
Layer-wise Top-k Gradient Sparsification for

Distributed Deep Learning

Guangyao Li

Institute of Automation, Chinese Academy of Sciences

Beijing, China

liguangyao2020@ia.ac.cn

Abstract—Distributed training is widely used in training large-

scale deep learning models, and data parallelism is one of the

dominant approaches. Data-parallel training has additional

communication overhead, which might be the bottleneck of

training system. Top-k sparsification is a successful technique to

reduce the communication volume to break the bottleneck.

However, top-k sparsification cannot be executed until

backpropagation is completed, which disables the overlap of

backpropagation computations and gradient communications,

leading to limiting the system scaling efficiency. In this paper, we

propose a new distributed optimization approach named LKGS-

SGD, which combines synchronous SGD (S-SGD) with a novel

layer-wise top-k sparsification algorithm (LKGS). The LKGS-

SGD enables the overlap of computations and communications,

and adapts to gradient exchange at layer-wise. Evaluations are

conducted by real-world applications. Experimental results show

that LKGS-SGD achieves similar convergence to dense S-SGD,

while outperforming the original S-SGD and S-SGD with top-k

sparsification.

Keywords-component; deep learning; gradient sparsification;

data parallelism

I. INTRODUCTION

Deep learning models are becoming larger which offers
significant accuracy gain, however the computility and memory
of a single GPU can no longer satisfy the requirements of
training latest large-scale models. Therefore, distributed training
that utilizing a large-scale computing system (such as GPU
clusters) for training neural network models is a common
practice[13]. Data parallelism is an extremely important strategy
in distributed training. In data-parallel training, different nodes
maintain consistent model parameters, while using different
mini-batch samples in each training iteration. After calculating
the local gradients on each node, the global gradients
accumulated across all nodes through network communication.
Finally, the global gradients will be applied for model
parameters update.

Compared with single-node training, distributed training has
additional communication overhead. After backpropagation,
model parameters or gradients need to be exchanged with other
nodes. Due to the large communication volume, the computing
node should wait for a long time for gradient exchange, which
become the main bottleneck of distributed training. In order to
break the bottleneck caused by communication, we should
reduce the communication volume of data-parallel training[2][3]
[6][7][8][14]. Gradient sparsification[1][5][10][14] is a pro-

mise approach to significantly reduce the communication
volume.

The key idea of gradient sparsification is that, in deep
learning model training, not all gradient values are of equal
importance, and usually up to 99% of the gradient values
contribute few for model convergence. In other words, only 1%
important gradient values are accumulated across all nodes to
obtain the global gradients.

Top-k sparsification[14] is a successful gradient sparsifi-
cation approach, each node transfers only the k largest (in terms
of the absolute value) of its gradient values. The convergence of
top-k sparsification has been proved in theory and
practice[1][14], however, it suffers from an issue that hinders its
application: the selection of the top-k value is based on the
gradients of entire model, so the sparsification and commun-
ication cannot start until backpropagation is completed. In many
distributed training frameworks, the gradient exchange is
executed at a layer-wise[11]. Once the gradients of a layer have
been calculated, it will be exchanged among nodes immediately,
so that the gradient communications and back-propagation
computations overlap, reducing communication overhead.
However, top-k gradient sparsification can only be performed
after backpropagation, cannot overlap the computations and
communications, which limits the system scaling efficiency. To
conquer this issue, we propose a new gradient sparsification
algorithm named layer-wise top-k gradient sparsification
(LKGS).

We implement LKGS in PyTorch and compare it to original
S-SGD and S-SGD with top-k sparsification. We evaluate it on
ResNet50[5] and VGG16[9] to verify the convergence and
efficiency. Our contributions are as follows:

• We propose a layer-wise sparsification algorithm to
enable the overlap of backpropagation computations and
gradient communications.

• We implement the proposed LKGS-SGD algorithm atop
PyTorch and MPI, which achieves improvement without
losing convergence.

II. PRELIMINARIES

A. Mini-batch SGD

In deep learning model training, the loss function is used to
measure the difference between ground truth and the output
predictions of model. The training process of deep learning

model is the process of adjusting model parameters to reduce the
loss. Stochastic gradient descent (SGD) is the most used
optimization algorithm in deep learning, and it is used in
conjunction with the backpropagation algorithm to update model
parameters.

