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Abstract— Visual localization of micro flexible electrode and
implant needle is an important task for robotic flexible electrode
implantation. Magnification switch, occlusion, defocus,
illumination changes in microscopic imaging produce challenges
for this task. We propose the Keypoint Localization and Angle
Estimation Network (KLAE-Net) based on convolutional neural
networks. KLAE-Net has two branches: the Kkeypoint
localization branch for obtaining the coordinates of electrode
and needle in image space; the angle estimation branch for
monitoring the inclination of needle. Attention mechanism and
deformable convolution are used to improve the model’s
performance. For training and evaluation under the flexible
electrode implantation task, we construct a novel dataset
containing 1000 images covering various conditions. An image
Jacobian matrix based alignment control method is designed, to
realize the robotic alignment between needle and electrode. A
series of experiments are conducted with the dataset and an
implantation robot system.

I. INTRODUCTION

Brain-machine interface (BMI), as a multidisciplinary
technology of neuroscience, electronics, artificial intelligence
and robotics, has attracted wide attention of researchers in
recent years [1]. With BMI, a human can control external
devices by converting brain neuron activity into specific
instructions. BMI devices includes invasive and non-invasive
ones. Non-invasive BMI directly records scalp
electroencephalogram (EEG) without trauma and surgical
risk, but the signal information is limited, and there are
bottlenecks in real-time and accuracy [2]. Invasive BMI
requires implanting electrodes into neural tissue inside the
skull to collect brain signals. It can record electrical signals at
the neuron level with large amount of information and has
better performance in real-time and accuracy.

The traditional rigid electrodes have a significant
mechanical mismatch with neural tissue, which induces
immune response and callus, and then lead to the
deterioration or disappearance of signal [3]. In order to reduce
the adverse effects, the size and mechanical stiffness of
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implanted electrode should be reduced. Flexible electrodes
with micrometer-level diameters have good biocompatibility
and reliable signal-collection quality [4]. However, due to the
small Young's modulus of the flexible material, it is easy to
deform and difficult to manipulate in the implantation process.
A variety of auxiliary methods, including temporary changes
in flexible electrode stiffness [5], removable auxiliary
implants [6], and degradable templates [7] have been
proposed to improve the rigidity of implantable flexible
electrodes and successfully achieve precise implantation of
flexible neural electrodes. In order to make electrode
implantation more precise, efficient and reliable, minimally
invasive implant robot acts as an important role.

The accurate localization of flexible electrode and implant
tools relies on microscopic cameras. By detecting and
localizing the keypoints on electrodes and tools, the image
keypoints can be provided to guide the control of tools to
manipulate flexible electrode. The existing keypoint
localization methods can be summarized into two categories.
The first category uses the traditional computer vision
method [8-10]. These methods detect or track the
instrument’s parts by using handcrafted features and extract
low-level visual features around keypoint to learn the
appearance templates. The second category is based on deep
learning [11]. Recently, with the extensive application of
deep learning methods in surgical vision, some methods of
using deep CNNs to localize keypoint of the surgical
instrument have emerged [12-15]. Since the deep learning
methods can extract multi-level and multi-scale information,
their localization performances are greatly improved
compared with those of the traditional methods. SR-Net [14]
extends the U-Net segmentation model to realize keypoint
localization. G-RMI [12] uses fully convolutional ResNet to
predict activation heatmaps and offsets for each keypoint.
G-RMI detects bounding boxes that contain objects, then
estimate the keypoints that each proposal bounding box
contain. Hourglass [13] applies intermediate supervision to
repeated down- and up-sampling processes for keypoint
localization. Mask R-CNN [15] is one of the most popular
frameworks for instance segmentation, which can accomplish
instance detection and the segmentation for each instance a
single model. Mask R-CNN can be easily expanded for
keypoint localization by customizing the output.

