
* Corresponding author

DenseStream: A Novel Data Representation for

Gradient Sparsification in Distributed Synchronous

SGD Algorithms

Guangyao Li

Institute of Automation, Chinese Academy of Sciences

Beijing, China

liguangyao2020@ia.ac.cn

Yongyue Chao

Institute of Automation, Chinese Academy of Sciences

Beijing, China

chaoyongyue2020@ia.ac.cn

Mingxue Liao*

Institute of Automation, Chinese Academy of Sciences

Beijing, China

mingxue.liao@ia.ac.cn

Pin Lv

Institute of Automation, Chinese Academy of Sciences

Beijing, China

pin.lv@ia.ac.cn

Abstract—Distributed training is widely used in training

large-scale deep learning model, and data parallelism is one of

the dominant algorithms. Data-parallel training has additional

communication overhead, which greatly affects the training at

low bandwidth. Gradient sparsification is a promising

technique to reduce the communication volume, which keeps a

small number of important gradient values and sets the rest to

zero. However, the communication of sparsified gradients

suffer from scalability issues for (1) the communication volume

of the AllGather algorithm, which is commonly used to

accumulate sparse gradients, increases linearly with the

number of nodes, and (2) sparse local gradients may return

dense due to gradient accumulation. These issues hinder the

application of gradient sparsification. We observe that sparse

gradient value distribution has great locality, and therefore we

propose DenseStream, a novel data representation for sparse

gradients in data-parallel training to alleviate the issues.

DenseStream integrates an efficient sparse AllReduce

algorithm with the synchronous SGD (S-SGD). Evaluations are

conducted by real-world applications. Experimental results

show that DenseStream achieves better compression ratio at

higher densities and can represent sparse vectors with a wider

range of densities. Compared with dense AllReduce, our

method is more scalable and achieves 3.1-12.1x improvement.

Keywords—deep learning, AllReduce, gradient sparsifica-

tion, data representation

I. INTRODUCTION

Training deep learning models is quickly becoming a
major workload on large-scale computing systems. The size
of the models and the computation required for training
increases significantly. While AlexNet [15] with millions of
parameters requires days on a GPU for training, newer models
such as GPT-3 [3] which parameters up to 100 billion, take
more than hundreds of years to train on a single GPU.
Utilizing a cluster of GPU resources for training large-size
models is a common practice. There are many parallelization
approaches for accelerating training on multiple GPUs [24],
and data parallelism is one of the dominant techniques. In
data-parallel training, computing nodes maintains consistent
model weights. After computing local gradients on each node
with different mini-batch samples, the global gradients are
accumulated across all nodes through network
communication. Model copies are kept in sync by applying
global gradients to update the model on all nodes.

Compared with the training process on a single node, data-
parallel training is broken down into two phases, calculating
the local gradients on each node in parallel and exchanging
the parameters or gradients of the model. Data-parallel
training brings additional network communication overhead.
The training speedup ratio depends on communication-to-
computation ratio. If the time of communication is much less
than computation, the nodes execute computing tasks without
break, computing resources are fully utilized, and the scaling
efficiency is close to 1, which is our expectation. On the
contrary, when communication takes much longer than
computation time, nodes have to wait for communication to
complete before starting the next iteration. Computing
resources are idle for a long time, and the scaling efficiency
is extremely low. Multi-node training may even be slower
than single-node. Therefore, to improve the performance of
data parallel training, we can either increase the workload of
nodes to increase computation time or reduce the
communication time in each iteration.

It is difficult to change the neural network model for
training, so the way to increase the computation time is to
increase the mini-batch size [7][18][25]. However, the GPU
memory is limited, and the mini-batch size has an upper
bound, so the computation time also has an upper bound.
Reducing communication time is more effective. The
communication overhead depends on the communication
volume and network bandwidth. In classical data parallelism,
nodes exchange their gradients or model parameters by
AllReduce [8] operation. In model training of deep neural
networks, the communication volume is usually very large,
and the network bandwidth is limited for some institutions or
individuals. Meanwhile, network bandwidth is growing much
slower than the model size. Network communication has
become the main bottleneck of training.

Therefore, reducing communication volume is the key
way to conquer the communication challenge. Very recently,
many techniques like gradient sparsification, quantificaiton
and compression methods [4][6][11][12][13][26] have been
proposed to reduce the volume of network communication.
Among these, gradient sparsification [1][19][26] is the
promising technique. The main idea is that not all gradient
values are equally important, and usually up to 99% values
contribute few in each step for model convergence. In other
word, there is no significant loss of accuracy with 1%
important gradient values preserved, while others set to zero.

