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Abstract—Distributed training is widely used in training 

large-scale deep learning model, and data parallelism is one of 

the dominant algorithms. Data-parallel training has additional 

communication overhead, which greatly affects the training at 

low bandwidth. Gradient sparsification is a promising 

technique to reduce the communication volume, which keeps a 

small number of important gradient values and sets the rest to 

zero. However, the communication of sparsified gradients 

suffer from scalability issues for (1) the communication volume 

of the AllGather algorithm, which is commonly used to 

accumulate sparse gradients, increases linearly with the 

number of nodes, and (2) sparse local gradients may return 

dense due to gradient accumulation. These issues hinder the 

application of gradient sparsification. We observe that sparse 

gradient value distribution has great locality, and therefore we 

propose DenseStream, a novel data representation for sparse 

gradients in data-parallel training to alleviate the issues. 

DenseStream integrates an efficient sparse AllReduce 

algorithm with the synchronous SGD (S-SGD). Evaluations are 

conducted by real-world applications. Experimental results 

show that DenseStream achieves better compression ratio at 

higher densities and can represent sparse vectors with a wider 

range of densities. Compared with dense AllReduce, our 

method is more scalable and achieves 3.1-12.1x improvement.  

Keywords—deep learning, AllReduce, gradient sparsifica-

tion, data representation 

I. INTRODUCTION 

Training deep learning models is quickly becoming a 
major workload on large-scale computing systems. The size 
of the models and the computation required for training 
increases significantly. While AlexNet [15] with millions of 
parameters requires days on a GPU for training, newer models 
such as GPT-3 [3] which parameters up to 100 billion, take 
more than hundreds of years to train on a single GPU. 
Utilizing a cluster of GPU resources for training large-size 
models is a common practice. There are many parallelization 
approaches for accelerating training on multiple GPUs [24], 
and data parallelism is one of the dominant techniques. In 
data-parallel training, computing nodes maintains consistent 
model weights. After computing local gradients on each node 
with different mini-batch samples, the global gradients are 
accumulated across all nodes through network 
communication. Model copies are kept in sync by applying 
global gradients to update the model on all nodes. 

Compared with the training process on a single node, data-
parallel training is broken down into two phases, calculating 
the local gradients on each node in parallel and exchanging 
the parameters or gradients of the model. Data-parallel 
training brings additional network communication overhead. 
The training speedup ratio depends on communication-to-
computation ratio. If the time of communication is much less 
than computation, the nodes execute computing tasks without 
break, computing resources are fully utilized, and the scaling 
efficiency is close to 1, which is our expectation. On the 
contrary, when communication takes much longer than 
computation time, nodes have to wait for communication to 
complete before starting the next iteration. Computing 
resources are idle for a long time, and the scaling efficiency 
is extremely low. Multi-node training may even be slower 
than single-node. Therefore, to improve the performance of 
data parallel training, we can either increase the workload of 
nodes to increase computation time or reduce the 
communication time in each iteration. 

It is difficult to change the neural network model for 
training, so the way to increase the computation time is to 
increase the mini-batch size [7][18][25]. However, the GPU 
memory is limited, and the mini-batch size has an upper 
bound, so the computation time also has an upper bound. 
Reducing communication time is more effective. The 
communication overhead depends on the communication 
volume and network bandwidth. In classical data parallelism, 
nodes exchange their gradients or model parameters by 
AllReduce [8] operation. In model training of deep neural 
networks, the communication volume is usually very large, 
and the network bandwidth is limited for some institutions or 
individuals. Meanwhile, network bandwidth is growing much 
slower than the model size. Network communication has 
become the main bottleneck of training. 

Therefore, reducing communication volume is the key 
way to conquer the communication challenge. Very recently, 
many techniques like gradient sparsification, quantificaiton 
and compression methods [4][6][11][12][13][26] have been 
proposed to reduce the volume of network communication. 
Among these, gradient sparsification [1][19][26] is the 
promising technique. The main idea is that not all gradient 
values are equally important, and usually up to 99% values 
contribute few in each step for model convergence. In other 
word, there is no significant loss of accuracy with 1% 
important gradient values preserved, while others set to zero. 



