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A B S T R A C T

Temporal Action Localization (TAL) aims to predict both action category and temporal boundary of action
instances in untrimmed videos, i.e., start and end time. Existing works usually adopt fully-supervised solutions,
however, one of the practical bottlenecks in these solutions is the large amount of labeled training data
required. To reduce expensive human label cost, this paper focuses on a rarely investigated yet practical task
named semi-supervised TAL and proposes an effective active learning method, named AL-STAL. We leverage
four steps for actively selecting video samples with high informativeness and training the localization model,
named Train, Query, Annotate, Append. Two scoring functions that consider the uncertainty of localization
model are equipped in AL-STAL, thus facilitating the video sample ranking and selection. One takes entropy
of predicted label distribution as measure of uncertainty, named Temporal Proposal Entropy (TPE). And
the other introduces a new metric based on mutual information between adjacent action proposals, named
Temporal Context Inconsistency (TCI). To validate the effectiveness of proposed method, we conduct extensive
experiments on three benchmark datasets THUMOS’14, ActivityNet 1.3 and ActivityNet 1.2. Experiment results
show that AL-STAL outperforms the existing competitors and achieves satisfying performance compared with
fully-supervised learning.
localization (STAL) have attracted considerable research interests re-
cently. For instance, KFC [21] utilizes only 40% labeled data for
training, and 60% annotations are employed in SSTAP [22].
1. Introduction

Among the video contents, the long untrimmed videos are com-
monly available in the wild, and there is an urgent need to intelligently
parse these video data in many real-world applications, such as enter-
tainment, visual surveillance, and robotics [1,2]. This encourages the
study of Temporal Action Localization (TAL) which requires not only
classifying category of action instances, but also localizing temporal
boundaries of them, i.e., their start and end time.

Recent years have witnessed great success in deep TAL [3–14],
nevertheless deep localization models are hungry for a big amount of
labeled data. Unfortunately, for action instances in long untrimmed
videos, the precise annotations of temporal boundaries and categories
require immense time and manual effort. Therefore, localization models
with less supervision [15–23], e.g., semi-supervised temporal action
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Notably, conventional semi-supervised methods mainly focus on
the exploration of unlabeled data, while the labeled data are usually
randomly selected. With respect to random sampling, however, the
contribution of labeling different samples to improving localization
performance are unequal, indicating some label budgets are wasted on
those samples with lower informativeness. Thus, active learning can
be utilized to evaluate the informativeness of samples and prioritize
labeling the informative ones other than the normal ones. Fig. 1(a)
briefly depicts the process of selecting highly-informative samples.

A typical active learning procedure is shown in Fig. 2, where four
steps named Train, Query, Annotate, Append are involved in each active
learning cycle. It is worth noting that the scoring function in Query step
enables the base model itself to distinguish the informative samples
from the ordinary ones actively rather than with the help of intense
human efforts. As the training dataset updates with model involved,
better performance can be achieved with fewer samples. When working
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Fig. 1. Conventional semi-supervised methods overlook the discrepancy in informa-
tiveness between different video samples. (a) In AL-STAL, we assign each unlabeled
sample a video-level score as the measurement of informativeness, and this score is
aggregated from frame-level predictions. When labeling video data, those samples with
larger score will have high priority, while the other samples are given low priority. (b)
An action instance proposal with classification (cls.) predictions is generated in each
temporal location, and the relations among these proposals (red, green, blue, purple at
different proposals for clarity) are conducive to informativeness estimation.

with a continuous video stream, the active learning method is im-
plemented as iterations of a Mobius strip. Although there have been
emerging efforts to develop active learning for image classification and
other visual tasks [24–29], there still lacks an active learning method
specified for temporal action localization (active temporal action lo-
calization). In particular, there are two crucial challenges shown in
Fig. 1(b). First, different from image-level or video-level predictions in
previous tasks with active learning, the output of STAL are instance-level
predictions of video segments. This motivates us to focus on measuring
the informativeness of action instances first, rather than directly con-
sidering the whole video. Second, the relationship among predictions
within temporal context lacks emphasis, and the neglected relationship
would benefit the informativeness measurement for sample selection.
Hence, naively adopting conventional active learning methods would
be infeasible. How to effectively select unlabeled samples based on
intrinsic characteristics of action localization remains in-depth study.

To address those issues above, we propose to develop a novel active
learning method for STAL, i.e., AL-STAL, to alleviate the waste of label
cost by exploring the potential of the model itself. The key idea of
our method is to design reasonable and effective scoring functions for
sample selection based on the predictions of base localization network.
Specifically, in Query step of active learning procedure, we propose two
scoring functions that considers the uncertainty of localization model.

– Temporal Proposal Entropy (TPE). This function focuses on the
temporal proposals (action instances) generated in each time step,
and takes the entropy of predicted label distribution as measure of
uncertainty. High entropy indicates that the classifier is uncertain
about the category of this temporal proposal.

– Temporal Context Inconsistency (TCI). This function introduces
a frame-level metric which considers the mutual information
between the adjacent action proposals. The hypothesis of this
function is that the divergence between predicted category distri-
butions of these proposals will be large if predictions are locally
inconsistent within the temporal context, and vice versa.
2

In this way, only a small number of informative samples are labeled,
and the localization performance could be increasingly improved. The
main contribution of this paper can be summarized as follows:

1. We propose an active learning algorithm specified for temporal
action localization, which employs the knowledge of network to
select samples for annotating. Compared to passive learning with
random sampling, our algorithm achieves better performance
by prioritizing labeling informative samples when given limited
label budget, and large label cost will be saved when achieving
expected localization performance.

2. We present two scoring functions (TPE and TCI) with different
quantitative metrics, which facilitate to evaluate the informa-
tiveness of unlabeled video samples. By introducing proposal
entropy and context inconsistency along the temporal axis, AL-
TAL allows us to automatically and effectively mine informative
samples which benefits the training of temporal action localizer.

3. We evaluate our proposed method on popular benchmark data-
sets for temporal action localization, e.g. THUMOS’14, Activ-
ityNet 1.3 and ActivityNet 1.2, and both metrics for action
localization and label cost saving are utilized for evaluation. Ex-
periment results demonstrate the effectiveness of our proposed
method.

The rest of this paper is organized as follows. In Section 2, we briefly
review some related works, followed by the elaboration of proposed
AL-STAL method in Section 3. Experiment results and discussions are
shown in Section 4. Finally, we conclude this paper in Section 5.

2. Related works

In order to indicate our proposed method, we will review two
related areas in this section. We will first review the task of temporal
action localization. Then, related advances in active learning methods
will be reviewed.