The local gradients can be sparsified significantly to just
about 1% density (99% gradient values are zeros) with
gradient sparsification techniques. This benefit the process of
gradient accumulation in distributed training since sparse
vectors can be highly compressed which reduce the
communication volume to break the communication
bottleneck.

However, sparse communication still suffers from
scalability issues. Specifically, while local gradients are
constructed into a very sparse vector with gradient
sparsification at each node, the sparsity of global gradients is
not guaranteed. If the indexes of non-zero gradient values
between nodes do not overlap, as the number of nodes in the
cluster increases, the global gradients will quickly become
dense, which is called the fill-in problem, and the AllGather-
base sparse reduction [5][17][22] makes the issue worse, the
communication bottleneck will reappear. And the commonly
used key-value data representation requires additional storage
of index, when the density exceeds 50%, the additional index
storage overhead will cause the overall overhead to exceed
the original dense representation (assuming the index and
value storage overhead is the same). The data representation
might be changed in training. These issues should be
considered in application of sparse communication.

In this paper, we focus on the data representation and
explore how to represent sparse gradient data more efficiently
in deep learning. We propose a sparse data representation
algorithm called DenseStream to alleviate the fill-in problem
and provide consistent format at arbitrary densities. We
implement the DenseStreamAllreduce (DSA) which provides
more efficient sparse gradients aggregation from distributed
nodes. Then we integrate our proposed DSA to S-SGD under
PyTorch and MPI. The DSA S-SGD achieves 3.1-12.1x
speedup than dense S-SGD. Compared to high-performance
sparse communication library SparCML [5], DSA S-SGD is
generally around 1.1 times faster on evaluated experiments.
Our contributions are as follows:

• We observed that the top-k gradient values clustered
in some regions during neural network training.

• We propose an efficient data representation of sparse
gradients for neural network training, called
DenseStream, and a corresponding sparse AllReduce
algorithm, to reduce the communication volume and
alleviate the fill-in problem in data-parallel training.

• DenseStream and corresponding AllReduce
algorithm achieves improved compression and
communication efficiency on the real-world
application.

We compared DenseStream with other algorithms on
VGG16 [14] and ResNet50 [9]. DenseStream showed good
performance, it has a good effect on improving the training
speed of the model. We hope that the performance of the
algorithm can be tested on a large-scale cluster in the future.

II. BACKGROUND AND MOTIVATION

A. Mini-batch SGD

Stochastic gradient descent is one of the most used
algorithms for training deep learning models. Let m be the
size of the mini-batch, wt the parameters of the neural network

model at the t-th iteration, (xi, yi) a sample and its label in the
batch, and L the loss function. Each round of training has two
stages. In the forward propagation stage, the current model
parameters and samples in the mini-batch are used to calculate
the loss through the loss function L. Then in the back
propagation stage, the gradient of each trainable parameter is
calculated by:

𝐺𝑡(𝑤𝑡) =
1

𝑚
∑ ∇𝐿(𝑤𝑡 , 𝑥𝑖 , 𝑦𝑖)

𝑚

𝑖=0

(1)

The model parameters update as wt+1 = wt -αGt, where α
is the learning rate.

B. Synchronous SGD

Synchronous SGD is widely used in data parallel strategy.
It is mainly to expand the SGD to adapt to the distributed
environment. In a distributed environment, each node
calculates its gradients locally, then the global gradients
accumulated by the local gradients are used to update the
model. The update formula of parameters is:

𝑤𝑡+1 = 𝑤𝑡 − 𝛼 ∑ 𝐺𝑖(𝑤𝑡)

𝑃

𝑖=1

(2)

where P is the number of computing system nodes. The
local gradients are located in different nodes, so that the
accumulating operation involves communication costs.

In model training, the size of local gradients and global
gradients are the same as the size of the trainable parameters
because each trainable parameter needs to be updated in each
round of training. If the cluster has a total of P nodes, the
global gradients is accumulated through Ring-AllReduce,
leading to about 2(P-1)N/P communication volume, where N
is the amount of trainable parameters of the model. In large-
model training, gradients accumulation becomes the
bottleneck due to bandwidth constraints.

C. Top-k Sparsification

Algorithm 1 S-SGD with top-k sparsification

Inputs: dataset D, initialized weights w, mini-batch size m,

iterations T, learning rate 𝛼, the number of worker P, the

number gradients to select k.