The local gradients can be sparsified significantly to just 
about 1% density (99% gradient values are zeros) with 
gradient sparsification techniques. This benefit the process of 
gradient accumulation in distributed training since sparse 
vectors can be highly compressed which reduce the 
communication volume to break the communication 
bottleneck. 

However, sparse communication still suffers from 
scalability issues. Specifically, while local gradients are 
constructed into a very sparse vector with gradient 
sparsification at each node, the sparsity of global gradients is 
not guaranteed. If the indexes of non-zero gradient values 
between nodes do not overlap, as the number of nodes in the 
cluster increases, the global gradients will quickly become 
dense, which is called the fill-in problem, and the AllGather-
base sparse reduction [5][17][22] makes the issue worse, the 
communication bottleneck will reappear. And the commonly 
used key-value data representation requires additional storage 
of index, when the density exceeds 50%, the additional index 
storage overhead will cause the overall overhead to exceed 
the original dense representation (assuming the index and 
value storage overhead is the same). The data representation 
might be changed in training. These issues should be 
considered in application of sparse communication. 

In this paper, we focus on the data representation and 
explore how to represent sparse gradient data more efficiently 
in deep learning. We propose a sparse data representation 
algorithm called DenseStream to alleviate the fill-in problem 
and provide consistent format at arbitrary densities. We 
implement the DenseStreamAllreduce (DSA) which provides 
more efficient sparse gradients aggregation from distributed 
nodes. Then we integrate our proposed DSA to S-SGD under 
PyTorch and MPI. The DSA S-SGD achieves 3.1-12.1x 
speedup than dense S-SGD. Compared to high-performance 
sparse communication library SparCML [5], DSA S-SGD is 
generally around 1.1 times faster on evaluated experiments. 
Our contributions are as follows: 

• We observed that the top-k gradient values clustered 
in some regions during neural network training. 

• We propose an efficient data representation of sparse 
gradients for neural network training, called 
DenseStream, and a corresponding sparse AllReduce 
algorithm, to reduce the communication volume and 
alleviate the fill-in problem in data-parallel training. 

•  DenseStream and corresponding AllReduce 
algorithm achieves improved compression and 
communication efficiency on the real-world 
application. 

We compared DenseStream with other algorithms on 
VGG16 [14] and ResNet50 [9]. DenseStream showed good 
performance, it has a good effect on improving the training 
speed of the model. We hope that the performance of the 
algorithm can be tested on a large-scale cluster in the future. 

 

II. BACKGROUND AND MOTIVATION 

A. Mini-batch SGD 

Stochastic gradient descent is one of the most used 
algorithms for training deep learning models. Let m be the 
size of the mini-batch, wt the parameters of the neural network 

model at the t-th iteration, (xi, yi) a sample and its label in the 
batch, and L the loss function. Each round of training has two 
stages. In the forward propagation stage, the current model 
parameters and samples in the mini-batch are used to calculate 
the loss through the loss function L. Then in the back 
propagation stage, the gradient of each trainable parameter is 
calculated by: 

𝐺𝑡(𝑤𝑡) =
1

𝑚
∑ ∇𝐿(𝑤𝑡 , 𝑥𝑖 , 𝑦𝑖)

𝑚

𝑖=0

(1) 

The model parameters update as wt+1 = wt -αGt, where α 
is the learning rate. 

B. Synchronous SGD 

Synchronous SGD is widely used in data parallel strategy. 
It is mainly to expand the SGD to adapt to the distributed 
environment. In a distributed environment, each node 
calculates its gradients locally, then the global gradients 
accumulated by the local gradients are used to update the 
model. The update formula of parameters is: 

𝑤𝑡+1 = 𝑤𝑡 − 𝛼 ∑ 𝐺𝑖(𝑤𝑡)

𝑃

𝑖=1

(2) 

where P is the number of computing system nodes. The 
local gradients are located in different nodes, so that the 
accumulating operation involves communication costs. 

In model training, the size of local gradients and global 
gradients are the same as the size of the trainable parameters 
because each trainable parameter needs to be updated in each 
round of training. If the cluster has a total of P nodes, the 
global gradients is accumulated through Ring-AllReduce, 
leading to about 2(P-1)N/P communication volume, where N 
is the amount of trainable parameters of the model. In large-
model training, gradients accumulation becomes the 
bottleneck due to bandwidth constraints. 