2.1. Temporal action localization

Temporal action localization aims at localizing boundaries and clas-
sifying category of action instances in untrimmed videos. Previous
methods can be divided into two categories: one-stage and two-stage.
The one-stage methods integrate proposal generation and classification
into an end-to-end structure, and achieve higher efficiency [30,31].
TURN [32] aggregated features from basic video unit for clip-level
features, which are used to classify the activity and regress the tem-
poral boundary. R-C3D [8] took the inspiration from faster-RCNN [33]
and utilized a streamline including proposal generation, proposal-wise
pooling and final prediction. GTAN [9] modified the pooling proce-
dure, adopting a weighted average via a learnable gaussian kernel for
each proposal. AFSD [7] proposed a purely anchor-free model with
saliency-based refinement module and boundary pooling mechanism,
and obtained boundary-sensitive features for action localization. By
contract, the two-stage method first generates action instances with
temporal boundaries and followed by classifier. These works mainly
focus on evaluating ‘actionness’, which indicates the probability of a
potential action, for each frame or clip in a video. BSN [3] adopted
three activeness curves to locate flexible proposal boundaries, and a
Boundary-Matching confidence map in BMN [4] was introduced to
generate better proposals. PGCN [5] used graph network to extract
features between different proposals, while DBG [6] used two feature
maps separately for completeness regression and temporal boundary
classification. Nevertheless, a large amount of labeled data are required
for model training, such methods are thus not economical when applied
in practical scenarios.

To tackle with the problem of large label cost, unsupervised and

semi-supervised methods are proposed recently [21–23,34]. ACL [34]
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Fig. 2. Active learning procedure diagram. At each cycle, the most informative samples are selected and annotated by the scoring function in the Query step, and then training
dataset is updated with newly annotated samples and newly pseudo-labeled samples. As the training dataset updates in the loop, the trained model evolves to have better
performance with fewer label cost.
defined a ‘‘cluster-localize’’ pipeline for localizing action instances with-
out any manual annotations for training. KFC [21] added perturbations
to each feature along temporal axis and employed consistency regu-
larization to encourage the model to retain this observation. Besides,
some works intend to generate action proposals, and then performs
localization. For example, Ji et al. [23] is the first to incorporate semi-
supervised learning in action proposals generation to achieve the la-
bel efficiency. SSTAP [22] designed a temporal-aware semi-supervised
branch and a relation-aware self-supervised branch to better explore
unlabeled videos. However, video samples are randomly selected for
annotating in these methods, thus neglecting the discrepancy between
them. Different from randomly labeling in previous semi-supervised
methods, our AL-STAL employs the knowledge of network itself and
prioritizes labeling the informative samples other than the normal ones.

2.2. Active learning

Active learning aims to select the most useful samples from the
unlabeled dataset and hand it over to the annotator for labeling, so as to
reduce the cost of labeling as much as possible while still maintaining
performance [35]. The key hypothesis is that, if the learning algorithm
is allowed to choose the data from which it learns to be ‘‘curious’’,
it will perform better with less training data [36]. Active learning
methods have been used in many areas, such as speech recognition,
information extraction and computer vision [37]. Here, we mainly
focus on active learning in computer vision.

Most previous works are focused on image classification, such
as [24,26–28,38–40]. For example, Gal [39] proposed an active learn-
ing method that obtains uncertainty estimation through multiple for-
ward passes with Monte Carlo Dropout. Yoo [40] created a module
that learns to predict loss of input images and selected the unlabeled
image with the higher predicted loss. CEAL [24] assigned pseudo-
labels to samples with high confidence and added them to the highly
uncertain sample set queried using the uncertainty-based active learn-
ing method, then used the expanded training set to train the active
image classifier. Also, there are very few works of deep active learning
for object detection [29,41,42]. [42] considered both the uncertainty
and the robustness of the object detector, ensuring that the network
performs accurately in all classes. [29] constructed a novel active
learning method based on the ‘‘query by committee’’ paradigm which
improves the performance with less label cost. Compared with images,
which require only the processing of spatial features, video tasks
need to process temporal features. This makes the work of annotat-
ing video tasks more expensive, driving introducing active learning
more urgent. DeActive [43] proposed an active activity recognition
model and accumulated the most informative and meaningful labeled
samples. Compared with the traditional activity recognition model,
DeActive requires fewer labeled samples, consumes less resources,
and achieves high recognition accuracy. USAP [44] proposed a novel
3

uncertainty sampling algorithm for action recognition using expected
Average Precision (AP), and calculated the expected AP using dynamic
programming in polynomial time. Despite of the existing progress
in these research areas described above, active learning for TAL is
rarely studied. When facing with temporally-correlated action instance,
directly adopting previous active learning method to train an action
localizer would achieve limited performance.

3. Methods

In this section, we will formally introduce AL-STAL. To facili-
tate understanding, Section 3.1 first provides necessary notations and
overview of AL-STAL. Then, Section 3.2 introduces the base model for
TAL. Next, Section 3.3 depicts a frame-level scoring function for sample
selection, named Temporal Proposal Entropy (TPE). And Section 3.4
depicts the other frame-level scoring function, named Temporal Con-
text Inconsistency (TCI). Finally, Section 3.5 describes how to aggregate
frame-level score into video-level score.

3.1. Preliminary and overview

Initially, a video action dataset 𝜒 is divided into a small set of
labeled video samples 𝜒0

𝐿 and a large set of unlabeled video samples
𝜒0
𝑈 , where each sample

(

𝑉𝑖, 𝛹𝑉𝑖

)

contains a video 𝑉𝑖 =
{

𝑣𝑖𝑡
}𝑇
𝑡=1 with

𝑇 RGB frames or optical flows and the corresponding annotation 𝛹𝑉𝑖 .

𝛹𝑉𝑖 can be depicted as tuples 𝛹𝑉𝑖 =
{(

𝜏𝑠𝑛,𝑖, 𝜏
𝑒
𝑛,𝑖, 𝑦

𝑖
𝑛

)}𝑁𝑖

𝑛=1
, where 𝑁𝑖 is the

number of action instances in 𝑉𝑖, 𝜏𝑠𝑛,𝑖, 𝜏
𝑒
𝑛,𝑖 denote the start and end time

of the 𝑛th action instance respectively, 𝑦𝑖𝑛 ∈ R𝐶 is the action category,
𝐶 is the number of category. Thus, 𝜒0

𝐿 =
{(

𝑉𝑖, 𝛹𝑉𝑖

)}𝑁𝐿

𝑖=1
, 𝜒0

𝑈 =
{

𝑉𝑖
}𝑁𝑈
𝑖=1 ,

where 𝑁𝐿 and 𝑁𝑈 are the corresponding number of videos in labeled
and unlabeled sets.