1: Initialize 𝐺0
𝑖 = 0

2: for 𝑡 = 1 → 𝑇 do

3: Sampling a mini-batch of data 𝐷𝑡
𝑖 from D;

4: 𝐺𝑡
𝑖 = 𝐺𝑡−1

𝑖 + ∇𝐿(𝑤𝑡 , 𝐷𝑡
𝑖)

5: Select threshold thr = the kth largest value of |𝐺𝑡
𝑖|;

6: Mask = |𝐺𝑡
𝑖|> thr;

7: 𝐺𝑙𝑜𝑐𝑎𝑙
𝑖 = 𝐺𝑡

𝑖 ⊙ 𝑀𝑎𝑠𝑘;

8: 𝐺𝑡
𝑖 = 𝐺𝑡

𝑖 ⊙ ¬𝑀𝑎𝑠𝑘; // The residuals of gradients

9: 𝐺𝑔𝑙𝑜𝑏𝑎𝑙
𝑖 =TopKAllReduce(𝐺𝑙𝑜𝑐𝑎𝑙

𝑖)

10: wt+1 = wt -α𝐺𝑔𝑙𝑜𝑏𝑎𝑙
𝑖

11: end for

Gradient sparsification is a key approach to reduce the

communication volume. A commonly used sparsification
algorithm is top-k sparsification [26]: each node transfers only
the k largest (in terms of the absolute value) of its gradient
values. The remaining gradients in each node that do not
participate in current accumulation will be added to the local

gradients in the next step of training. The global gradients
obtained by accumulating sparse local gradients is used for
the model update of this iteration. The convergence of top-k
S-SGD algorithm has been proved [1][26]. However,
reaching low density levels (less than 1%) requires extremely
careful tuning of hyperparameters, which introducing
instability to the training [5]. Employing higher density levels,
5-10% per node, which tends to be more robust, is a better
option. The pseudo-code of top-k sparsification S-SGD is
shown in Algorithm 1.

The fill-in is one of the major obstacles to apply the
gradient sparsification on large-scale clusters. Supposing that
the model has 10 million trainable parameters, corresponding
to 10 million gradient values, and the density is 1%, the
number of non-zero local gradient values for each node is
100,000. If there is no overlap index between the non-zero
values of local sparse gradients across nodes, the training
system with 100 computing nodes will make the global
gradient completely dense, and the communication bottleneck
appears again. Although there are overlap indexes between
local sparse gradients, as the number of nodes in the system
grows, the fill-in quickly diminish the benefits of gradient
sparsity [5].

III. METHOD

In this section, we first demonstrate our proposed data
representation for sparse gradients based on the
characteristics of the deep learning model training, and then
present the corresponding communication algorithm.

A. Data Representation

Fig. 1. The histogram of top-k gradients with 1% density.The bin width is

10000 indexes. We count the frequency of top-k gradients in it at iteration 1
and 5000. (a) and (b) are the results of ResNet50, (c) and (d) are the results

of VGG16

Our data representation method is based on our
observations that during the training process of the deep
learning model, the position distribution of the top-k gradient
values is not uniform, and peaks appear in some regions. The
top-k values are more concentrated in some local areas. For
example, in the early step of CNNs training, the top-k values
are concentrated in the shallow convolution kernel, while in
the later step they are concentrated in the deep convolution
kernel and classification layer. As is shown in Fig. 1, both
ResNet50 and VGG16 show the locality. In some regions,
nearly half of the values are the top-k value. Therefore, during

training, some dense regions appear in the sparse gradient
vectors. In these dense regions, the indexes of top-k values
are very close, or even adjacent. It is more efficient to use
dense representation instead of key-value representation in
the dense regions. However, the position and size of dense
region cannot be predicted in advance, so an additional index
and length value is required for each dense region to store the
information. Therefore, we design the data representation
method which we called DenseStream. The basic unit of the
DenseStream is a dense block, which consists of three parts:
the index for starting position of dense region, the length for
the number of elements in dense region, and the gradient
values of entire dense region. Let N be the size of the gradient
vector, and the storage cost of each gradient value is K bytes,
then the dense region is defined as:

1) There allows zero elements, but both the first and last

elements of the dense region are non-zero.

2) The number of consecutive zero elements in the dense

region does not exceed ⌈2⌈log2 N/8⌉/K⌉.
The reason for 2) is that, if the number of consecutive zero

elements exceeds ⌈2⌈log2 N/8⌉/K⌉, the dense block will be
divided into two dense blocks here, which overhead of added
index and length is less than that of consecutive zero
elements. Therefore, the number of consecutive zero
elements is not exceed ⌈2⌈log2N/8⌉/K⌉.

Assuming that the number of non-zero elements in the
vector is nnz, the storage overhead of DenseStream is:

(2 ⌈
𝑙𝑜𝑔2𝑁

8
⌉ + 𝐾) ∙ 𝑛𝑛𝑧 ≤ 𝑐𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙

≤ 2 ⌈
𝑙𝑜𝑔2𝑁

8
⌉ + 𝐾 ∙ 𝑛𝑛𝑧 (3)

When the vector is very sparse, the overhead is close to
the lower bound, which is ⌈(log2N)/8⌉∙nnz higher than the key-
value representation. As nnz << N, there will be no bottleneck,
and it is acceptable. When the vector is relatively dense, the
performance is better than key-value representation. And
when the vector is completely dense, there is only one index
and length additional overhead than the dense representation,
which can be ignored. Therefore, DenseStream is a consistent
data representation algorithm with a wider range of density
representation.