C. Top-k Sparsification 

Algorithm 1 S-SGD with top-k sparsification 

Inputs: dataset D, initialized weights w, mini-batch size m, 

iterations T, learning rate 𝛼, the number of worker P, the 

number gradients to select k. 

1: Initialize 𝐺0
𝑖 = 0 

2: for 𝑡 = 1 → 𝑇 do 

3:   Sampling a mini-batch of data 𝐷𝑡
𝑖  from  D; 

4:   𝐺𝑡
𝑖 = 𝐺𝑡−1

𝑖 + ∇𝐿(𝑤𝑡 , 𝐷𝑡
𝑖) 

5:   Select threshold thr = the kth largest value of |𝐺𝑡
𝑖|; 

6:   Mask = |𝐺𝑡
𝑖|> thr; 

7:   𝐺𝑙𝑜𝑐𝑎𝑙
𝑖 = 𝐺𝑡

𝑖 ⊙ 𝑀𝑎𝑠𝑘; 

8:   𝐺𝑡
𝑖 = 𝐺𝑡

𝑖 ⊙ ¬𝑀𝑎𝑠𝑘; // The residuals of gradients 

9:   𝐺𝑔𝑙𝑜𝑏𝑎𝑙
𝑖 =TopKAllReduce(𝐺𝑙𝑜𝑐𝑎𝑙

𝑖 ) 

10:    wt+1 = wt -α𝐺𝑔𝑙𝑜𝑏𝑎𝑙
𝑖  

11: end for 

 
Gradient sparsification is a key approach to reduce the 

communication volume. A commonly used sparsification 
algorithm is top-k sparsification [26]: each node transfers only 
the k largest (in terms of the absolute value) of its gradient 
values. The remaining gradients in each node that do not 
participate in current accumulation will be added to the local 



gradients in the next step of training. The global gradients 
obtained by accumulating sparse local gradients is used for 
the model update of this iteration. The convergence of top-k 
S-SGD algorithm has been proved [1][26]. However, 
reaching low density levels (less than 1%) requires extremely 
careful tuning of hyperparameters, which introducing 
instability to the training [5]. Employing higher density levels, 
5-10% per node, which tends to be more robust, is a better 
option. The pseudo-code of top-k sparsification S-SGD is 
shown in Algorithm 1. 

The fill-in is one of the major obstacles to apply the 
gradient sparsification on large-scale clusters. Supposing that 
the model has 10 million trainable parameters, corresponding 
to 10 million gradient values, and the density is 1%, the 
number of non-zero local gradient values for each node is 
100,000. If there is no overlap index between the non-zero 
values of local sparse gradients across nodes, the training 
system with 100 computing nodes will make the global 
gradient completely dense, and the communication bottleneck 
appears again. Although there are overlap indexes between 
local sparse gradients, as the number of nodes in the system 
grows, the fill-in quickly diminish the benefits of gradient 
sparsity [5]. 

III. METHOD 

In this section, we first demonstrate our proposed data 
representation for sparse gradients based on the 
characteristics of the deep learning model training, and then 
present the corresponding communication algorithm. 

A. Data Representation 

 

Fig. 1. The histogram of top-k gradients with 1% density.The bin width is 

10000 indexes. We count the frequency of top-k gradients in it at iteration 1 
and 5000. (a) and (b) are the results of ResNet50, (c) and (d) are the results 

of VGG16 

Our data representation method is based on our 
observations that during the training process of the deep 
learning model, the position distribution of the top-k gradient 
values is not uniform, and peaks appear in some regions. The 
top-k values are more concentrated in some local areas. For 
example, in the early step of CNNs training, the top-k values 
are concentrated in the shallow convolution kernel, while in 
the later step they are concentrated in the deep convolution 
kernel and classification layer. As is shown in Fig. 1, both 
ResNet50 and VGG16 show the locality. In some regions, 
nearly half of the values are the top-k value. Therefore, during 

training, some dense regions appear in the sparse gradient 
vectors. In these dense regions, the indexes of  top-k values 
are very close, or even adjacent. It is more efficient to use 
dense representation instead of key-value representation in 
the dense regions. However, the position and size of dense 
region cannot be predicted in advance, so an additional index 
and length value is required for each dense region to store the 
information. Therefore, we design the data representation 
method which we called DenseStream. The basic unit of the 
DenseStream is a dense block, which consists of three parts: 
the index for starting position of dense region, the length for 
the number of elements in dense region, and the gradient 
values of entire dense region. Let N be the size of the gradient 
vector, and the storage cost of each gradient value is K bytes, 
then the dense region is defined as: 

1) There allows zero elements, but both the first and last 

elements of the dense region are non-zero. 