Assume that there are 𝑀 active learning cycles in model training,
different amounts of data are labeled in each cycle. We apply pseudo
labels to samples in the unlabeled pool by utilizing model trained on the
combination of labeled samples and previously pseudo-labeled samples.
Then a set of localization networks are trained in these cycles, and can
be defined as

{

𝜱𝟏,𝜱𝟐,… ,𝜱𝑴
}

. Also, during the training process of
𝑀 cycles, we mine a subset of samples 𝜒𝐴 from the unlabeled data
pool 𝜒𝑈 and append them to the labeled set 𝜒𝐿 after annotating in
each cycle. For instance, a localization network 𝜱𝟎 is firstly trained
on initial labeled set 𝜒0

𝐿. Using the trained model 𝜱𝟎 in the initial
cycle, samples in 𝜒0

𝑈 are pseudo-labeled. Then, active learning aims
to select a set of videos 𝜒0

𝐴 from 𝜒0
𝑈 to be manually annotated and

append them to the updated labeled set 𝜒1
𝐿, depicted as 𝜒1

𝐿 = 𝜒0
𝐿 ∪ 𝜒0

𝐴.
In the same time, the unlabeled set is also updated by removing these
selected samples, depicted as 𝜒1

𝑈 = 𝜒0
𝑈∖𝜒

0
𝐴. In order to obtain the

0
appropriate 𝜒𝐴, a video-level score 𝑠 is introduced for evaluating the
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𝜏

𝜏

Fig. 3. The iteration of 𝑀 active learning cycles. In these cycles, samples in 𝜒𝐴 are
annotated, and unlabeled pool 𝜒𝑈 and labeled pool 𝜒𝐿 are updated.

informativeness of unlabeled video samples. Using score 𝑠, unlabeled
videos are sorted in descending order for sample selection, and 𝜒0

𝐴
consists of the top 𝑘 videos with higher scores. Next, a new localization
model 𝜱𝟏 is trained with the updated labeled set 𝜒1

𝐿 and unlabeled set
𝜒1
𝑈 . The localization model training and sample selection process are

repeated for 𝑀 cycles, and finally a well-trained localization model 𝜱𝑴
is obtained. The pipeline of 𝑀 cycles is shown in Fig. 3.

The selected video samples are expected to be the most informa-
tive ones for model training and are able to promote the localization
performance as much as possible. Due to the limited label budget,
usually only a portion of samples are selected, which raises a key issue:
how to measure the informativeness of video samples. To tackle with this
issue, two scoring functions are proposed to evaluate and select highly-
informative videos based on the output of localization network, which
will be defined in Sections 3.3 and 3.4. Below, we will give the details
of AL-STAL. Fig. 4 shows a brief description of the procedure in the
𝑚th cycle, which will be elaborated subsequently. Also, Algorithm 1
demonstrates the algorithmic steps of our proposed method.

3.2. Action localization network

Network Architecture. As for base model for TAL, we construct
an I3D-based network with classification head and regression head
like AFSD [7], a brief introduction is shown in Fig. 5. Specifically,
the base model takes a video 𝑉𝑖 as input, and mainly composes of
three parts: feature extraction, coarse prediction and refined prediction.
Firstly, a Kinetics pre-trained I3D [45] model is adopted to extract
3D video feature 𝐹𝑖 ∈ R𝑇×𝐷×𝐻×𝑊 , where 𝑇 ,𝐷,𝐻,𝑊 denote the time
step, feature dimension, height and width respectively. This feature is
afterwards flattened along the last three dimensions to a 1D feature
sequence which contains the temporal and spatial information of whole
video. A feature pyramid network (FPN) is introduced to extract fea-
tures in different length of temporal scales. Then, the extracted pyramid
features are further utilized to generate a coarse proposal sequence with
a basic anchor-free prediction module at each time step. The prediction
module comprises a boundary regressor and category classifier. At
last, a fine-grained prediction for both temporal regression and action
classification is output based on the extracted video feature.

For instance, the feature of the 𝑙th FPN level is denoted as 𝑓𝑖,𝑙 ∈
R𝑇𝑙×𝐷, where 𝑇𝑙 represents the length of sequence in this level. 𝑓𝑖,𝑙
is embedded into two latent space and processed with one layer of
temporal convolution to get coarse start and end boundary distances
(

𝑑𝑠𝑖,𝑙,𝑡, 𝑑
𝑒
𝑖,𝑙,𝑡

)

and coarse class score �̂�𝑐𝑜𝑎𝑟𝑠𝑒𝑖,𝑙,𝑡 for each location 𝑡. The start
and end time for 𝑡th time step in 𝑙th level are as follow:

𝜏𝑠𝑖,𝑙,𝑡 = 𝑡 × 2𝑙 − 𝑑𝑠𝑖,𝑙,𝑡,

𝜏𝑒𝑖,𝑙,𝑡 = 𝑡 × 2𝑙 − 𝑑𝑒𝑖,𝑙,𝑡.
(1)

Through the network in anchor-free manner, 𝑇𝑙 proposals are gen-
erated for 𝑙th FPN layer in all. Firstly, coarse predictions of action
category �̂�𝑐𝑜𝑎𝑟𝑠𝑒𝑖,𝑙,𝑡 and temporal boundary

(

𝜏𝑠𝑖,𝑙,𝑡, 𝜏
𝑒
𝑖,𝑙,𝑡

)

are output. Next,
a saliency-based refinement module 𝛩 is designed for further improve
video proposal classification and boundary regression. The refinement
module is able to predict a refined class score �̂�𝑟𝑒𝑓𝑖𝑛𝑒 and the offsets of
4

𝑖,𝑙,𝑡
boundary regression
(

𝛥𝜏𝑠𝑖,𝑙,𝑡, 𝛥𝜏
𝑒
𝑖,𝑙,𝑡

)

, which can be added to the coarse

predictions to get a fine-grained boundary result
(

𝜏𝑠𝑖,𝑙,𝑡, 𝜏
𝑒
𝑖,𝑙,𝑡

)

.
Training. The localization model can be optimized with the follow-

ing objective function:

𝐿𝑜𝑠𝑠 = 𝑙𝑐𝑜𝑎𝑟𝑠𝑒𝑐𝑙𝑠 + 𝜆𝑙𝑐𝑜𝑎𝑟𝑠𝑒𝑙𝑜𝑐 + 𝑙𝑟𝑒𝑓𝑖𝑛𝑒𝑐𝑙𝑠 + 𝑙𝑟𝑒𝑓𝑖𝑛𝑒𝑙𝑜𝑐 + 𝛾𝑙𝑞 , (2)

where 𝜆, 𝛾 are hyper-parameters. The generated proposal at 𝑡th time
step corresponds to the ground truth segment

(

𝜏𝑠𝑖,𝑙,𝑡, 𝜏
𝑒
𝑖,𝑙,𝑡, 𝑦𝑖,𝑙,𝑡

)

, then
𝑙𝑐𝑐𝑙𝑠, 𝑙

𝑟
𝑐𝑙𝑠 are softmax focal loss [46] between both classification predic-

tion
{

�̂�𝑐𝑖,𝑙,𝑡, �̂�
𝑟
𝑖,𝑙,𝑡

}

and ground truth label 𝑦𝑖,𝑙,𝑡. 𝑙𝑐𝑜𝑎𝑟𝑠𝑒𝑙𝑜𝑐 is a tIoU (temporal
Intersection over Union) loss between coarse boundary and ground
truth, 𝑙𝑟𝑒𝑓𝑖𝑛𝑒𝑙𝑜𝑐 is a L1 loss between predicted offset and the corresponding
offset label. 𝑙𝑞 is a quality loss used to suppress the proposals with low
quality.

