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Abstract—Distributed training is widely used in training large-

scale deep learning models, and data parallelism is one of the 

dominant approaches. Data-parallel training has additional 

communication overhead, which might be the bottleneck of 

training system. Top-k sparsification is a successful technique to 

reduce the communication volume to break the bottleneck. 

However, top-k sparsification cannot be executed until 

backpropagation is completed, which disables the overlap of 

backpropagation computations and gradient communications, 

leading to limiting the system scaling efficiency. In this paper, we 

propose a new distributed optimization approach named LKGS-

SGD, which combines synchronous SGD (S-SGD) with a novel 

layer-wise top-k sparsification algorithm (LKGS). The LKGS-

SGD enables the overlap of computations and communications, 

and adapts to gradient exchange at layer-wise. Evaluations are 

conducted by real-world applications. Experimental results show 

that LKGS-SGD achieves similar convergence to dense S-SGD, 

while outperforming the original S-SGD and S-SGD with top-k 

sparsification. 
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I.  INTRODUCTION 

Deep learning models are becoming larger which offers 
significant accuracy gain, however the computility and memory 
of a single GPU can no longer satisfy the requirements of 
training latest large-scale models. Therefore, distributed training 
that utilizing a large-scale computing system (such as GPU 
clusters) for training neural network models is a common 
practice[13]. Data parallelism is an extremely important strategy 
in distributed training. In data-parallel training, different nodes 
maintain consistent model parameters, while using different 
mini-batch samples in each training iteration. After calculating 
the local gradients on each node, the global gradients 
accumulated across all nodes through network communication. 
Finally, the global gradients will be applied for model 
parameters update. 

Compared with single-node training, distributed training has 
additional communication overhead. After backpropagation, 
model parameters or gradients need to be exchanged with other 
nodes. Due to the large communication volume, the computing 
node should wait for a long time for gradient exchange, which 
become the main bottleneck of distributed training. In order to 
break the bottleneck caused by communication, we should 
reduce the communication volume of data-parallel training[2][3] 
[6][7][8][14]. Gradient sparsification[1][5][10][14] is a pro-

mise approach to significantly reduce the communication 
volume. 

The key idea of gradient sparsification is that, in deep 
learning model training, not all gradient values are of equal 
importance, and usually up to 99% of the gradient values 
contribute few for model convergence. In other words, only 1% 
important gradient values are accumulated across all nodes to 
obtain the global gradients. 

Top-k sparsification[14] is a successful gradient sparsifi-
cation approach, each node transfers only the k largest (in terms 
of the absolute value) of its gradient values. The convergence of 
top-k sparsification has been proved in theory and 
practice[1][14], however, it suffers from an issue that hinders its 
application: the selection of the top-k value is based on the 
gradients of entire model, so the sparsification and commun-
ication cannot start until backpropagation is completed. In many 
distributed training frameworks, the gradient exchange is 
executed at a layer-wise[11]. Once the gradients of a layer have 
been calculated, it will be exchanged among nodes immediately, 
so that the gradient communications and back-propagation 
computations overlap, reducing communication overhead. 
However, top-k gradient sparsification can only be performed 
after backpropagation, cannot overlap the computations and 
communications, which limits the system scaling efficiency. To 
conquer this issue, we propose a new gradient sparsification 
algorithm named layer-wise top-k gradient sparsification 
(LKGS). 

We implement LKGS in PyTorch and compare it to original 
S-SGD and S-SGD with top-k sparsification. We evaluate it on 
ResNet50[5] and VGG16[9] to verify the convergence and 
efficiency. Our contributions are as follows: 

• We propose a layer-wise sparsification algorithm to 
enable the overlap of backpropagation computations and 
gradient communications. 

• We implement the proposed LKGS-SGD algorithm atop 
PyTorch and MPI, which achieves improvement without 
losing convergence. 

II. PRELIMINARIES 

A. Mini-batch SGD 

In deep learning model training, the loss function is used to 
measure the difference between ground truth and the output 
predictions of model. The training process of deep learning 



model is the process of adjusting model parameters to reduce the 
loss. Stochastic gradient descent (SGD) is the most used 
optimization algorithm in deep learning, and it is used in 
conjunction with the backpropagation algorithm to update model 
parameters. 