Let m be the size of a mini-batch, wt the parameters of the
neural network model at the t-th iteration, (xi, yi) a sample and
its label in the batch, and L the loss function. Each round of
training has two stages. In forward propagation, calculating loss
by loss function L with current model parameters and samples in
mini-batch. In backpropagation, use the backpropagation
algorithm to calculate the gradients of all parameters:

𝐺𝑡(𝑤𝑡) =
1

𝑚
∑∇𝐿(𝑤𝑡 , 𝑥𝑖 , 𝑦𝑖)

𝑚

𝑖=0

(1)

and use wt+1 = wt -αGt to update the model parameters, α is the
learning rate. In single-node training, forward propagation and
backpropagation are the main time cost, so the total time of one
iteration can be approximated by tf+tb.

Algorithm 1 S-SGD with top-k sparsification

Inputs: dataset D, initialized weights w, mini-batch size m,

iterations T, learning rate 𝛼, the number of worker P, the

number of gradient values to select k.

1: Initialize 𝐺0
𝑖 = 0

2: for 𝑡 = 1 → 𝑇 do

3: Sampling a mini-batch of data 𝐷𝑡
𝑖 from D;

4: 𝐺𝑡
𝑖 = 𝐺𝑡−1

𝑖 + ∇𝐿(𝑤𝑡 , 𝐷𝑡
𝑖)

5: Select threshold thr = the kth largest value of |𝐺𝑡
𝑖|;

6: Mask = |𝐺𝑡
𝑖|> thr;

7: 𝐺𝑙𝑜𝑐𝑎𝑙
𝑖 = 𝐺𝑡

𝑖 ⊙𝑀𝑎𝑠𝑘;

8: 𝐺𝑡
𝑖 = 𝐺𝑡

𝑖 ⊙¬𝑀𝑎𝑠𝑘; // The residuals of gradients

9: 𝐺𝑔𝑙𝑜𝑏𝑎𝑙
𝑖 =TopKAllReduce(𝐺𝑙𝑜𝑐𝑎𝑙

𝑖)

10: wt+1 = wt -α𝐺𝑔𝑙𝑜𝑏𝑎𝑙
𝑖

11: end for

B. Synchronous SGD

Synchronous SGD (S-SGD) is widely used in data
parallelism. It is mainly to expand the SGD to adapt to the
distributed environment. After each node calculates its gradients
locally, it exchanges gradients with other nodes through the
AllReduce[4] operation, accumulates global gradients and
applies them to model parameters updates. The update formula
of parameters is:

𝑤𝑡+1 = 𝑤𝑡 − 𝛼∑𝐺𝑖(𝑤𝑡)

𝑃

𝑖=1

(2)

where P is the number of computing system nodes. S-SGD keeps
the model parameters consistent on different nodes, which is
equivalent to increasing the mini-batch size by P times. Since
local gradients are distributed across different nodes, gradients
exchange involves communication overhead. The total time of
one iteration can be approximated by tf+tb+tc.

In model training, the size of the local gradients and global
gradients are the same as the model trainable parameters.
Suppose the cluster has P nodes, the size of trainable parameters
is N, and the gradient exchange through Ring-AllReduce
algorithm, leading to 2N(P-1)/P communication volume. When
the model size is large, due to the limitation of bandwidth, tc far
exceeds tf+tb, computing resources are idle most of the time, the
speedup of data-parallel is extremely low, and communication
overhead becomes the bottleneck of model training. For
reducing the total training time, S-SGD usually uses
computation-communication overlap technique, as is shown in
Figure 1.

C. Top-k sparsification

Top-k sparsification is a promise approach to reduce the
communication volume[14]. The key idea is that the gradient
with a larger absolute value have a greater impact on model
convergence, so each node only transfers the k largest gradient
values (in terms of the absolute value). The rest of gradients will
be added to the local gradients in the next iteration. Global
gradients are obtained by accumulating local sparse gradients.

S-SGD with top-k sparsification has additional sparsification
overhead. It significantly reduces the communication volume,
but due to its dependence on entire gradients, cannot overlap the
backpropagation computations and gradient communications, as
is shown in Figure 1. . The total time of one iteration can be
approximated by tf+tb+tc+ts.

The pseudo-code of top-k sparsification S-SGD is shown in
Algorithm 1.

Figure 1. Comparison between thress distributed training algorithms: (a) the
basic data parallelism with computations and communication overlap (Dense

S-SGD), (b) the data parallelism with top-k sparsification, and (c) our proposed

layer-wise top-k gradient sparsification algorithm.

III. METHOD

The layer-wise top-k algorithm requires the top-k gradient
values in current layer to be selected and exchanged immediately
after calculating the gradients, but at this time the entire gradient

values of model have not been generated, and we can only know
the calculated partial model gradients. The real top-k gradients
are based on the complete gradients, so the ideal layer-wise top-
k algorithm is difficult to achieve. Our layer-wise top-k
algorithm relies on estimated number of to top-k gradients in
each neural network layer to approximately select the top-k
values, thereby avoiding the dependence on the complete
gradients. How to accurately estimate the number of top-k
gradients contained in each neural network layer is the key issue
of layer-wise top-k.