Inference (Pseudo-label). We perform model inference on the un-
labeled set, and thus generate pseudo labels for each sample. For the 𝑡th
temporal location in 𝑙th FPN layer, the final predictions 𝜏𝑠𝑖,𝑙,𝑡, 𝜏

𝑒
𝑖,𝑙,𝑡, �̃�

𝑐
𝑖,𝑙,𝑡

are formalized through all outputs from our model, including coarse
predictions 𝜏𝑠𝑖,𝑙,𝑡, 𝜏

𝑒
𝑖,𝑙,𝑡, �̂�

𝑐
𝑖,𝑙,𝑡 and refined ones 𝛥𝜏𝑠𝑖,𝑙,𝑡, 𝛥𝜏

𝑒
𝑖,𝑙,𝑡, �̂�

𝑟
𝑖,𝑙,𝑡. Specific

details are shown in the following form:

�̂�𝑖,𝑙,𝑡 = 𝜏𝑒𝑖,𝑙,𝑡 − 𝜏𝑠𝑖,𝑙,𝑡,

̃𝑒𝑖,𝑙,𝑡 = 𝜏𝑒𝑖,𝑙,𝑡 +
1
2
�̂�𝑖,𝑙,𝑡𝛥𝜏

𝑒
𝑖,𝑙,𝑡,

̃𝑠𝑖,𝑙,𝑡 = 𝜏𝑠𝑖,𝑙,𝑡 +
1
2
�̂�𝑖,𝑙,𝑡𝛥𝜏

𝑠
𝑖,𝑙,𝑡,

�̃�𝑖,𝑙,𝑡 =
1
2

(

�̂�𝑐𝑖,𝑙,𝑡 + �̂�𝑟𝑖,𝑙,𝑡
)

.

(3)

Besides, Soft-NMS [47] is used to assemble all predictions and
suppress redundant proposals.

3.3. Temporal Proposal Entropy (TPE) for sample selection

Entropy is an information-theoretic measure which represents the
amount of information needed to ‘‘encode’’ a probability distribution.
Thus, it is often considered as a reasonable measure of uncertainty. The
entropy function is defined as H (𝑝) = −

∑

𝑝𝑖 log
(

𝑝𝑖
)

, where 𝑝 repre-
sents a probability distribution. Entropy-based active learning methods
consider entropy value of the posterior probability in classification as
a measure of sample uncertainty, and have been commonly used for
classification problem.

An intuitive way to adopt these methods for TAL is to choose the set
of videos that are hard for video classification. However, in such way,
the nature of action localization would be neglected. For one thing,
the input of TAL is a long and untrimmed video, the expected action
instances with short durations are included in the video, indicating that
the difficulties between classifying the whole video and classifying the
instance-level action categories would be different. For another, the
expected action instance may easily be temporally localized even if the
whole video tends to be misclassified. The expected action instance
may easily stand out in the whole video. For example, an temporal
action localizer may have no trouble in localizing an instance of rip-
jump in a long video of human walking, while an action classifier may
misunderstand according to the instance-level label ‘‘Jump’’. Therefore,
we consider a set of temporal proposals for each video sample, and then
obtain predictions corresponding to these proposals. Finally, entropy
measure is introduced for sample selection.

For each video sample 𝑉𝑖 in the unlabeled pool 𝜒0
𝐿, the temporal

proposal with respect to the 𝑡th temporal location belongs to a certain
class 𝑦𝑖,𝑙,𝑡 ∈ {1,… , 𝐶}. Thus, we can consider the class membership
variable to be a random variable, denoted by 𝑌 . According to the action
localization network described in Section 3.1, we are able to obtain the
predicted posterior distribution �̃�𝑖,𝑙,𝑡 for 𝑌 , so that the discrete entropy
of 𝑌 can be estimated by:

H (𝑌 ) = −
𝐶
∑

�̃�𝑐𝑖,𝑙,𝑡 log
(

�̃�𝑐𝑖,𝑙,𝑡
)

. (4)

𝑐=1
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Fig. 4. The Framework of our Active Learning for Semi-supervised Temporal Action Localization (AL-STAL). We first train the TAL model with initial labeled data and pseudo-labeled
data. Sample selection is then accomplished in support of popping videos from the unlabeled pool, where scoring functions are designed for estimating the probability of samples
to be selected. Finally, the selected samples are manually annotated and pushed in the labeled pool for further training. The red and blue arrows indicate the Query step and
Append step in active learning loop respectively.
𝑦

Fig. 5. Base model for TAL. Taking a video 𝑉𝑖 as input, we extract temporal pyramid
features with I3D model. Next, features are utilized to generate coarse proposals via
basic prediction module. Finally, the class scores, start and end boundaries of coarse
proposals are adjusted by refinement module.

In TPE, the estimated discrete entropy of temporal proposal is taken
as the frame-level score for sample selection, defined as 𝑠𝑖 [𝑡] = H(𝑌 ),
then score aggregation function is utilized to obtain the video-level
score 𝑠𝑖.

3.4. Temporal Context Inconsistency (TCI) for sample selection

Given a long, untrimmed video 𝑉𝑖, we firstly choose a video segment
𝑆𝑒𝑔1 = 𝑉𝜏𝑠∶𝜏𝑒 in this video, where 𝜏𝑠, 𝜏𝑒 represent the start and end
time of this segment respectively. And in the temporal context of 𝑆𝑒𝑔1,
another video segment 𝑆𝑒𝑔2 = 𝑉𝜏′𝑠∶𝜏′𝑒 is obtained by randomly shifting
along the temporal axis, where 𝜏𝑠′ ∈

[

𝜏𝑠 − 𝜀, 𝜏𝑠 + 𝜀
]

, 𝜏𝑒′ ∈
[

𝜏𝑒 − 𝜀, 𝜏𝑒 + 𝜀
]

.
The hypothesis of temporal context consistency is that the predicted
category distributions for these two adjacent segments 𝑆𝑒𝑔1 and 𝑆𝑒𝑔2
are similar, if the spatio-temporal information of the segments have
been adequately seen by the network during training. Otherwise, if
there are false predictions between these two segments, the divergence
between the predicted category distributions of 𝑆𝑒𝑔1 and 𝑆𝑒𝑔2 will be
high. When observing the whole time steps, the high divergence be-
tween adjacent time steps will lead to temporal context inconsistency.
Thus, by computing the divergence of predictions locally, we will be
5

able to approximate the degree to which the prediction of a temporal
proposal in the corresponding location is incorrect.