Fig. 2. Examples of dense block. Assuming that the storage cost of index,

length, and each element are 4 Bytes. X represents the top-k gradient value.
The red box is a dense block. The block 1 has no zero element, block 2 has

a zero element, block 3 has two consecutive zero elements. These are three

consecutive zero element between block 4 and block 5, so these are two

blocks.

B. Communication Algorithm

AllReduce is the most important algorithm in data-parallel
training, because global gradients are accumulated through
AllReduce. The AllReduce algorithm of sparse vector is more
complicated than that of dense vector [5]. One reason is that
the dense AllReduce algorithm does not perform well on

sparse vectors. Due to the special representation, sparse
vectors cannot directly participate in calculations, which
increases the overhead of most dense AllReduce algorithms.

Another reason is that the nnz of the result vector in sparse
AllReduce cannot be predetermined. If there is no overlap
between the sparse vectors across different nodes, the nnz of
result vector will be P∙k, where k is the nnz of sparse vector in
a node. But there is a large degree of overlap between sparse
vectors across nodes. The nnz of result vector is unpredictable.
A solution is to use the AllGather instead of AllReduce.
However, the communication volume of the AllGather
increases linearly with the number of nodes, which is
unacceptable in large-scale clusters. For this, we design and
implement a communication algorithm suitable for
DenseStream.

Our communication algorithm mainly includes three
phases: (1) balanced split, (2) scatter-reduce, (3) allgatherv.
In the balanced split phase, we balanced split the vector
dimension N into P partitions and each node is assigned a
partition to accumulate the corresponding global gradients. In
the scatter-reduce phase, each node accumulates the partial
global gradients through reduce, and then each node obtains
the global gradients of the corresponding partition. In the
allgatherv phase, each node receives the complete global
gradients through AllGatherv.

We assume bidirectional, direct point-to-point
communication between the nodes, and consider the classic
Latency-Bandwidth cost model. The cost of sending a
message of size L is α+βL, where α is the latency of a message
transmission, β is the transfer time per word, and L is the
message size in words.

1) balanced split
Balanced split should try to make the partial global

gradients accumulated by each node after scatter-reduce
phase similar in size, which is beneficial to scatter-reduce and
allgatherv phase. But we cannot predict the result of scatter-
reduce phase, our balanced split algorithm is based on current
information.

Since the non-zero values of local gradients is not evenly
distributed on the gradient vector, uniformly splitting the
space dimension into P partitions cannot make the workload
balance of each node. In an extreme case, all the non-zero
values are in region i of each node, then node i should receive
(P-1)∙k elements in scatter-reduce phase and broadcast it to
other nodes in the allgatherv phase.

The ideal balanced split allows each node to get k/P global
gradients after scatter-reduce, and each node only receives
(P-1)k/P elements. We adopt the balanced split algorithm
from [16]. Each node selects the top-k local gradient values,
then sorts them by index, splits them evenly into P partitions,
obtains the boundaries. Use AllReduce to average the
boundaries of all nodes to get the global boundaries as the
result of balanced split.

2) scatter-reduce and allgatherv
In the scatter-reduce phase, we adopt the recursive

halving technique [20]. The behavior is illustrated in Fig. 3.
In the first round, nodes with distance P/2 apart exchange
their P/2 partitions and perform a local reduction. In the
second round, nodes with distance P/4 apart exchange their
P/4 reduced partitions. Following the pattern, in the log2(P)

round, nodes with 1 distance apart exchange 1 reduced
partitions, and each node gets the partial global gradients.

Fig. 3. Recursive halving algorithm with 8 nodes.

Algorithm 2 S-SGD with DenseStream sparsification

Inputs: dataset D, initialized weights w, mini-batch size

m, iterations T, learning rate 𝛼, the number of worker P, the

number gradients to select k.