The main idea of our algorithm is to regard the distribution
of gradient values during training as a slow changing stochastic
process G(t). Specifically, the statistics of G(t), G(t+1) change
very slowly. Therefore, we can use the information of the
previous iteration to estimate the that of in this iteration and
determine the number of top-k gradient values in each network
layer immediately. We utilize a vector V = [sub_k0, sub_k1, ...,
sub_kl] (∑𝑠𝑢𝑏_𝑘𝑖 = 𝑘) to storage the number of top-k gradient
values of each neural network layer and initialize it with the
gradients size of each layer at the beginning, that is, in the first
iteration nodes exchange all gradient values. For each iteration
of training, after the gradients of layer i are calculated, its top-
sub_ki gradient values are selected and exchanged with other
nodes. And after the model backpropagation is completed, nodes
calculate the top-k threshold and update V. The communication
of the gradients exchange will overlap with the gradient
calculation of shallower model layers, thus hiding a certain
amount of communication overhead. It should be noted that
since the sparsification requires GPU computing resources, the
overall sparsification overhead will not be reduced.

We validated our claim through an experimental result from
different deep learning models. We take the sum of the absolute
values of top-k gradients as its influence on the model update
and compare the real top-k gradients and the layer-wise top-k
gradients. The average difference of two algorithm is only 0.8%,
which is extremely low. The impact of the layer-wise top-k
algorithm on model update is similar to that of the real top-k.
Compared with current top-k algorithms, our LKGS-SGD
overlaps the computations and communications, which increase
the training scaling efficiency.

The behavior of our LKGS-SGD is shown in Figure 1. , and
the pseudo-code is shown in Algorithm 2.

IV. EXPERIMENTS

A. Setup

Our experiments executed on 4 compute nodes. Each node
has an Intel Xeon Gold 5117 CPU with 32GB of RAM, and one
NVIDIA RTX2080ti GPU with 12GB global memory. The
machines are connected by a 10Gbps Ethernet interface.
Machines run 64-bit Ubuntu 18.04 with CUDA toolkit 11.2. The
deep learning framework is PyTorch at version 1.7.0. The
communication library is mpi4py, which built with MPICH
3.3.2.

We use VGG16 with 134M parameters on and ResNet50
with 24M parameters. The optimizer is SGD with learning rate
of 0.01 for VGG16, and 0.001 for ResNet50. the mini-batch size

is 64 per machine. We utilize the top-k function provided by
PyTorch.

Algorithm 2 S-SGD with layer-wise top-k sparsification

Inputs: dataset D, initialized weights w, mini-batch size m,

iterations T, learning rate 𝛼, the number of worker P, the

number of gradients to select k, the number of layer l.

1: Initialize 𝐺0
𝑖 , V

2: for 𝑡 = 1 → 𝑇 do

3: Sampling a mini-batch of data 𝐷𝑡
𝑖 from D;

4: Feed-forward computation;

5: for j = l → 1 do

6: 𝐺𝑡
𝑖,𝑗
= 𝐺𝑡−1

𝑖,𝑗
+ ∇𝐿(𝑤𝑡 , 𝐷𝑡

𝑖)𝑗;

7: Select threshold thr = the sub_kj
th largest value of

|𝐺𝑡
𝑖,𝑙|;

8: Mask = |𝐺𝑡
𝑖,𝑗
|> thr;

9: 𝐺𝑙𝑜𝑐𝑎𝑙
𝑖,𝑗

= 𝐺𝑡
𝑖,𝑗
⊙𝑀𝑎𝑠𝑘;

10: 𝐺𝑡
𝑖,𝑗
= 𝐺𝑡

𝑖,𝑗
⊙¬𝑀𝑎𝑠𝑘; // The residuals of gradients

11: 𝐺𝑔𝑙𝑜𝑏𝑎𝑙
𝑖,𝑗

= AllReduce(𝐺𝑡
𝑖,𝑗

);

12: end for

13: update V

14: wt+1 = wt - α𝐺𝑔𝑙𝑜𝑏𝑎𝑙
𝑖

15: end for

B. Convergence

In much previous work[1][12][14], the convergence of top-k
S-SGD has been verified, so we do not include the convergence
experiments of the top-k algorithm.

We use 1%, 5%, and 10% densities to analyze the
convergence of our algorithm. The models are training on cifar-
10 dataset. Density is defined as 𝑘/N.

The convergence of VGG16 and ResNet50 is shown in
Figure 2. The results show that the convergence curve of the
LKGS-SGD is almost the same as that of the basic data
parallelism at different densities, even for ResNet50, LKGS-
SGD converges slightly better than the baseline.