For each video sample 𝑉𝑖 in the unlabeled pool 𝜒0
𝑈 , the predicted

category distribution of temporal proposal corresponding to the 𝑡th
temporal location is �̃�𝑖,𝑙,𝑡 ∈ R𝐶 , the distribution of all proposals is
�̃�𝑖,𝑙 ∈ R𝑇𝑙×𝐶 . Our aim is to find how temporally-inconsistent these
adjacent proposals are from each other, based on the divergence com-
puted in a local context centered at the 𝑡th time step. Firstly, action
proposal corresponding to the 𝑡th time step is considered as anchor
proposal. With the reference to the local context, the expected category
distribution temporally is computed as:

̃𝑒𝑖,𝑙 =
1

2𝑟 + 1

𝑡+𝑟
∑

𝑗=𝑡−𝑟
�̃�𝑖,𝑙,𝑗 , (5)

where 𝑟 represents the radius on temporal axis, the higher 𝑟 indicates
the wider range of local temporal context. The frame-level score at the
𝑡th time step is then obtained as follows:

𝑠𝑖 [𝑡] = H
(

�̃�𝑒𝑖,𝑙
)

− 1
2𝑟 + 1

𝑡+𝑟
∑

𝑗=𝑡−𝑟
H
(

�̃�𝑖,𝑙,𝑗
)

, (6)

where H (𝑝) = −
∑

𝑝𝑖 log
(

𝑝𝑖
)

, we then have:

𝑠𝑖 [𝑡] = −
𝐶
∑

𝑐=1

(

�̃�𝑒𝑖,𝑙
)

log
(

�̃�𝑒𝑖,𝑙
)

+ 1
2𝑟 + 1

𝑡+𝑟
∑

𝑗=𝑡−𝑟

𝐶
∑

𝑐=1
�̃�𝑐𝑖,𝑙,𝑡 log

(

�̃�𝑐𝑖,𝑙,𝑡
)

. (7)

Through the difference between the entropy of average predictions
and the mean entropy of predictions, this score mainly indicate the
mutual information between the predicted category distribution of
anchor proposal and that of its neighbors. It turns out that 𝑠𝑖 [𝑡] will
be high if temporal inconsistency occurs in the context of 𝑡th time step.

3.5. Score aggregation

The obtained frame-level score 𝑠𝑖 [𝑡] described above implies the
informativeness of action instance proposal in each temporal location.
However, 𝑠𝑖 [𝑡] is impractical to rank the unlabeled video samples and
decide which one would be manually annotated. Given a video sample
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𝑉𝑖, it is appropriate to use a scalar 𝑠𝑖 to represent the probability to
be annotated. To this end, we specifically consider three functions for
aggregating the frame-level score 𝑠𝑖 [𝑡] to a scalar 𝑠𝑖.

Maximum frame-level scores. These scores are then maxpooled along
the temporal axis:

𝑠𝑖 = max
𝑡∈[1,𝑇𝑙]

𝑠𝑖 [𝑡]. (8)

Sum frame-level scores. These scores are then summarized:

𝑠𝑖 =
∑

𝑡∈[1,𝑇𝑙]
𝑠𝑖 [𝑡]. (9)

Mean-Max frame-level scores. We equally divide the temporal scale
𝑇𝑙 into several non-overlapping regions, and adopt mean-max operation
on the frame-level scores. Specifically, the number of regions is denoted
as 𝑁𝑅, the maximum frame-level score of the 𝑘th region 𝑅𝑘 is firstly
omputed, and then these local maximum scores are averaged.

𝑖 =
1
𝑁𝑅

𝑁𝑅
∑

𝑘=1
max
𝑡∈𝑅𝑘

𝑠𝑖 [𝑡]. (10)

Algorithm 1 Active Learning For Semi-supervised Temporal Action
Localization
Input: Initial set of labeled videos 𝜒0

𝐿,
Acquisition pool of unlabeled videos 𝜒0

𝑈 ,
Score aggregation function 𝜑,
Number of active learning cycles 𝑀 ,
Number of query samples in each cycle 𝑘.

Output: A well-trained TAL model 𝜱𝑴 .
1: Train an localization model 𝜱𝟎 on initially-labeled data 𝜒0

𝐿 and
generate pseudo labels for unlabeled data 𝜒0

𝑈 .
2: for current cycle 𝑚 ∈ [1,𝑀] do
3: Train model 𝜱𝒎 using samples in 𝜒𝑚

𝐿 with ground-truth labels
and samples in 𝜒𝑚

𝑈 with pseudo labels.
4: for each video sample 𝑉𝑖 ∈ 𝜒𝑚

𝑈 do
5: Classify and regress temporal boundaries of action instances

�̃�𝑖, 𝜏𝑠𝑖 , 𝜏
𝑒
𝑖 ← 𝜱𝒎

(

𝑉𝑖
)

.
6: Compute frame-level score 𝑠𝑖 [𝑡] of each temporal location by

TPE/TCI, based on Equation (4-7).
7: Aggregate frame-level scores 𝑠𝑖 ← 𝜑

(

𝑠𝑖 [𝑡]
)

, 𝑡 ∈
(

1, 2,⋯ , 𝑇𝑙
)

,
based on Equation (8-10).

8: end for
9: Sort the unlabeled videos in 𝜒𝑚

𝑈 by video-level scores 𝑠𝑖.
10: Select top-k samples 𝜒𝑚

𝐴 ←
{

𝑉𝑖
}𝑘
𝑖=1.

11: Update dataset 𝜒𝑚+1
𝐿 ← 𝜒𝑚

𝐿 ∪𝜒𝑚
𝐴 , 𝜒𝑚+1

𝑈 ← 𝜒𝑚
𝑈 ∖𝜒𝑚

𝐴 .
12: end for

4. Experiments and results

In this section, we firstly describe experimental settings for a fair
comparison in Section 4.1. Then, the comparison with the state-of-the-
art methods is demonstrated in Section 4.2. Finally, we show the results
of ablation study in Section 4.3.

4.1. Experimental settings

Dataset. To validate the effectiveness of our method, we con-
duct extensive experiments on commonly-used benchmark datasets,
THUMOS’14 [48], ActivityNet 1.3 [49] and ActivityNet 1.2 [50]. THU-
MOS’14 originally comes from the challenge on temporally untrimmed
videos held in 2014, and consists of 200 validation videos and 212
testing videos from 20 categories labeled for temporal localization. In
our experiments, videos are split into 7982 samples for training, each
sample consists of an action instance. ActivityNet 1.3 has 19 994 videos
with 200 action classes. The whole dataset is divided into training,
validation and testing subset by 2:1:1. ActivityNet 1.2 contains 4819
6

training videos, 2383 validation videos, 2480 testing videos, and 100
classes.