In this paper, we have two main motivations. First, the
visual localization of flexible electrode and implant tool is
required for robotic implantation. Considering the varying
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Fig. 1. Model Architecture. The output channel number of layers are labeled by red digits.

magnification, illumination, clearness and the occurring of
partial occlusion, we exploit deep CNN to realize the
detection and localization of the relevant keypoints. Besides,
the inclined angle of electrode and tool should be estimated.
Second, guided by the obtained keypoints in real-time images,
the implant robot can use an implant needle to hook the ring at
the end of electrode. The main contributions of this paper are
as follows:

1) We propose the keypoint localization and angle
estimation network (KLAE-Net) to realize the automatic pose
feature extraction from microscopic image. The keypoint
features are used for alignment and the angle features indicate
the inclination of implant tool.

2) A novel dataset is collected under the flexible electrode
implantation scene, which contains 1000 images and
annotations. The images involve various illumination,
clearness, magnification and occlusion conditions.

3) Using the implant needle tip and the electrode ring
center as the image keypoint features, the alignment control
of needle and the electrode is realized with image Jacobian
matrix and feedback controller.

II. TASK DESCRIPTION

Flexible electrode implantation workflow: Similar to
[20], the implantation robot controls an implant needle and
moves the needle tip to hook the ring at the end of electrode,
which is guided by microscopic vision. Then a pincher rotates
and grips the flexible electrode’s body. Then, the flexible
electrode is moved along with the implant needle and is
implanted into the target brain as planned. Finally, the
implant needle is rapidly withdrawn, and the electrode is
retained in the brain tissue to collect the signals of the specific
target area of the brain, thus realizing the construction of the
signal acquisition pathway of the brain-machine interface.

Visual localization task: The binocular microscopic
cameras collect the microscopic images of needle implant
needle and flexible electrode in real time. Aiming to sense the
actual pose of implant needle tip and electrode tip for visual
servoing, the precise position of the implant needle tip and the
electrode ring center, as well as the angles of the needle axis
and electrode body, should be extracted from the microscopic
images. Then the relative position between implant needle tip
and electrode ring center in Cartesian space can be measured

through the pre-calibrated image Jacobian matrix, which is
used to guide the visual servoing.

III. METHODS

A. Model Architecture

As shown in Fig. 1, the proposed KLAE-Net takes an RGB
image [ as input. Its outputs include a needle keypoint
heatmap Hy, an eclectrode keypoint heatmap He, a needle
direction map Dy, and an electrode direction map Dg. The
model consists of a feature extractor and two branches for
localizing keypoints and estimating angles, respectively.

Feature extractor: The U-shaped feature extractor is
formed by a backbone and four decoder blocks. The
backbone is implemented with ResNet-34 [16], to extract
multi-scale features from the input image. The final output of
the backbone is a 512-channel feature map whose size is 1/16
of the input size. Besides, four lower-level feature maps are
drawn out from the backbone and wused to provide
skip-connections to the decoders.

We utilize the lightweight Convolutional Block Attention
Module (CBAM) [17] in the backbone, to realize channel and
spatial attentions. Each ResNet block is integrated with a
CBAM, as shown in Fig. 2. Given an intermediate feature
map, CBAM calculates the channel attention map and spatial
attention map. Then element-wise multiplication between
input feature map and attention maps is used to reweight the
features, so that unimportant features are suppressed and
relevant features are retained for inference.

In each decoder block, the input feature map is firstly
upsampled by 2x, then processed by a 1x1 convolution layer,
a batch normalization layer and a ReLU layer. The feature
map from skip connection is also processed by a 1x1
convolution layer, a batch normalization layer and a ReLU
layer. Then the two processed feature maps are concatenated
and inputted to a ResBlock, as shown in Fig. 3. The final
output of the feature extractor is a 128-channel feature map F,
whose size is the same with the input’s.

Keypoint localization branch. The feature map F is
processed by three convolution layers to infer the keypoint
heatmaps Hy and Hg. The first layer is implemented by
deformable convolution (DCN) to realize shape-aware
adaptive spatial sampling [19]. The last two layers are
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implemented by atrous convolution with the atrous rate of 2
[21]. The final output is a 2-channel map, which is split to the
two 1-channel heatmaps Hy and HE.