2) The number of consecutive zero elements in the dense 

region does not exceed ⌈2⌈log2 N/8⌉/K⌉. 
The reason for 2) is that, if the number of consecutive zero 

elements exceeds ⌈2⌈log2 N/8⌉/K⌉, the dense block will be 
divided into two dense blocks here, which overhead of added 
index and length is less than that of consecutive zero 
elements. Therefore, the number of consecutive zero 
elements is not exceed ⌈2⌈log2N/8⌉/K⌉. 

Assuming that the number of non-zero elements in the 
vector is nnz, the storage overhead of DenseStream is: 

(2 ⌈
𝑙𝑜𝑔2𝑁

8
⌉ +  𝐾) ∙ 𝑛𝑛𝑧 ≤   𝑐𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙

≤ 2 ⌈
𝑙𝑜𝑔2𝑁

8
⌉  +  𝐾 ∙ 𝑛𝑛𝑧 (3)

 

When the vector is very sparse, the overhead is close to 
the lower bound, which is ⌈(log2N)/8⌉∙nnz higher than the key-
value representation. As nnz << N, there will be no bottleneck, 
and it is acceptable. When the vector is relatively dense, the 
performance is better than key-value representation. And 
when the vector is completely dense, there is only one index 
and length additional overhead than the dense representation, 
which can be ignored. Therefore, DenseStream is a consistent 
data representation algorithm with a wider range of density 
representation. 

 

Fig. 2. Examples of dense block. Assuming that the storage cost of index, 

length, and each element are 4 Bytes. X represents the top-k gradient value. 
The red box is a dense block. The block 1 has no zero element, block 2 has 

a zero element, block 3 has two consecutive zero elements. These are three 

consecutive zero element between block 4 and block 5, so these are two 

blocks. 

B. Communication Algorithm 

AllReduce is the most important algorithm in data-parallel 
training, because global gradients are accumulated through 
AllReduce. The AllReduce algorithm of sparse vector is more 
complicated than that of dense vector [5]. One reason is that 
the dense AllReduce algorithm does not perform well on 



sparse vectors. Due to the special representation, sparse 
vectors cannot directly participate in calculations, which 
increases the overhead of most dense AllReduce algorithms. 

Another reason is that the nnz of the result vector in sparse 
AllReduce cannot be predetermined. If there is no overlap 
between the sparse vectors across different nodes, the nnz of 
result vector will be P∙k, where k is the nnz of sparse vector in 
a node. But there is a large degree of overlap between sparse 
vectors across nodes. The nnz of result vector is unpredictable. 
A solution is to use the AllGather instead of AllReduce. 
However, the communication volume of the AllGather 
increases linearly with the number of nodes, which is 
unacceptable in large-scale clusters. For this, we design and 
implement a communication algorithm suitable for 
DenseStream. 

Our communication algorithm mainly includes three 
phases: (1) balanced split, (2) scatter-reduce, (3) allgatherv. 
In the balanced split phase, we balanced split the vector 
dimension N into P partitions and each node is assigned a 
partition to accumulate the corresponding global gradients. In 
the scatter-reduce phase, each node accumulates the partial 
global gradients through reduce, and then each node obtains 
the global gradients of the corresponding partition. In the 
allgatherv phase, each node receives the complete global 
gradients through AllGatherv. 

We assume bidirectional, direct point-to-point 
communication between the nodes, and consider the classic 
Latency-Bandwidth cost model. The cost of sending a 
message of size L is α+βL, where α is the latency of a message 
transmission, β is the transfer time per word, and L is the 
message size in words. 

1) balanced split 
Balanced split should try to make the partial global 

gradients accumulated by each node after scatter-reduce 
phase similar in size, which is beneficial to scatter-reduce and 
allgatherv phase. But we cannot predict the result of scatter-
reduce phase, our balanced split algorithm is based on current 
information. 