Figure 2. The convergence performance of ResNet50 and VGG16 with 1%,

5% and 10% density. Left: the result of ResNet50. Right: the result of VGG16.

C. Time performance analysis

We also use 1%, 5% and 10% density to analyze the
performance of the LKGS-SGD. The ResNet50 is trained on
cifar-10 dataset and VGG16 is trained on Caltech101 dataset.

We break down the time of an iteration into three parts:
forward and backward pass time, sparsification time, and
communication time. Since LKGS-SGD overlap the
computations and communications, its communication time
represents the time between the end of backpropagation and that
of gradient exchange. The result is shown in the Figure 3.

Due to the high communication volume of dense AllReduce,
the communication time is much longer than the computation
time, which becomes the bottleneck of training, and the total
time of an iteration is longer than that of other training
algorithms. Our proposed algorithm performs similarly on two
models, and the communication time is significantly lower than
the top-k sparsification, For ResNet50, the communication time
of our algorithm is reduced by 67% on average, and the
communication overhead is almost completely hidden at the
density 1%. For VGG16, communication time is reduced by 69%
on average. However, compared with the top-k sparsification,
the total time of an iteration is not significantly reduced, only
reduced by 3.5%, and even at 1% density, the total time increases
slightly. The reason is that the top-k function is called at each
layer leads to a significant increase in the sparsification overhead.
Therefore, it is worthy to explore more efficient selection
algorithms for gradient sparsification.

Figure 3. Time breakdown of computation, sparsification and communication.

“Compu.” indicates forward and backward computation time, “Spar.” indicates

sparsification time, and “Comm.” indicates the gradient communication time.
0.01, 0.05 and 0.1 indicates the density of 1%, 5% and 10%. Above: the result

of ResNet50. Below: the result of VGG16.

V. CONCLUSION

In this paper, we propose a novel layer-wise top-k
sparsification algorithm to speedup gradient exchange. Our
proposed algorithm enables the overlap of backpropagation
computations and gradient communications by pre-estimate the
number of top-k values at each neural network layer. Compared
with top-k sparsification, it offers a higher scalability for data
parallelism. The experimental results on real-world applications
show that our algorithm reduces communication time without
impacting the convergence. In future work, we would like to
further investigate more efficient algorithms to reduce the
sparsification overhead.

REFERENCES

[1] A. F. Aji and K. Heafield, “Sparse communication for distributed gradient
descent,” in The 2017 Conference on Empirical Methods in Natural
Language Processing, 2017, pp. 440–445.

[2] C.-Y. Chen, J. Choi, D. Brand, A. Agrawal, W. Zhang, and K.
Gopalakrishnan, “Adacomp: Adaptive residual gradient compression for
data parallel distributed training,” in The 32nd AAAI Conference on
Artificial Intelligence, 2018.

[3] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat, and
C. Renggli, “The convergence of sparsified gradient methods,” in
Advances in Neural Information Processing Systems, 2018, pp. 5973–
5983.

[4] E. Chan, M. Heimlich, A. Purkayastha, and R. Van De Geijn, "Collective
communication: theory, practice, and experience," Concurrency and
Computation: Practice and Experience, vol. 19, no. 13, pp. 1749-1783,
2007.

[5] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image
recognition," in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

[6] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low precision
weights and activations,” The Journal of Machine Learning Research, vol.
18, no. 1, pp. 6869–6898, 2017.

[7] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“SIGNSGD: Compressed optimisation for non-convex problems,” in
International Conference on Machine Learning, 2018, pp. 559–568.

[8] J. Wu, W. Huang, J. Huang, and T. Zhang, "Error compensated quantized
SGD and its applications to large-scale distributed optimization," in
International Conference on Machine Learning, 2018, pp. 5325-5333.

[9] K. Simonyan and A. Zisserman, "Very deep convolutional networks for
large-scale image recognition," arXiv preprint arXiv:1409.1556, 2014.

[10] P. Jiang and G. Agrawal, “A linear speedup analysis of distributed deep
learning with sparse and quantized communication,” in Advances in
Neural Information Processing Systems, 2018, pp. 2530–2541.

[11] A. Sergeev and M. Del Balso, "Horovod: fast and easy distributed deep
learning in TensorFlow," arXiv preprint arXiv:1802.05799, 2018.

[12] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified SGD with
memory,” in Advances in Neural Information Processing Systems, 2018,
pp. 4452–4463.

[13] T. Ben-Nun and T. Hoefler, "Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis," ACM Computing Surveys
(CSUR), vol. 52, no. 4, pp. 1-43, 2019.

[14] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” in International Conference on Learning Representations, 2018.