1: Initialize 𝐺0
𝑖 = 0

2: for 𝑡 = 1 → 𝑇 do

3: Sampling a mini-batch of data 𝐷𝑡
𝑖 from D;

4: 𝐺𝑡
𝑖 = 𝐺𝑡−1

𝑖 + ∇𝐿(𝑤𝑡 , 𝐷𝑡
𝑖);

5: Select threshold thr = the kth largest value of |𝐺𝑡
𝑖|;

6: Mask = |𝐺𝑡
𝑖|> thr;

7: 𝐺𝑙𝑜𝑐𝑎𝑙
𝑖 = 𝐺𝑡

𝑖 ⊙ 𝑀𝑎𝑠𝑘;

8: 𝐺𝑡
𝑖 = 𝐺𝑡

𝑖 ⊙ ¬𝑀𝑎𝑠𝑘; // The residuals of gradients

9: 𝐺𝑙𝑜𝑐𝑎𝑙
𝑖 = DenseStream(𝐺𝑙𝑜𝑐𝑎𝑙

𝑖); // Compress the local

gradients

10: 𝐺𝑔𝑙𝑜𝑏𝑎𝑙
𝑖 = DenseStreamAllReduce(𝐺𝑙𝑜𝑐𝑎𝑙

𝑖);

11: Decompress 𝐺𝑔𝑙𝑜𝑏𝑎𝑙
𝑖 ;

12: wt+1 = wt - α𝐺𝑔𝑙𝑜𝑏𝑎𝑙
𝑖

13: end for

14: procedure DenseStreamAllReduce(𝐺𝑙𝑜𝑐𝑎𝑙
𝑖)

15: local_boundaries = balanced_split(𝐺𝑙𝑜𝑐𝑎𝑙
𝑖)

16: global_boundaries = AllReduce(local_boundaries)

17: 𝐺𝑟𝑒𝑔𝑖𝑜𝑛
𝑖 = ScatterReduce(𝐺𝑙𝑜𝑐𝑎𝑙

𝑖)

18: 𝐺𝑔𝑙𝑜𝑏𝑎𝑙
𝑖 = AllGatherv(𝐺𝑟𝑒𝑔𝑖𝑜𝑛

𝑖)

19: return 𝐺𝑔𝑙𝑜𝑏𝑎𝑙
𝑖

20: end procedure

Due to the balanced split, each partition contains
approximately k/P elements. The scatter-reduce latency is:

log2(𝑃)𝛼 +
𝑃 − 1

𝑃
𝑘𝛽 ≤ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑠𝑐𝑎𝑡𝑡𝑒𝑟−𝑟𝑒𝑑𝑢𝑐𝑒

≤ log2(𝑃) 𝛼 +
log2(𝑃)

2
𝑃𝑘𝛽 (4)

There are log2(P) stages, and the latency of a message
transmission is log2(P)α. When the k indexes fully overlap,
the latency reaches lower bound, since the non-zero elements
of each partition maintain constant size k/P. The upper bound
is reached when the indexes do not overlap at all. Therefore,
the number of partitions transmitted per round is halved, but
the number of elements in a partition is doubled, and
communication volume maintains constant size P/2.

TABLE I. COMPRESSION RATIO OF DENSESTREAM TO KEY-VALUE

Model
density 1% density 5 % density 10%

epoch

1

epoch

5

epoch

50

epoch

1

epoch

5

epoch

50

epoch

1

epoch

5

epoch

50

VGG16 1.11 0.99 1.03 0.86 0.89 0.85 0.75 0.77 0.75

ResNet50 0.98 1.09 1.11 0.86 0.89 0.94 0.82 0.85 0.89

In allgatherv phase, we adopt the recursive doubling
technique. The behavior is like recursive halving technique: in
t round, nodes with distance P/2t apart exchange their 2t
partitions which contain partial global gradients.

The allgatherv latency is:

log2(𝑃)𝛼 +
𝑃 − 1

𝑃
𝑘𝛽 ≤ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑎𝑙𝑙𝑔𝑎𝑡ℎ𝑒𝑟𝑣

≤ log2(𝑃) 𝛼 + (𝑃 − 1)𝑘𝛽 (5)

The latency of a message transmission is log2(P)α. The
lower bound is reached when the indexes full overlap, each
node gets k/P elements of global gradients in corresponding
partition. And when the indexes do not overlap, each node gets
k elements in their partition. Then the latency reaches upper
bound.

The total overhead of our proposed sparse AllReduce is:

2log2(𝑃)𝛼 + 2
𝑃 − 1

𝑃
𝑘𝛽 ≤ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑡𝑜𝑡𝑎𝑙

≤ 2 log2(𝑃) 𝛼 + [(
log2(𝑃)

2
+ 1) 𝑃 − 1] 𝑘𝛽 (6)

The pseudo-code of DenseStream representation top-k

S-SGD is shown in Algorithm 2.

IV. EXPERIMENTS

We conduct our experiments to evaluate our algorithm by
real-world applications. We first evaluate the compression
efficiency of DenseStream and compare it with the key-value
representation under different densities. Then we evaluate the
efficiency of DenseStreamAllreduce (DSA) and compare it
with the communication algorithms of dense AllReduce
(Dense), top-k AllGather (TopkA) [5], Dynamic Sparse
Allreduce used in SparCML (TopkDA) [5], which are also
under different densities. After that, we compare the model
training time for one epoch among the four algorithms. Finally,
we analyze the convergence of the algorithm.