Since the non-zero values of local gradients is not evenly 
distributed on the gradient vector, uniformly splitting the 
space dimension into P partitions cannot make the workload 
balance of each node. In an extreme case, all the non-zero 
values are in region i of each node, then  node i should receive 
(P-1)∙k elements in scatter-reduce phase and broadcast it to 
other nodes in the allgatherv phase. 

The ideal balanced split allows each node to get k/P global 
gradients after scatter-reduce, and each node only receives 
(P-1)k/P elements. We adopt the balanced split algorithm 
from [16]. Each node selects the top-k local gradient values, 
then sorts them by index, splits them evenly into P partitions, 
obtains the boundaries. Use AllReduce to average the 
boundaries of all nodes to get the global boundaries as the 
result of balanced split. 

2) scatter-reduce and allgatherv 
In the scatter-reduce phase, we adopt the recursive 

halving technique [20]. The behavior is illustrated in Fig. 3. 
In the first round, nodes with distance P/2 apart exchange 
their P/2 partitions and perform a local reduction. In the 
second round, nodes with distance P/4 apart exchange their 
P/4 reduced partitions. Following the pattern, in the log2(P) 

round, nodes with 1 distance apart exchange 1 reduced 
partitions, and each node gets the partial global gradients. 

 

Fig. 3. Recursive halving algorithm with 8 nodes. 

Algorithm 2 S-SGD with DenseStream sparsification 

Inputs: dataset D, initialized weights  w, mini-batch size  

m, iterations T, learning rate 𝛼, the number of worker P, the 

number gradients to select k. 

1: Initialize 𝐺0
𝑖 = 0 

2: for 𝑡 = 1 → 𝑇 do 

3:   Sampling a mini-batch of data 𝐷𝑡
𝑖  from  D; 

4:   𝐺𝑡
𝑖 = 𝐺𝑡−1

𝑖 + ∇𝐿(𝑤𝑡 , 𝐷𝑡
𝑖); 

5:   Select threshold thr = the kth largest value of |𝐺𝑡
𝑖|; 

6:   Mask = |𝐺𝑡
𝑖|> thr; 

7:   𝐺𝑙𝑜𝑐𝑎𝑙
𝑖 = 𝐺𝑡

𝑖 ⊙ 𝑀𝑎𝑠𝑘; 

8:   𝐺𝑡
𝑖 = 𝐺𝑡

𝑖 ⊙ ¬𝑀𝑎𝑠𝑘; // The residuals of gradients 

9:   𝐺𝑙𝑜𝑐𝑎𝑙
𝑖  = DenseStream(𝐺𝑙𝑜𝑐𝑎𝑙

𝑖 ); // Compress the local 

gradients 

10:   𝐺𝑔𝑙𝑜𝑏𝑎𝑙
𝑖 = DenseStreamAllReduce(𝐺𝑙𝑜𝑐𝑎𝑙

𝑖 ); 

11:   Decompress 𝐺𝑔𝑙𝑜𝑏𝑎𝑙
𝑖 ; 

12:    wt+1 = wt - α𝐺𝑔𝑙𝑜𝑏𝑎𝑙
𝑖  

13: end for 

14: procedure DenseStreamAllReduce(𝐺𝑙𝑜𝑐𝑎𝑙
𝑖 ) 

15:   local_boundaries = balanced_split(𝐺𝑙𝑜𝑐𝑎𝑙
𝑖 ) 

16:   global_boundaries = AllReduce(local_boundaries) 

17:   𝐺𝑟𝑒𝑔𝑖𝑜𝑛
𝑖 = ScatterReduce(𝐺𝑙𝑜𝑐𝑎𝑙

𝑖 ) 

18:   𝐺𝑔𝑙𝑜𝑏𝑎𝑙
𝑖  = AllGatherv(𝐺𝑟𝑒𝑔𝑖𝑜𝑛

𝑖 ) 

19:   return 𝐺𝑔𝑙𝑜𝑏𝑎𝑙
𝑖  

20: end procedure 

 

Due to the balanced split, each partition contains 
approximately k/P elements. The scatter-reduce latency is: 

log2(𝑃)𝛼 +
𝑃 − 1

𝑃
𝑘𝛽 ≤ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑠𝑐𝑎𝑡𝑡𝑒𝑟−𝑟𝑒𝑑𝑢𝑐𝑒

≤ log2(𝑃) 𝛼 +
log2(𝑃)

2
𝑃𝑘𝛽 (4)

 

There are log2(P) stages, and the latency of a message 
transmission is log2(P)α. When the k indexes fully overlap, 
the latency reaches lower bound, since the non-zero elements 
of each partition maintain constant size k/P. The upper bound 
is reached when the indexes do not overlap at all. Therefore, 
the number of partitions transmitted per round is halved, but 
the number of elements in a partition is doubled, and 
communication volume maintains constant size P/2. 