Metrics. We utilize two metrics for evaluating our proposed method
respectively. Given the fixed label budget (i.e., the fixed labeled sam-
ples), we evaluate the localization performance of models trained with
different amount of video samples in different cycles. Given the fixed
localization performance, we evaluate the label cost of models for train-
ing.

We take mean Average Precision (𝑚AP) at certain tIoU thresholds
as the main localization metric. The average precision (AP) is a way to
summarize the precision–recall curve into a single value representing
the average of all precisions. After calculating the AP for each class,
the mean of the APs for all classes is the mAP. The thresholds are
[0.3, 0.4, 0.5, 0.6, 0.7] for THUMOS’14 and [0.5, 0.75, 0.95] for ActivityNet
.3. Relative Saving (RS) of label cost is used to evaluate the capability
f proposed method about reducing label cost. When achieving the
ame localization performance, 𝑁𝐴 labeled samples are needed in
ethod 𝐴, while 𝑁𝐵 labeled samples are needed in method 𝐵, then
S value of 𝑁𝐴 compared to 𝑁𝐵 can be computed as follows:

𝑆 =
𝑁𝐵 −𝑁𝐴

𝑁𝐵
× 100%, (11)

As shown in Eq. (11), 𝑅𝑆 > 0 indicates that fewer label cost is needed
in method 𝐴 than that in method 𝐵. The higher RS value is, the larger
label cost will be saved.

Competitors. In addition to the self-comparison experiments, our
proposed AL-STAL is compared with the state-of-the-art unsupervised
method (ACL) and semi-supervised methods (SSTAP, MTMD, KFC,
Semi-AFSD) with only 10% or 60% labeled data.

• ACL [34] Without any manual annotation, the ACL approach
defined a ‘‘cluster-localize’’ pipeline to generate pseudo labels for
training a TAL model.

• SSTAP [22]. The SSTAP method designed different temporal se-
quential perturbations and defined classification, temporal order
prediction, consistency constraints for generating action proposals
to be localized.

• MTND [23]. The MTND method utilized time warping and time
masking as sequential perturbations and developed a novel frame-
work based on Mean Teacher [51].

• KFC [21]. The KFC approach adopted the K-farthest crossover as
feature perturbations and used supervised classification loss and
consistency loss simultaneously for training.

• Semi-AFSD [7]. The Semi-AFSD method directly trained the orig-
inal AFSD model with the randomly-selected labeled data.

• FM-BMN [52]. The FM-BMN method applied a semi-supervised
learning strategy FixMatch [53] based on a popular proposal
generation method BMN [4].

• SPOT [52]. The SPOT method proposed a proposal-free model and
introduced a pre-training procedure to gradually refine the action
boundaries.

Also, the base action localizer in AL-STAL with fully-supervised
training is served to provide an upper bound performance for our learn-
ing scenario. To be specific, we directly train the action localization
network with full training set (equivalent to reproduction of AFSD)
and report the performance of AFSD as the Oracle for comparison.
Even though most competitors conducted experiments on both datasets,
there are a few competitors which only reported their results on one
dataset. For fair comparison, we follow most of competitors and use
I3D feature.

Implementation details. For base TAL model, we follow the former
setting of AFSD. On THUMOS’14, both RGB and optical flow frames are
sampled at 10 frames per second (fps) and videos are split into clips.
The length of each clip 𝑇 is set as 256 frames. Adjacent clips have a
temporal overlap of 30 frames in training and 128 frames in testing.

On ActivityNet1.3, we sample frames using different fps and ensure
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the number of video frames is 768 for each video. We finetune a pre-
trained I3D [45] model, and the whole localization model is trained for
25 epochs using Adam [54] with learning rate of 10−5, weight decay
of 10−3. Batchsize is set to 1, the weight of loss 𝜆 is set to 10 on
THUMOS’14 and 1 on ActivityNet 1.3 and 𝛾 is set to 1 on both datasets.
In the testing phase, the results of RGB and optical flow frames are
averaged to obtain final predictions.

For AL-STAL method, we use the same settings on THUMOS’14 and
ActivityNet 1.3. 𝑘 is set to 0.05×|𝜒|, where |𝜒| is the number of samples
in the whole dataset, i.e. only 5% unlabeled samples are selected in
each cycle. The initial number of samples in 𝜒0

𝐿 is also 0.05 × |𝜒| for
oth datasets. In the Mean-Max score aggregation, we set 𝑁𝑅 as 4, four
emporal regions are utilized for aggregation.

.2. Comparison with the state-of-the-art

We compare our active learning method with the state-of-the-art
ethods and report the localization performance and labeled data used

y each method, both results of competitors and our experiments are
used by RGB and optical flow.

omparison on THUMOS’14. Table 1 compares our AL-STAL with the
tate-of-the-art semi-supervised and unsupervised action localization
ethods on THUMOS’14. We report 𝑚AP at different tIoU thresholds,

s well as average 𝑚AP (Avg.). When using 10% labeled data, our AL-
TAL obtains a score of (59.4%, 53.8%, 45.7%, 34.8%, 21.9%) for the
etrics mAP at different tIoU thresholds, and reaches an average 𝑚AP

f 43.1%. When using 60% labeled data, our AL-STAL outperforms the
ompetitors MTND, Semi-AFSD, SSTAP, KFC, FM-BMN and SPOT by
large margin, the improvements of average 𝑚AP are 11.2%, 13.5%,

.2%, 6.8%, 11.5% and 7.2% respectively. The competitors can only
chieve limited performance as they overlook the discrepancy in in-
ormativeness between video samples. The consistent advantages when
sing 10% and 60% labeled data indicate that our proposed active
earning method is able to improve localization performance through
ontinuously selecting the highly-informative samples for annotation. It
s worth noting that when the amount of labeled data decreases from
0% to 10%, there is a significant drop of average 𝑚AP in MTND,
STAP, FM-BMN and SPOT (37.2% → 26.1%, 39.2% → 27.7%, 36.9%

24.3%, 41.2% → 31.0%). Compared with these methods, there is a
inor gap between the mAP performance of our AL-STAL with 60%

nd 10% labeled data (48.4% → 43.1%), indicating that AL-STAL is
elatively insensitive to the decrease of labeled data. The reason is that
he 10% labeled samples in AL-STAL are more informative, thus most of
nherent information for supervision has been maintained for training,
ven though the amount of labeled sample is sharply decreased from
0% to 10%.