Note that, the dense AllReduce denotes a single dense
AllReduce on a message aggregated from the gradients of all
model layers. The data representation of TopkA and TopkDA
are key-value.

A. Setup

Our experiments are executed on 4 compute nodes. Each
node has an Intel Xeon Gold 5117 CPU with 32GB of RAM,
and one NVIDIA RTX2080ti GPU with 12GB global memory.
The machines are connected by a 1Gbps Ethernet interface.
Machines run 64-bit Ubuntu 18.04 with CUDA toolkit 11.2.
The deep learning framework is PyTorch at version 1.7.0. The
communication library is mpi4py, which are built with
MPICH 3.3.2.

We use VGG16 with 134M parameters and ResNet50 with
24M parameters on cifar-10 dataset. The dataset contains
50000 training samples. We use SGD optimizer with learning

rate of 0.01 for VGG16, and 0.001 for ResNet50. the mini-
batch size is 64 per machine.

We utilize the top-k function provided by PyTorch. the
DenseStream sparsification and decompression function
programmed by C++ with CUDA, which is accelerated on
GPU.

In all experiments, we fix the datatype for storing an index
or a length to an unsigned int.

B. Compression Efficiency

We use the density of 1%, 5% and 10% to sparsify local
gradients for analyzing the compression efficiency of
DenseStream. The compression ratio is defined as the ratio of
the overhead of DenseStream to that of the key-value
representation. The models are trained for 150 epochs, and
record compression ratio on each iteration. TABLE I. reports
the results. The results are the average of the compression ratio
over the entire epoch.

For VGG16, in the case of 1% density, the average
compression ratio exceeds 1.0 in epoch 1 and 50. One reason
is that the density is extremely low. There are many dense
blocks and each block is small, so the additional index and
length overhead negate the efficiency. And in the early epoch
of training, the training is not stable. We observe that as the
training progresses, the compression ratio gradually stabilizes
at 1.0.

In the case of 5% density, the average compression ratios
are consistent across training stages, the result is 0.87±0.02.
DenseStream overhead is less than that of key-value
representation. The performance is greatly improved at 10%
density. The average compression ratio is 0.75±0.03 in all
epochs. Compared with key-value representation, the
communication volume is reduced by approximately 1/4.

Surprisingly, for ResNet50, DenseStream performed best
in epoch 1 with different densities. The results show that
unlike VGG16, the top-k gradient value distribution of
ResNet50 becomes more uniform as the training progresses.
So the performance on ResNet50 is not as good as on VGG16.
The best compression ratio is achieved in epoch 1 with the
density of 10%, which is 0.82.

The compression efficiency comparison proves the
correctness of our hypothesis. During the training of the deep
learning model, the top-k gradient values show a locality. It
also shows that the sparse representation of DenseStream is
efficient. Even at extremely low density, it still has good
performance. And at high density, it performs much better
than key-value representation. When applying DenseStream,
zero elements can be replaced by non-topk gradient values,
which increase the density of local gradients and make model
training more robust without increasing storage overhead.

TABLE II. TIME (S) OF COMMUNICATION

Algorithm
VGG16 ResNet50

density 1% density 5% density 10% density 1% density 5% density 10%

Dense 7.61 1.34

TopkA 0.39 1.50 2.91 0.09 0.32 0.59

TopkDA 0.36 1.32 2.59 0.09 0.30 0.51

DSA 0.34 1.01 1.54 0.11 0.26 0.43

C. Communication Speed

Since the three sparse communication algorithms have to
sparsify the local gradients before communication and
decompress the global gradients after the communication,
there are some more steps than dense AllReduce. So we start
the measurement at the end of the model backpropagation and
finish it after generating the global gradients in a dense format.
The communication time includes the time of sparsification,
decompression and local gradient accumulation. Meanwhile,
in each iteration, the communication overhead of the
DenseStream is not fixed, so we average the communication
time of the entire epoch 10. The results are presented in
TABLE II.

The communication time of the three sparse
communication algorithms is much lower than that of dense
AllReduce because of the lower communication volume,
while the sparsification and decompression overhead are
much smaller than communication. In most of cases, our DSA
achieves higher efficiency, which is 12.18x faster than dense
AllReduce on average. For VGG16, at 1% density, the
communication time is reduced by 5% compared to TopkDA.
The efficiency improvement mainly comes from the balanced
split to balance the communication workload between nodes.
Meanwhile, the density of resulting global gradients is higher
than 1% of local gradients, leading to better compression
efficiency and reducing the communication volume in
allgatherv phase. In addition, we found that the global
gradient accumulated from top-k local gradient values has
higher locality, and the compression efficiency of
DenseStream is further improved. This is shown in the
experiments of 10% density, compared with other algorithms,
the performance of our proposed algorithm has been greatly
improved, the communication time is reduced by 43% on
average.

