. EMA-QL, GIGA-WoLF, WPL prefer

to stay in the reward location that is close to the start location

instead of going further to get the maximum global expected

reward. This leads to an equilibrium solution rather than

a global Nash equilibrium in zero-sum game. The MML-

WoLF considers the relationship between state probability

and the expected return. If the state probability is less than

it’s reward ratio, MML-WoLF increases its probability by

G+. The counter-categories factor makes sure the agent won’t

increase the probability of dominated strategy. Fig. 2(f) shows

the results of multi-step Cooperative Game, in which the

convergence speed of WoLF-PHC is slightly faster than that

of MML-WoLF. The main reason is the G+ of dominated

strategy in the MML-WoLF is iteratively decreased with the

reduction of both agent’s strategy.

Fig. 3 demonstrates the results of the reinforcement clus-

tering and MML-WoLF in continuous environment. Images

above show the result of reinforcement clustering without

counter-category factor. Images below are the result of MML-

WoLF. Fig. 3(a) shows the number of clustering result is

9 when the agent cannot eliminate dominated strategy. Fig.

3(h) shows the average number of the clustering results is

16 in the environment without dominated states. The initial

number of clusters is affected by the variance of the VAE

output. Both numbers of clusters are close to the number of

reward locations. Figs. 3(b) and 3(f) show the error between

Nash equilibrium and the strategy. Figs. 3(c) and 3(d) show

the distribution of states in the training process of the rein-

forcement clustering. The coordinates in the figure are not
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Fig. 3. The results of reinforcement clustering without iterative eliminated: (a) The current number of clusters of states. (b) The

error between the probability of states and Nash equilibrium solution. (c) The clustering results at initial. (d) The clustering

results after training. The results of MML-WoLF. (e) The current number of clusters of states. (f) The Error between the

probability of states and Nash equilibrium solution. (g) The clustering results at initial. (h) The clustering results after training.

related to the actual coordinates. If cluster cannot eliminate

the dominated strategy, the distribution of clustering result

is bunched together to minimize the probability of sampling

dominated strategy. With the improvement of clustering ac-

curacy, the NashConv gradually converges. If the dominated

strategy can be eliminated by agent, the clustering result is

clear as shown in Fig. 3(h). Because the MML-WoLF can

reduce the effect of exploration probability by eliminating the

single dominated states, the clustering results can significantly

and stably approximate the number of strategies.

V. CONCLUSION

In this paper, we propose MML-WoLF, a reinforcement

learning algorithm based on clustering. We define a sampling

rules and make the agent policy satisfy the sampling dis-

tribution. Then we train an unsupervised cluster to find the

optimal distribution to maximize expected return of the agent.

To reduce the effect of the dominated strategy, MML-WoLF

uses the counter-category factor to eliminate the dominated

categories. MML-WoLF significantly improves the final per-

formance and training speed over other independent multi-

agent reinforcement learning algorithms. The results of the

clustering approximate the number of the strategies.
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