 



TABLE I.  COMPRESSION RATIO OF DENSESTREAM TO KEY-VALUE 

Model 
density 1% density 5 % density 10% 

epoch 

1 

epoch 

5 

epoch 

50 

epoch 

1 

epoch 

5 

epoch 

50 

epoch 

1 

epoch 

5 

epoch 

50 

VGG16 1.11 0.99 1.03 0.86 0.89 0.85 0.75 0.77 0.75 

ResNet50 0.98 1.09 1.11 0.86 0.89 0.94 0.82 0.85 0.89 

In allgatherv phase, we adopt the recursive doubling 
technique. The behavior is like recursive halving technique: in 
t round, nodes with distance P/2t apart exchange their 2t 
partitions which contain partial global gradients. 

The allgatherv latency is: 

log2(𝑃)𝛼 +
𝑃 − 1

𝑃
𝑘𝛽 ≤ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑎𝑙𝑙𝑔𝑎𝑡ℎ𝑒𝑟𝑣

≤ log2(𝑃) 𝛼 + (𝑃 − 1)𝑘𝛽 (5)
 

The latency of a message transmission is log2(P)α. The 
lower bound is reached when the indexes full overlap, each 
node gets k/P elements of global gradients in corresponding 
partition. And when the indexes do not overlap, each node gets 
k elements in their partition. Then the latency reaches upper 
bound. 

The total overhead of our proposed sparse AllReduce is: 

2log2(𝑃)𝛼 + 2
𝑃 − 1

𝑃
𝑘𝛽 ≤ 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑡𝑜𝑡𝑎𝑙

≤ 2 log2(𝑃) 𝛼 + [(
log2(𝑃)

2
+ 1) 𝑃 − 1] 𝑘𝛽 (6)

 

The pseudo-code of DenseStream representation top-k 

S-SGD is shown in Algorithm 2. 

IV. EXPERIMENTS 

We conduct our experiments to evaluate our algorithm by 
real-world applications. We first evaluate the compression 
efficiency of DenseStream and compare it with the key-value 
representation under different densities. Then we evaluate the 
efficiency of DenseStreamAllreduce (DSA) and compare it 
with the communication algorithms of  dense AllReduce 
(Dense), top-k AllGather (TopkA) [5], Dynamic Sparse 
Allreduce used in SparCML (TopkDA) [5], which are also 
under different densities. After that, we compare the model 
training time for one epoch among the four algorithms. Finally, 
we analyze the convergence of the algorithm.  

Note that, the dense AllReduce denotes a single dense 
AllReduce on a message aggregated from the gradients of all 
model layers. The data representation of TopkA and TopkDA 
are key-value. 

A. Setup 

Our experiments are executed on 4 compute nodes. Each 
node has an Intel Xeon Gold 5117 CPU with 32GB of RAM, 
and one NVIDIA RTX2080ti GPU with 12GB global memory. 
The machines are connected by a 1Gbps Ethernet interface. 
Machines run 64-bit Ubuntu 18.04 with CUDA toolkit 11.2. 
The deep learning framework is PyTorch at version 1.7.0. The 
communication library is mpi4py, which are built with 
MPICH 3.3.2. 

We use VGG16 with 134M parameters and ResNet50 with 
24M parameters on cifar-10 dataset. The dataset contains 
50000 training samples. We use SGD optimizer with learning 

rate of 0.01 for VGG16, and 0.001 for ResNet50. the mini-
batch size is 64 per machine. 

We utilize the top-k function provided by PyTorch. the 
DenseStream sparsification and decompression function 
programmed by C++ with CUDA, which is accelerated on 
GPU. 

In all experiments, we fix the datatype for storing an index 
or a length to an unsigned int. 