Let m be the size of a mini-batch, wt the parameters of the 
neural network model at the t-th iteration, (xi, yi) a sample and 
its label in the batch, and L the loss function. Each round of 
training has two stages. In forward propagation, calculating loss 
by loss function L with current model parameters and samples in 
mini-batch. In backpropagation, use the backpropagation 
algorithm to calculate the gradients of all parameters: 

𝐺𝑡(𝑤𝑡) =
1

𝑚
∑∇𝐿(𝑤𝑡 , 𝑥𝑖 , 𝑦𝑖)

𝑚

𝑖=0

(1) 

and use wt+1 = wt -αGt to update the model parameters, α is the 
learning rate. In single-node training, forward propagation and 
backpropagation are the main time cost, so the total time of one 
iteration can be approximated by tf+tb. 

Algorithm 1 S-SGD with top-k sparsification 

Inputs: dataset D, initialized weights w, mini-batch size m, 

iterations T, learning rate 𝛼, the number of worker P, the 

number of gradient values to select k. 

1: Initialize 𝐺0
𝑖 = 0 

2: for 𝑡 = 1 → 𝑇 do 

3:   Sampling a mini-batch of data 𝐷𝑡
𝑖  from  D; 

4:   𝐺𝑡
𝑖 = 𝐺𝑡−1

𝑖 + ∇𝐿(𝑤𝑡 , 𝐷𝑡
𝑖) 

5:   Select threshold thr = the kth largest value of |𝐺𝑡
𝑖|; 

6:   Mask = |𝐺𝑡
𝑖|> thr; 

7:   𝐺𝑙𝑜𝑐𝑎𝑙
𝑖 = 𝐺𝑡

𝑖 ⊙𝑀𝑎𝑠𝑘; 

8:   𝐺𝑡
𝑖 = 𝐺𝑡

𝑖 ⊙¬𝑀𝑎𝑠𝑘; // The residuals of gradients 

9:   𝐺𝑔𝑙𝑜𝑏𝑎𝑙
𝑖 =TopKAllReduce(𝐺𝑙𝑜𝑐𝑎𝑙

𝑖 ) 

10:    wt+1 = wt -α𝐺𝑔𝑙𝑜𝑏𝑎𝑙
𝑖  

11: end for 

 

B. Synchronous SGD 

Synchronous SGD (S-SGD) is widely used in data 
parallelism. It is mainly to expand the SGD to adapt to the 
distributed environment. After each node calculates its gradients 
locally, it exchanges gradients with other nodes through the 
AllReduce[4] operation, accumulates global gradients and 
applies them to model parameters updates. The update formula 
of parameters is:  

𝑤𝑡+1 = 𝑤𝑡 − 𝛼∑𝐺𝑖(𝑤𝑡)

𝑃

𝑖=1

(2) 

where P is the number of computing system nodes. S-SGD keeps 
the model parameters consistent on different nodes, which is 
equivalent to increasing the mini-batch size by P times. Since 
local gradients are distributed across different nodes, gradients 
exchange involves communication overhead. The total time of 
one iteration can be approximated by tf+tb+tc. 

In model training, the size of the local gradients and global 
gradients are the same as the model trainable parameters. 
Suppose the cluster has P nodes, the size of trainable parameters 
is N, and the gradient exchange through Ring-AllReduce 
algorithm, leading to 2N(P-1)/P communication volume. When 
the model size is large, due to the limitation of bandwidth, tc far 
exceeds tf+tb, computing resources are idle most of the time, the 
speedup of data-parallel is extremely low, and communication 
overhead becomes the bottleneck of model training. For 
reducing the total training time, S-SGD usually uses 
computation-communication overlap technique, as is shown in 
Figure 1.  

C. Top-k sparsification 

Top-k sparsification is a promise approach to reduce the 
communication volume[14]. The key idea is that the gradient 
with a larger absolute value have a greater impact on model 
convergence, so each node only transfers the k largest gradient 
values (in terms of the absolute value). The rest of gradients will 
be added to the local gradients in the next iteration. Global 
gradients are obtained by accumulating local sparse gradients.  