When comparing with unsupervised method ACL, AL-STAL enjoys
significant 𝑚AP improvement only using 10% labeled data (43.1%
s. 24.1%), while the improvements of MTND, SSTAP, FM-BMN and
POT are evidently lower (26.1% vs. 24.1%, 27.7% vs. 24.1%, 24.3%
s. 24.1%, 31.0% vs. 24.1%.) This significant improvement shows our
L-STAL has favorable potential when label information is extremely

nsufficient. Due to the different percentages of labeled data for train-
ng, there is an inevitable gap between the results of AL-STAL and the
racle method (3.6% in average mAP). However, it should be noted

hat the gap is relatively slight when saving 40% label cost in the
eantime.
Comparison on ActivityNet 1.3. Like Table 1, we conduct exper-

ments on ActivityNet 1.3 for comparison using 10% and 60% labeled
ata and report the results in Table 2. As shown in Table 2, our AL-STAL
utperforms all the competitors when using 10% data, and achieves
etter or comparable performance when expanding the labeled set
nto 60%. Specifically, AL-STAL achieves (48.8%, 31.3%, 4.3%) for
he metrics 𝑚AP at different tIoU thresholds, and reaches an average
7

AP of 31.1% when using 10% labeled data. Compared with MTND,
Table 1
𝑚AP (%) results when comparing with state-of-the-art semi-supervised and unsupervised
methods on THUMOS’14.

Method Reference THUMOS’14

0.3 0.4 0.5 0.6 0.7 Avg.

0% labeled data
ACL [34] CVPR’20 36.9 32.9 25.0 16.7 8.9 24.1

10% labeled data
MTND [23] ICCV’19 43.4 34.4 25.8 17.4 9.5 26.1
SSTAP [22] CVPR’21 45.5 35.9 27.6 18.4 11.1 27.7

FM-BMN [52] ECCV’22 42.0 32.8 23.0 15.9 8.5 24.3
SPOT [52] ECCV’22 49.2 40.0 31.3 22.4 11.9 31.0

AL-STAL@10% Ours 59.4 53.8 45.7 34.8 21.9 43.1

60% labeled data
MTND [23] ICCV’19 53.4 45.2 37.2 29.5 20.5 37.2

Semi-AFSD [7] CVPR’21 50.1 41.6 34.7 28.3 19.9 34.9
SSTAP [22] CVPR’21 56.5 48.8 39.4 30.5 20.7 39.2
KFC [21] TIP’21 57.7 51.5 43.3 32.4 22.9 41.6

FM-BMN [52] ECCV’22 53.8 46.2 37.8 28.7 19.5 36.9
SPOT [52] ECCV’22 58.4 50.0 41.9 33.2 22.5 41.2

AL-STAL@60% Ours 64.2 59.0 51.3 40.7 26.9 48.4

Oracle - 67.3 62.4 55.5 43.7 31.1 52.0

Table 2
𝑚AP (%) results when comparing with state-of-the-art semi-supervised
and unsupervised methods on ActivityNet 1.3.

Method Reference ActivityNet 1.3

0.5 0.75 0.95 Avg.

0% labeled data
ACL [34] CVPR’20 35.2 21.4 3.1 21.1

10% labeled data
MTND [23] ICCV’19 38.9 28.7 8.4 27.6
SSTAP [22] CVPR’21 40.7 29.6 9.0 28.2

FM-BMN [52] ECCV’22 36.8 27.9 8.0 26.9
SPOT [52] ECCV’22 48.7 30.6 7.9 30.8

AL-STAL@10% Ours 48.8 31.3 4.3 31.1

60% labeled data
MTND [23] ICCV’19 49.8 34.5 7.0 33.5

Semi-AFSD[7] CVPR’21 49.0 31.4 5.9 31.2
SSTAP [22] CVPR’21 50.1 34.9 7.4 34.0
KFC [21] TIP’21 51.6 34.9 9.0 34.4

FM-BMN [52] ECCV’22 48.7 32.9 7.7 32.8
SPOT [52] ECCV’22 51.3 34.8 7.5 33.9

AL-STAL@60% Ours 50.3 34.7 7.8 34.1

Oracle - 52.4 35.3 6.5 34.4

SSTAP, FM-BMN and SPOT, the average 𝑚AP results are improved by
3.5%, 2.9%, 3.2% and 0.3% respectively. When using 60% labeled data,
AL-STAL surpasses the Semi-AFSD, MTND, SSTAP and FM-BMN, and
obtains comparable performance when compared with SPOT. When
comparing with KFC, our proposed AL-STAL performs slightly inferior
to this method (34.1% vs. 34.4%). The reason is that KFC constructs
complicated perturbations for model input, and employs additional
consistency regularization. From Table 3, we can observe KFC has
higher memory consumption and longer training time, which quan-
titatively demonstrates the complexity of perturbations in KFC. The
heavy pre-process on features turns KFC into complicated for practical
applications. Given its simplicity, AL-STAL achieves comparable perfor-
mance on ActivityNet 1.3, making AL-STAL worthy of further analysis.
Notably when decreasing the amount of labeled data from 60% to 10%,
only 3% average 𝑚AP is dropped in AL-STAL, while the performance
drops of MTND and SSTAP are 5.9% and 5.8% respectively. This result
again demonstrates that our proposed AL-STAL is able to harness the
informative samples and reserve the supervision information mostly for
training.

Besides, a superior performance can be found when comparing AL-
STAL with the unsupervised advanced method ACL. Only using 10%
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Table 3
Efficiency comparison of KFC and our proposed AL-STAL.

Method Perturbation Memory (MB) Time (s/epoch)

KFC ✔ 10834 157
AL-STAL ✘ 7491 104

Table 4
𝑚AP (%) results when comparing with state-of-the-art semi-supervised
and unsupervised methods on ActivityNet 1.2.

Method Reference ActivityNet 1.2

0.5 0.75 0.95 Avg.

0% labeled data
ACL [34] CVPR’20 37.9 22.5 3.0 22.3

10% labeled data
SPOT [52] ECCV’22 50.9 32.5 8.0 32.1

AL-STAL@10% Ours 51.2 33.7 6.2 32.8

60% labeled data
SPOT [52] ECCV’22 53.8 36.2 7.7 35.3

AL-STAL@60% Ours 53.2 36.5 7.9 35.9

Oracle - 54.7 37.2 7.1 36.9

labeled data, the 𝑚AP results are increased from (35.2%, 21.4%, 3.1%,
vg. 21.1%) to (48.8%, 31.3%, 4.3%, Avg. 31.1%). While MTND and
STAP achieve limited success in boosting performance using the same
mount of labeled data. At last, it can be found that there is a quite
light gap between AL-STAL and the Oracle method (only 0.3% average
AP). The comparable performance with only 60% labeled data proves

hat our method is able to maintain localization performance and
eanwhile reduce large amounts of label cost.
Comparison on ActivityNet 1.2. We re-implement competitors

(ACL and SPOT) on ActivityNet 1.2 and compare the 𝑚AP perfor-
mance with the proposed method in Table 4. As we can see, AL-STAL
obtains superior performance when comparing with semi-supervised
competitor SPOT (using 10% and 60% data). Specifically, AL-STAL
achieves (51.2%, 33.7%, 6.2%) for the metrics 𝑚AP at different tIoU
thresholds, and reaches an average 𝑚AP of 32.8% when using 10%
labeled data. Comparing with SPOT, the average 𝑚AP is improved from
32.1% to 32.8%. As for using 60% labeled data, AL-STAL achieves
(53.2%, 36.5%, 7.9%) for the metrics 𝑚AP at different tIoU thresholds,
and reaches an average 𝑚AP of 35.9%. Similarly, the average 𝑚AP is
improved by 0.6% (35.3% vs. 35.9%).