B. Compression Efficiency 

We use the density of 1%, 5% and 10% to sparsify local 
gradients for analyzing the compression efficiency of 
DenseStream. The compression ratio is defined as the ratio of 
the overhead of DenseStream to that of the key-value 
representation. The models are trained for 150 epochs, and 
record compression ratio on each iteration. TABLE I. reports 
the results. The results are the average of the compression ratio 
over the entire epoch.  

For VGG16, in the case of 1% density, the average 
compression ratio exceeds 1.0 in epoch 1 and 50. One reason 
is that the density is extremely low. There are many dense 
blocks and each block is small, so the additional index and 
length overhead negate the efficiency. And in the early epoch 
of training, the training is not stable. We observe that as the 
training progresses, the compression ratio gradually stabilizes 
at 1.0. 

In the case of 5% density, the average compression ratios 
are  consistent across training stages, the result is 0.87±0.02. 
DenseStream overhead is less than that of key-value 
representation. The performance is greatly improved at 10% 
density. The average compression ratio is 0.75±0.03 in all 
epochs. Compared with key-value representation, the 
communication volume is reduced by approximately 1/4. 

Surprisingly, for ResNet50, DenseStream performed best 
in epoch 1 with different densities. The results show that 
unlike VGG16, the top-k gradient value distribution of 
ResNet50 becomes more uniform  as the training progresses. 
So the performance on ResNet50 is not as good as on VGG16. 
The best compression ratio is achieved in epoch 1 with the 
density of 10%, which is 0.82.  

The compression efficiency comparison proves the 
correctness of our hypothesis. During the training of the deep 
learning model, the top-k gradient values show a locality. It 
also shows that the sparse representation of DenseStream is 
efficient. Even at extremely low density, it still has good 
performance. And at high density, it performs much better 
than key-value representation. When applying DenseStream, 
zero elements can be replaced by non-topk gradient values, 
which increase the density of local gradients and make model 
training more robust without increasing storage overhead. 

 



TABLE II.  TIME (S) OF COMMUNICATION 

Algorithm 
VGG16 ResNet50 

density 1% density 5% density 10% density 1% density 5% density 10% 

Dense 7.61 1.34 

TopkA 0.39 1.50 2.91 0.09 0.32 0.59 

TopkDA 0.36 1.32 2.59 0.09 0.30 0.51 

DSA 0.34 1.01 1.54 0.11 0.26 0.43 

C. Communication Speed 

Since the three sparse communication algorithms have to 
sparsify the local gradients before communication and 
decompress the global gradients after the communication, 
there are some more steps than dense AllReduce. So we start 
the measurement at the end of the model backpropagation and 
finish it after generating the global gradients in a dense format. 
The communication time includes the time of sparsification, 
decompression and local gradient accumulation. Meanwhile, 
in each iteration, the communication overhead of the 
DenseStream is not fixed, so we average the communication 
time of the entire epoch 10. The results are presented in 
TABLE II.  

The communication time of the three sparse 
communication algorithms is much lower than that of dense 
AllReduce because of the lower communication volume, 
while the sparsification and decompression overhead are 
much smaller than communication. In most of cases, our DSA 
achieves higher efficiency, which is 12.18x faster than dense 
AllReduce on average. For VGG16, at 1% density, the 
communication time is reduced by 5% compared to TopkDA. 
The efficiency improvement mainly comes from the balanced 
split to balance the communication workload between nodes. 
Meanwhile, the density of resulting global gradients is higher 
than 1% of local gradients, leading to better compression 
efficiency and reducing the communication volume in 
allgatherv phase. In addition, we found that the global 
gradient accumulated from top-k local gradient values has 
higher locality, and the compression efficiency of 
DenseStream is further improved. This is shown in the 
experiments of 10% density, compared with other algorithms, 
the performance of our proposed algorithm has been greatly 
improved, the communication time is reduced by 43% on 
average. 

For ResNet50, our proposed algorithm performs slightly  
worse at 1% density, because of the higher sparsification 
overhead. At 10% density, the communication time is reduced 
by an average of 21% compared to TopkA and TopkDA. 

Overall, our proposed algorithm shows applicability and 
scalability. 