For ResNet50, our proposed algorithm performs slightly
worse at 1% density, because of the higher sparsification
overhead. At 10% density, the communication time is reduced
by an average of 21% compared to TopkA and TopkDA.

Overall, our proposed algorithm shows applicability and
scalability.

D. A Critical View

We break down the time of communication time into local
gradients sparsification time and the real communication time.
Then the time of an iteration has three parts: GPU computation
time, sparsification time, and communication time. The total
time cost of an iteration can be obtained by adding the GPU
computation time to the previous results, therefore we focus
on the proportion of each part in this section. The results are
shown in Fig. 4.

In dense S-SGD, the proportion of computation time is
extremely low, and the GPU is idle most of the time. Ignoring
the increase in communication latency caused by the increase
in the number of computing nodes, nearly a hundred
computing nodes can achieve the same throughput as a single
node, which is unacceptable.

The results also show a potential problem. There are high
sparsification-to-computation ratios. In the training of
ResNet50, the overhead of sparsification with 10% density
even exceeds the computation overhead, and that with 1%
density still exceeds the half computation overhead. The
VGG16 has worse performance than ResNet50, which is
caused by less computation overhead and more parameters.

Gradient sparsification technique significantly reduces the
communication volume, leading to lower communication-to-
computation ratio, and improves the performance of data
parallel training. When communication is bottleneck, the
overhead of gradient sparsification has little impact for
distributed training. However, once a higher-speed network is
used, such as 10Gig-Ethernet or InfiniBand network, the
communication time is reduced by high bandwidth, and the
proportion of sparsification time increases in an iteration.
Sparsification overhead even become the new bottleneck to
restricting the speedup ratio.

The average complexity of quickselect [10] based top-k
selection is O(n), but not GPU-friendly. The commonly
implementation of top-k selection on GPU is bitonic top-k [2],
which has the complexity of O(nlog2k), is not good enough for
large k. Therefore, the top-k sparsification overhead is
relatively large. An expensive gradient sparsification
algorithm is not properly for data parallel training, even if it
has excellent sparsification performance. Our DenseSteam
representation algorithm does not rely on top-k sparsification,
and can be fully accelerated by the GPU, leading to low
execution overhead. It can be used with other more efficient
sparsification algorithms to reduce the bottleneck caused by
sparsification overhead. Another problem with top-k
sparsification is that, in practice, to reduce the communication
time, the gradients exchange is carried out at the neural
network layer-wise [21]. The layer-wise exchange allows
computation and communication to overlap, reducing GPU
idle time. However, top-k sparsification can only be executed
after the backpropagation of the neural network is completed,
and it cannot be applied to the data parallelization of layer-
wise gradients exchange. DenseSteam does not have to
execute on the overall gradient, and can be used on any tensor,
which has better applicability.

Fig. 4. Time breakdown of computation, sparsification and communication.

“Compu.” indicates forward and backward computation time, “Spar.”

indicates sparsification time, and “Comm.” indicates the gradients
communication time. 0.01 and 0.1 indicates the density of 1% and 10%.

Above: the result of ResNet50. Below: the result of VGG16.

E. Convergence

In much previous work [1][23][26], the convergence of
top-k S-SGD has been verified. Our algorithm does not
modify the content of gradients in top-k S-SGD and has no
effect on its convergence. We only evaluate the convergence
of the VGG16 at 5% density, and the results are shown in Fig.
5. The training loss of the model is almost simultaneous with
dense S-SGD at the same epoch, and gradient sparsificatin has
only slightly impact on model convergence. But the training
time gap of each epoch between dense S-SGD and our DSA
S-SGD is huge, and DSA S-SGD can be improved by 12.18x,
compared to dense S-SGD. The total model training time also
has a large reduction.

Fig. 5. The convergence of VGG16 on 4 nodes with 5% density.

V. CONCLUSION

In this paper, we propose a novel data representation for
sparsified gradients to alleviate the fill-in problem in data-
parallel training. DenseStream enables better performance by

utilizing the locality of gradient value statistics. Compared
with key-value representation, it is more suitable for neural
network training and can achieve higher compression
efficiency and larger representation range. The corresponding
sparse AllReduce algorithm also has better performance than
the counterparts. The experimental results for data-parallel
training of real-world neural network models show that
DenseStream can provide significantly improvement. In
future work, we would like to further investigate more
efficient algorithms to reduce the overhead of sparsification,
and investigate the sparsification which can be used for other
distributed training techniques.