Angle estimation branch: The feature map F are also
processed by two 3x3 convolution layers and a 1x1
convolution layer to generate pixel-wise direction maps Dy
and Dg. Each pixel of a direction map is a 2-D normalized
direction vector, indicating the angle in image space.

B. Post-Processing

In the inference stage, the output maps are parsed to the
coordinates and angles. Because there are only one needle
and one electrode in the microscopic view, the keypoint
coordinates (ukey,Vkey) can be obtained from keypoint heatmap
H simply by argmax operation, namely,

(ukey,vkey) =argmax H (u,v) 1

Afterwards, the direction vector corresponding to the
keypoint can be indexed with the aforementioned coordinates,
which is converted to scalar angle 6, as given by,

D(ukey > Vkey H 1)

D(ukgy bl vkey b 0)

6 = arctan 2)
Thus, the implant needle’s position and direction are obtained
from Hy and Dy, which are expressed as (un,vw, On). The
flexible electrode’s position and direction are obtained from
Hr and Dg, which are expressed as (uz, Ve, 6).

C. Training Loss

The ground-truth of keypoint heatmap Hgr is generated by
the following equation:

HGT(”’V):eXp{—(u_uGT) +(v—ver) J 3)

2
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where ugr and vgr are the annotated keypoint’s coordinates.
The Gaussian standard deviation o is set as 31 for the
512%512 map size. The keypoint loss is calculated by,
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where N is the pixel number of the map.
The direction loss is calculated with the keypoint pixels
and their neighborhood pixels, as given by,
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where N, is the neighborhood pixel number, whose default
value is 8. The total loss is the sum of the above losses,
Ligtar = Lgp + L (©)

total

IV. ALIGNMENT CONTROL BASED ON VISUAL SERVOING

Compared to position-based visual servoing (PBVS) that is
sensitive to calibration error, image-based visual servoing
(IBVS) is utilized in this work due to its insensitivity to errors
caused by calibration and feature extraction [22]. IBVS uses
the image feature errors between the implanted needle tip and
electrode ring center in the binocular images as feedbacks, to
generate the 3-D motion of the robotic manipulator.

For microscopic vision servoing, the relationship between
the 3-D position error (Ax, Ay, Az) in Cartesian space and the
2-D position errors (Aui, Avi) (Auz, Av2) in two microscopic
image spaces is modeled with image Jacobian matrix J, as
given by,

Au, Jn Jn Jis Ax Ax

Avy _ Sy Jn Iy Ay |=J| Ay (7)
Au, Ju Jyn Iy Az Az

Au, Ju Jpn Iy

The image Jacobian matrix J can be calibrated with least
square method.

As shown in Fig. 4, the alignment controller takes the
position errors between the needle tip and the electrode ring
center in the two microscopic images as the inputs. The
output is calculated with the pseudo-inverse of the image
Jacobian matrix and linear feedback control law, namely,
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where K is the control gain, whose default value is 0.5. (uzi,

ver) and (ur2, vi2) are the electrode keypoint coordinates in the

images of camera | and 2, respectively. (un1, va1) and (un2, va2)
are the needle keypoint coordinates in the images of camera 1

and 2, respectively. These image coordinates are all provided

by the proposed KLAE-Net. The control target is to reduce

the image errors to zero.

V. EXPERIMENTS AND RESULTS

A. Experiment Platform

The implantation robotic system mainly consists of a URS
robot, two motorized precision stages, two Navitar
microscopic cameras, and the implantation tools, as shown in
Fig. 5. The URS5 robot is used to control the pose of
implantation tool in a large range. The precision stage is used
to fine-tune the position with micrometer precision. The
microscopic cameras can change their magnifications from
0.35x to 2.25x with step motors, whose position can be
adjusted by Winner Optical Instruments linear stages. As
shown in the right picture in Fig. 5, the implantation tools at
the robot’s end include an implant needle and a L-shaped
pincher. The implant needle is sharp at its end, and the tip
diameter is about 10um. The flexible electrode’s width is
about 50um and the ring at its end has a dimeter of ~30pum.
Thus, the needle tip is able to move through the electrode ring.
The image Jacobian matrices has been calibrated using the
least square method.