D. A Critical View 

We break down the time of communication time into local 
gradients sparsification time and the real communication time. 
Then the time of an iteration has three parts: GPU computation 
time,  sparsification time, and communication time. The total 
time cost of an iteration can be obtained by adding the GPU 
computation time to the previous results, therefore we focus 
on the proportion of each part in this section. The results are 
shown in Fig. 4.  

In dense S-SGD, the proportion of computation time is 
extremely low, and the GPU is idle most of the time. Ignoring 
the increase in communication latency caused by the increase 
in the number of computing nodes, nearly a hundred 
computing nodes can achieve the same throughput as a single 
node, which is unacceptable. 

The results also show a potential problem. There are high 
sparsification-to-computation ratios. In the training of 
ResNet50, the overhead of sparsification with 10% density 
even exceeds the computation overhead, and that with 1% 
density still exceeds the half computation overhead. The 
VGG16 has worse performance than ResNet50, which is 
caused by less computation overhead and more parameters. 

Gradient sparsification technique significantly reduces the 
communication volume, leading to lower communication-to-
computation ratio, and improves the performance of data 
parallel training. When communication is bottleneck, the 
overhead of gradient sparsification has little impact for 
distributed training. However, once a higher-speed network is 
used, such as 10Gig-Ethernet or InfiniBand network, the 
communication time is reduced by high bandwidth, and the 
proportion of sparsification time increases in an iteration. 
Sparsification overhead even become the new bottleneck to 
restricting the speedup ratio.  

The average complexity of quickselect [10] based top-k 
selection is O(n), but not GPU-friendly. The commonly 
implementation of top-k selection on GPU is bitonic top-k [2], 
which has the complexity of O(nlog2k), is not good enough for 
large k. Therefore, the top-k sparsification overhead is 
relatively large. An expensive gradient sparsification 
algorithm is not properly for data parallel training, even if it 
has excellent sparsification performance. Our DenseSteam 
representation algorithm does not rely on top-k sparsification, 
and can be fully accelerated by the GPU, leading to low 
execution overhead. It can be used with other more efficient 
sparsification algorithms to reduce the bottleneck caused by 
sparsification overhead. Another problem with top-k 
sparsification is that, in practice, to reduce the communication 
time, the gradients exchange is carried out at the neural 
network layer-wise [21]. The layer-wise exchange allows 
computation and communication to overlap, reducing GPU 
idle time. However, top-k sparsification can only be executed 
after the backpropagation of the neural network is completed, 
and it cannot be applied to the data parallelization of layer-
wise gradients exchange. DenseSteam does not have to 
execute on the overall gradient, and can be used on any tensor, 
which has better applicability. 



 

 

Fig. 4. Time breakdown of computation, sparsification and communication. 

“Compu.” indicates forward and backward computation time, “Spar.” 

indicates sparsification time, and “Comm.” indicates the gradients 
communication time. 0.01 and 0.1 indicates the density of 1% and 10%. 

Above: the result of ResNet50. Below: the result of VGG16. 

E. Convergence 

In much previous work [1][23][26], the convergence of 
top-k S-SGD has been verified. Our algorithm does not 
modify the content of gradients in top-k S-SGD and has no 
effect on its convergence. We only evaluate the convergence 
of the VGG16 at 5% density, and the results are shown in Fig. 
5. The training loss of the model is almost simultaneous with 
dense S-SGD at the same epoch, and gradient sparsificatin has 
only slightly impact on model convergence. But the training  
time gap of each epoch between dense S-SGD and our DSA 
S-SGD is huge, and DSA S-SGD can be improved by 12.18x, 
compared to dense S-SGD. The total model training time also 
has a large reduction. 

 

Fig. 5. The convergence of VGG16 on 4 nodes with 5% density. 

V. CONCLUSION 

In this paper, we propose a novel data representation for 
sparsified gradients to alleviate the fill-in problem in data-
parallel training. DenseStream enables better performance by 

utilizing the locality of gradient value statistics. Compared 
with key-value representation, it is more suitable for neural 
network training and can achieve higher compression 
efficiency and larger representation range. The corresponding 
sparse AllReduce algorithm also has better performance than 
the counterparts. The experimental results for data-parallel 
training of real-world neural network models show that 
DenseStream can provide significantly improvement. In 
future work, we would like to further investigate more 
efficient algorithms to reduce the overhead of sparsification, 
and investigate the sparsification which can be used for other 
distributed training techniques. 
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