REFERENCES

[1] A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” in The 2017 Conference on Empirical Methods in
Natural Language Processing, 2017, pp. 440–445.

[2] A. Shanbhag, H. Pirk, and S. Madden, "Efficient top-k query
processing on massively parallel hardware," in Proceedings of the 2018
International Conference on Management of Data, 2018, pp. 1557-
1570.

[3] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, and A. Askell, "Language models
are few-shot learners," Advances in neural information processing
systems, vol. 33, pp. 1877-1901, 2020.

[4] C.-Y. Chen, J. Choi, D. Brand, A. Agrawal, W. Zhang, and K.
Gopalakrishnan, “Adacomp: Adaptive residual gradient compression
for data parallel distributed training,” in The 32nd AAAI Conference
on Artificial Intelligence, 2018.

[5] C. Renggli, S. Ashkboos, M. Aghagolzadeh, D. Alistarh, and T.
Hoefler, "SparCML: High-performance sparse communication for
machine learning," in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis,
2019, pp. 1-15.

[6] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat,
and C. Renggli, “The convergence of sparsified gradient methods,” in
Advances in Neural Information Processing Systems, 2018, pp. 5973–
5983.

[7] D. Das, S. Avancha, D. Mudigere, K. Vaidynathan, S. Sridharan, D.
Kalamkar, B. Kaul, and P. Dubey, “Distributed deep learning using
synchronous stochastic gradient descent,” arXiv preprint
arXiv:1602.06709, 2016.

[8] E. Chan, M. Heimlich, A. Purkayastha, and R. Van De Geijn,
"Collective communication: theory, practice, and experience,"
Concurrency and Computation: Practice and Experience, vol. 19, no.
13, pp. 1749-1783, 2007.

[9] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image
recognition," in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770-778.

[10] H. M. Mahmoud, R. Modarres, and R. T. Smythe, "Analysis of
quickselect: An algorithm for order statistics," RAIRO-Theoretical
Informatics and Applications, vol. 29, no. 4, pp. 255-276, 1995.

[11] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low
precision weights and activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[12] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“SIGNSGD: Compressed optimisation for non-convex problems,” in
International Conference on Machine Learning, 2018, pp. 559–568.

[13] J. Wu, W. Huang, J. Huang, and T. Zhang, "Error compensated
quantized SGD and its applications to large-scale distributed
optimization," in International Conference on Machine Learning, 2018,
pp. 5325-5333.

[14] K. Simonyan and A. Zisserman, "Very deep convolutional networks
for large-scale image recognition," arXiv preprint arXiv:1409.1556,
2014.

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification
with deep convolutional neural networks," Communications of the
ACM, vol. 60, no. 6, pp. 84-90, 2017.

[16] S. Li and T. Hoefler, "Near-optimal sparse allreduce for distributed
deep learning," in Proceedings of the 27th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming, 2022,
pp. 135-149.

[17] L. Wang, W. Wu, J. Zhang, H. Liu, G. Bosilca, M. Herlihy, and R.
Fonseca, "FFT-based gradient sparsification for the distributed training
of deep neural networks," in Proceedings of the 29th International
Symposium on High-Performance Parallel and Distributed Computing,
2020, pp. 113-124.

[18] P. Goyal, P. Dollar, R. Girshick, P. Noordhuis, L. Wesolowski, A.
Kyrola, ́A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch
SGD: training ImageNet in 1 hour,” arXiv preprint arXiv:1706.02677,
2017.

[19] P. Jiang and G. Agrawal, “A linear speedup analysis of distributed deep
learning with sparse and quantized communication,” in Advances in
Neural Information Processing Systems, 2018, pp. 2530–2541.

[20] R. Rabenseifner, "Optimization of collective reduction operations," in
International Conference on Computational Science, 2004, pp. 1-9.

[21] A. Sergeev and M. Del Balso, "Horovod: fast and easy distributed deep
learning in TensorFlow," arXiv preprint arXiv:1802.05799, 2018.

[22] S. Shi, X. Chu, K. C. Cheung, and S. See, "Understanding top-k
sparsification in distributed deep learning," arXiv preprint
arXiv:1911.08772, 2019.

[23] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified SGD with
memory,” in Advances in Neural Information Processing Systems,
2018, pp. 4452–4463.

[24] T. Ben-Nun and T. Hoefler, "Demystifying parallel and distributed
deep learning: An in-depth concurrency analysis," ACM Computing
Surveys (CSUR), vol. 52, no. 4, pp. 1-43, 2019.

[25] W. Wang and N. Srebro, "Stochastic nonconvex optimization with
large minibatches," in Algorithmic Learning Theory, 2019, pp. 857-
882.

[26] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” in International Conference on Learning Representations,
2018.