B. Training Details and Evaluation Metrics

We construct the image dataset for flexible electrode
implantation. 1000 images are collected with our robot
system and manually labeled by experts. 1000 images can be
divided into 350 small magnification, 200 medium
magnification, 450 large magnification; 200 with occlusion,
800 without occlusion; 150 out of focus, 850 on focus; 250
low light, 500 normal light, 250 strong light. 900 images are
used for training and 100 images for evaluation. The size of
the original images is 2448x2048 pixels, which is resized to
512x512 pixels when training and evaluating our model.

The deep models are trained with the Adam optimizer,
whose exponential decay rates of the 1st and 2nd order
moment estimates are 0.9 and 0.999, respectively. The
training epoch and batch size are 300 and 6, respectively. The
learning rate is initialized as 0.001. Data augmentation is
beneficial for the generalization ability. Before each
optimization step, the random augmentation is applied,
including hue change, brightness change, saturation change,
contrast change, left-right flip, and up-down flip. The
hardware configuration includes Intel Xeon Silver 4214R
CPU and NVIDIA RTX3090 GPU.

The Percentage of Correct Keypoint (PCK) metric is used
to evaluate the localization results. PCK reports the
percentage of correct localization results that fall within a
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Fig. 5. Implantation robot system.

given distance around the ground-truth keypoint coordinates,
namely,

1 M
PCK: M;udl. <1)
where M is the number of test samples; di is the distance
between the predicted keypoints and the ground-truth of
sample i. =20pixel is a distant threshold. Besides, the Mean
Pixel Error (MPE) is used as another evaluation metric. MPE
computes the mean distance error between the predicted
keypoint and the ground-truth keypoint, namely,

1 M
MPE = — .
&

Similarly, Percentage of Correct Angle (PCA) and Mean
Degree Error (MDE) are calculated in terms of direction
angle to evaluate the angle estimation performance, as given

by,
1 M
PCA=—> I(a, <
M;(l 7)

1 M
MDE:H;ai

where « ; is the difference between predict angle and
ground-truth angle of sample i. ¥=3° is the degree threshold.

C. Ablation Experiments

The baseline approach uses Resnet-34 without CBAM as
encoder of U-shaped network and uses standard 3x3
convolution layer instead of DCN module. DCN, CBAM and
DCN&CBAM are added to the baseline for comparison to
investigate their effectiveness. We run a series of ablation
experiments and the evaluation results are shown in Table I.
Note the percentage results are calculated with 100 test
samples, so that the percentages have no non-zero decimals.

Compared to the baseline, DCN improves the PCK of
Needle from 89.0% to 92.0% and reduces the MPE of
Electrode from 20.99 pixel to 13.76 pixel. The traditional
convolution kernels have fixed shape and cannot adapt to
different situations, while DCN can change the sampling
position involved in convolution and improve the shape
adaptiveness. Compared to the baseline, CBAM improves the
PCA of Electrode from 94.0% to 96.0% and reduces the MDE
of Electrode from 1.77 pixel to 1.52 pixel. CBAM introduces
attention mechanism in channel and spatial dimension, so that
the deep neural network can learn the area that needs attention
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Fig. 5. Keypoint localization and angle estimation results of our model. The green points and arrows represent ground truths of keypoint and direction. Red

points and arrows are the model’s prediction.