S-SGD with top-k sparsification has additional sparsification 
overhead. It significantly reduces the communication volume, 
but due to its dependence on entire gradients, cannot overlap the 
backpropagation computations and gradient communications, as 
is shown in Figure 1. . The total time of one iteration can be 
approximated by tf+tb+tc+ts. 

The pseudo-code of top-k sparsification S-SGD is shown in 
Algorithm 1. 

 

 

 

 

Figure 1.  Comparison between thress distributed training algorithms: (a) the 
basic data parallelism with computations and communication overlap (Dense 

S-SGD), (b) the data parallelism with top-k sparsification, and (c) our proposed 

layer-wise top-k gradient sparsification algorithm. 

III. METHOD 

The layer-wise top-k algorithm requires the top-k gradient 
values in current layer to be selected and exchanged immediately 
after calculating the gradients, but at this time the entire gradient 



values of model have not been generated, and we can only know 
the calculated partial model gradients. The real top-k gradients 
are based on the complete gradients, so the ideal layer-wise top-
k algorithm is difficult to achieve. Our layer-wise top-k 
algorithm relies on estimated number of to top-k gradients in 
each neural network layer to approximately select the top-k 
values, thereby avoiding the dependence on the complete 
gradients. How to accurately estimate the number of top-k 
gradients contained in each neural network layer is the key issue 
of layer-wise top-k. 

The main idea of our algorithm is to regard the distribution 
of gradient values during training as a slow changing stochastic 
process G(t). Specifically, the statistics of G(t), G(t+1) change 
very slowly. Therefore, we can use the information of the 
previous iteration to estimate the that of in this iteration and 
determine the number of top-k gradient values in each network 
layer immediately. We utilize a vector V = [sub_k0, sub_k1, ..., 
sub_kl] (∑𝑠𝑢𝑏_𝑘𝑖 = 𝑘) to storage the number of top-k gradient 
values of each neural network layer and initialize it with the 
gradients size of each layer at the beginning, that is, in the first 
iteration nodes exchange all gradient values. For each iteration 
of training, after the gradients of layer i are calculated, its top-
sub_ki gradient values are selected and exchanged with other 
nodes. And after the model backpropagation is completed, nodes 
calculate the top-k threshold and update V. The communication 
of the gradients exchange will overlap with the gradient 
calculation of shallower model layers, thus hiding a certain 
amount of communication overhead. It should be noted that 
since the sparsification requires GPU computing resources, the 
overall sparsification overhead will not be reduced. 

We validated our claim through an experimental result from 
different deep learning models. We take the sum of the absolute 
values of top-k gradients as its influence on the model update 
and compare the real top-k gradients and the layer-wise top-k 
gradients. The average difference of two algorithm is only 0.8%, 
which is extremely low. The impact of the layer-wise top-k 
algorithm on model update is similar to that of the real top-k. 
Compared with current top-k algorithms, our LKGS-SGD 
overlaps the computations and communications, which increase 
the training scaling efficiency. 

The behavior of our LKGS-SGD is shown in Figure 1. , and 
the pseudo-code is shown in Algorithm 2. 

IV. EXPERIMENTS 

A. Setup 

Our experiments executed on 4 compute nodes. Each node 
has an Intel Xeon Gold 5117 CPU with 32GB of RAM, and one 
NVIDIA RTX2080ti GPU with 12GB global memory. The 
machines are connected by a 10Gbps Ethernet interface. 
Machines run 64-bit Ubuntu 18.04 with CUDA toolkit 11.2. The 
deep learning framework is PyTorch at version 1.7.0. The 
communication library is mpi4py, which built with MPICH 
3.3.2.  

We use VGG16 with 134M parameters on and ResNet50 
with 24M parameters. The optimizer is SGD with learning rate 
of 0.01 for VGG16, and 0.001 for ResNet50. the mini-batch size 

is 64 per machine. We utilize the top-k function provided by 
PyTorch. 

Algorithm 2 S-SGD with layer-wise top-k sparsification 

Inputs: dataset D, initialized weights w, mini-batch size m, 

iterations T, learning rate 𝛼, the number of worker P, the 

number of gradients to select k, the number of layer l. 