TABLE 1. ABLATION EXPERIMENTS RESULTS

Architecture PCK (%) PCA (%) MPE (pixel) MDE (degree)
Electrode | Needle | Electrode | Needle | Electrode | Needle | Electrode | Needle
Baseline 90.0 89.0 94.0 94.0 20.99 14.24 1.77 1.76
with CBAM 91.0 92.0 96.0 95.0 15.19 13.85 1.52 1.72
with DCN 91.0 91.0 95.0 95.0 13.76 13.92 1.54 1.62
with DCN & CBAM 94.0 93.0 98.0 97.0 11.12 13.58 1.52 1.44
TABLE II. COMPARISON EXPERIMENTS RESULTS
PCK (%) PCA (%) MPE (pixel) MDE (degree) .
Model Time (ms)
Electrode | Needle | Electrode | Needle | Electrode | Needle | Electrode | Needle
G-RMI [12] 87.0 87.0 84.0 90.0 12.77 14.14 2.44 2.07 37.8
Hourglass [13] 92.0 91.0 76.0 92.0 11.22 14.16 2.64 1.96 15.6
SRNet [14] 90.0 89.0 91.0 92.0 12.21 14.07 1.98 1.89 9.2
Mask RCNN [15] 91.0 92.0 92.0 94.0 11.54 13.74 1.87 1.76 46.1
Ours 94.0 93.0 98.0 97.0 11.12 13.58 1.52 1.44 28.6

in each new image, focus on important features and suppress
unnecessary features. The proposed model with both DCN
and CBAM performs the best under PCK, PCA, MPE and
MDE metrics.

D. Comparison Experiments

We compare the proposed KLAE-Net with four relevant
models including G-RMI [12], Hourglass [13], SR-Net [14]
and Mask RCNN [15]. The comparison experiments results
are shown in Table II. Overall, the proposed KLAE-Net
presents better performance on keypoint localization dataset
than all compared methods. Besides, the inference speed of
KLAE-Net satisfies the real-time requirements. The keypoint
localization and angle estimation results of our model are
visualized in Fig. 5. Although the imaging condition, object
pose and lens magnification are varying, KLAE-Net can
obtain the keypoints and directions correctly in most cases.
When magnification changes, 99.0% keypoints and directions

can be obtained correctly. When object defocus, 97.0%
keypoints and directions can be obtained correctly. When
partial occlusion occurs, 98.0% keypoints and directions can
be obtained correctly. When illumination changes, 99.0%
keypoints and directions can be obtained correctly.

E. Alignment Control Experiment

The trajectory of implant needle tip relative to electrode
ring center in image space during the alignment control is
shown in Fig. 6. It can be seen that under the guidance from
microscopic vision, the implant needle is moved by the
manipulator and gradually approaches the electrode ring
center in image space, within ~10 steps. When the keypoints’
position error is approximately zero, the alignment error in
3-D Cartesian space is also reduced to near zero. Note that
when the image position error is under 20pixel, manual
fine-tuning is conducted to finish the final high-precision
alignment. The whole needle-electrode alignment process is
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shown in Fig. 7. Firstly, the implant needle coarsely
approaches the eclectrode end. Then the two microscopic
cameras both switch to high magnification, and the alignment
control is executed. After the needle and electrode is aligned,
the needle tip moved along its axis to hook the flexible
electrode.

VI. CONCLUSION

In this paper, the KLAE-Net is proposed to realize precise
visual localization of micro flexible electrode and tiny
implant needle for robotic electrode implantation. KLAE-Net
is capable of predicting the coordinates and inclined angle of
electrode and needle in real time. By training with numerous
images under various conditions, the trained KLAE-Net has
good generalization ability under the magnification,
occlusion, defocus, and illumination condition changes. To
realize the efficient alignment control of implant needle and
flexible electrode, the keypoints predicted by KLAE-Net are
used to represent the image position error and the image
Jacobian matrices are used to map the image error to the
position error in Cartesian space. According to the visual
errors, the alignment controller outputs motion order to the
manipulator so that the needle tip moves towards the
electrode ring until the alignment is finished. In the future, we

will improve the robustness and precision of keypoint
localization, so that the alignment cab be executed fully
automatically and reliably.
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