1: Initialize 𝐺0
𝑖 , V 

2: for 𝑡 = 1 → 𝑇 do 

3:   Sampling a mini-batch of data 𝐷𝑡
𝑖  from D; 

4:   Feed-forward computation; 

5:     for j = l → 1 do 

6:       𝐺𝑡
𝑖,𝑗
= 𝐺𝑡−1

𝑖,𝑗
+ ∇𝐿(𝑤𝑡 , 𝐷𝑡

𝑖)𝑗; 

7:       Select threshold thr = the sub_kj
th largest value of 

|𝐺𝑡
𝑖,𝑙|; 

8:       Mask = |𝐺𝑡
𝑖,𝑗
|> thr; 

9:       𝐺𝑙𝑜𝑐𝑎𝑙
𝑖,𝑗

= 𝐺𝑡
𝑖,𝑗
⊙𝑀𝑎𝑠𝑘; 

10:       𝐺𝑡
𝑖,𝑗
= 𝐺𝑡

𝑖,𝑗
⊙¬𝑀𝑎𝑠𝑘; // The residuals of gradients 

11:       𝐺𝑔𝑙𝑜𝑏𝑎𝑙
𝑖,𝑗

= AllReduce(𝐺𝑡
𝑖,𝑗

); 

12:     end for 

13:   update V 

14:   wt+1 = wt - α𝐺𝑔𝑙𝑜𝑏𝑎𝑙
𝑖  

15: end for 

 

B. Convergence 

In much previous work[1][12][14], the convergence of top-k 
S-SGD has been verified, so we do not include the convergence 
experiments of the top-k algorithm. 

We use 1%, 5%, and 10% densities to analyze the 
convergence of our algorithm. The models are training on cifar-
10 dataset. Density is defined as 𝑘/N. 

The convergence of VGG16 and ResNet50 is shown in 
Figure 2.  The results show that the convergence curve of the 
LKGS-SGD is almost the same as that of the basic data 
parallelism at different densities, even for ResNet50, LKGS-
SGD converges slightly better than the baseline. 

 

Figure 2.  The convergence performance of ResNet50 and VGG16 with 1%, 

5% and 10% density. Left: the result of ResNet50. Right: the result of VGG16. 



C. Time performance analysis 

We also use 1%, 5% and 10% density to analyze the 
performance of the LKGS-SGD. The ResNet50 is trained on 
cifar-10 dataset and VGG16 is trained on Caltech101 dataset. 

We break down the time of an iteration into three parts: 
forward and backward pass time, sparsification time, and 
communication time. Since LKGS-SGD overlap the 
computations and communications, its communication time 
represents the time between the end of backpropagation and that 
of gradient exchange. The result is shown in the Figure 3.  

Due to the high communication volume of dense AllReduce, 
the communication time is much longer than the computation 
time, which becomes the bottleneck of training, and the total 
time of an iteration is longer than that of other training 
algorithms. Our proposed algorithm performs similarly on two 
models, and the communication time is significantly lower than 
the top-k sparsification, For ResNet50, the communication time 
of our algorithm is reduced by 67% on average, and the 
communication overhead is almost completely hidden at the 
density 1%. For VGG16, communication time is reduced by 69% 
on average. However, compared with the top-k sparsification, 
the total time of an iteration is not significantly reduced, only 
reduced by 3.5%, and even at 1% density, the total time increases 
slightly. The reason is that the top-k function is called at each 
layer leads to a significant increase in the sparsification overhead. 
Therefore, it is worthy to explore more efficient selection 
algorithms for gradient sparsification. 

 

 

Figure 3.  Time breakdown of computation, sparsification and communication. 

“Compu.” indicates forward and backward computation time, “Spar.” indicates 

sparsification time, and “Comm.” indicates the gradient communication time. 
0.01, 0.05 and 0.1 indicates the density of 1%, 5% and 10%. Above: the result 

of ResNet50. Below: the result of VGG16. 

V. CONCLUSION 

In this paper, we propose a novel layer-wise top-k 
sparsification algorithm to speedup gradient exchange. Our 
proposed algorithm enables the overlap of backpropagation 
computations and gradient communications by pre-estimate the 
number of top-k values at each neural network layer. Compared 
with top-k sparsification, it offers a higher scalability for data 
parallelism. The experimental results on real-world applications 
show that our algorithm reduces communication time without 
impacting the convergence. In future work, we would like to 
further investigate more efficient algorithms to reduce the 
sparsification overhead. 
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