When comparing with unsupervised competitor ACL, our AL-STAL
obtains an evident improvement only using 10% labeled data (Avg.
22.3% vs. 32.8%). In addition, the performance of AL-STAL is slightly
inferior to the Oracle method when using 60% labeled data (Avg.
35.9% vs. 36.9%), showing a promising direction to train temporal
localization model under semi-supervised setting.

4.3. Ablation studies

To verify the effectiveness of the proposed method, we conduct
ablation studies on THUMOS’14 dataset. The ablation experiments are
mainly based on the RGB model, and the results are shown as follows,
including the choice of scoring function and unlabeled pool for sample
selection. In addition, optical flow model is involved for discussion.

Our aim is to select informative samples for annotating, rather
than randomly selecting labeled data. Thus, the baseline method and
proposed methods for ablation are as follows:

∙ Rand. We choose Random Sampling strategy (Rand.) as our base-
line for validation. According to Random Sampling, video samples
in the unlabeled pool 𝜒𝑈 are randomly selected and annotated in
each cycle. Nevertheless, the significant differences between the
informativeness of samples are neglected, and the selection scores
corresponding to these samples are randomly initialized.
8

Table 5
𝑚AP (%) at all the used tIoU thresholds and RS value (%) when using 25% labeled
training data on THUMOS’14.

Method tIoU thresholds RS Value

0.3 0.4 0.5 0.6 0.7

Rand. 48.63 43.10 35.09 24.92 14.05 0.00
TPE 53.06 47.72 39.11 28.06 15.85 64.16
TCI 52.67 47.33 39.75 29.15 16.55 65.86

∙ TPE. To evaluate the effectiveness of TPE, we replace the Random
Sampling strategy with TPE-based sample selection, which is
defined in Section 3.3.

∙ TCI. In the process of selecting video sample for annotation, we
replace the Random Sampling strategy with TCI-based sample
selection defined in Section 3.4.

Effectiveness of TPE and TCI. For fair comparison, we adopt the
same initialized model and labeled data at the initial cycle, and the
only variable in ablation experiments is the scoring function in sample
selection.

Fixed label budget. Fig. 6(a) shows the 𝑚AP performance with dif-
erent scoring functions in each cycle on THUMOS’14, the proportion
f labeled data for training is from 5% to 25%, and each 𝑚AP result

is obtained by average values in multiple trials. As shown in Fig. 6(a),
when comparing with baseline method of random sampling, our pro-
posed methods achieve significant improvements. We observe that
starting from the first two cycles, TPE and TCI outperform the baseline
by 3.03% and 3.59% respectively, and the performance improvement
maintains in the other active learning cycles. In the last cycle, where
we actively annotate 25% of training samples, TPE and TCI can have
3.04% and 3.22% average 𝑚AP improvement respectively. The evident
improvement shows that the proposed scoring functions is verified to
be effective in labeled dataset update. Finally, specific results on both
datasets when using 25% labeled training in the last cycle are shown
in Table 5. As shown in Table 5, our proposed method outperforms the
baseline at all the used tIoU thresholds, which again demonstrates the
effectiveness of our proposed method. In conclusion, given fixed label
budget, our method is able to boost the localization performance by
prioritizing labeling the informative video samples.

Fixed 𝑚AP performance. We report the RS value with different scor-
ng functions in each cycle on THUMOS’14, the proportion of labeled
ata for training is from 5% to 25%. Given the 𝑚AP performance of
aseline method in each cycle, the corresponding label cost and RS
alue of proposed method could be inferred with the 𝑚AP curve. Here,

we compute the RS value Likewise, the RS results are obtained by
average values in 5 trials. As shown in Fig. 6(b), TPE and TCI meth-
ods have large positive relative saving of label cost when comparing
with baseline, indicating AL-STAL can achieve comparable localization
performance with fewer labeled data. Besides, the RS value increases as
the labeled data enriches from 5% to 25%, showing that our AL-STAL
method is able to save label cost continuously as training set updates.
Specifically in Table 5, the RS values of TPE and TCI reach 64.16%,
65.86% respectively when using 25% labeled data. From this notewor-
thy results, we can conclude that when replacing random sampling with
TPE and TCI methods, over 60% annotation works are saved, and the
significant improvement fulfills our expectation of reducing label cost
for temporal action localization.

Instantiation of score aggregation. Frame-level scores 𝑠𝑖 [𝑡] , 𝑡 ∈
1, 2,… , 𝑇𝑙

)

need to be aggregated into a scalar 𝑠𝑖 to represent the
robability of samples to be manually annotated. Here, we compare our
roposed score aggregation function with the following three instantia-
ions: Max, Sum and Mean-max on THUMOS’14. Likewise, we increase
he proportion of labeled video samples from 5% to 20%, and present
he average 𝑚AP results in Table 6. Among all instantiations, TPE
ith Sum aggregation receives the best performance, achieving 26.21%,
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Fig. 6. (a) Mean average precision curve of scoring functions for sample selection on THUMOS’14 dataset. Each point in the plot is an average of 5 trials. (b) Relative label cost
saving of different sample selection methods on THUMOS’14 dataset.
Table 6
Avg. 𝑚AP (%) results with different score aggregations on THUMOS’14 dataset. M-max
represents Mean-Max.

Method Aggregation Labeled samples

Max Sum M-max 5.0% 10.0% 15.0% 20.0%

TPE
✓ 26.21 34.75 35.67 36.18

✓ 26.21 34.77 36.19 36.45
✓ 26.21 33.42 35.39 36.43

TCI
✓ 26.21 34.81 36.41 36.75

✓ 26.21 33.96 35.37 36.02
✓ 26.21 34.56 36.01 36.42

34.77%, 36.19%, 36.45% respectively. TCI is in good coordination with
the Max aggregation, reaching 26.21%, 34.81%, 36.41% and 36.75%.

RGB and Flow stream. In addition to the experiments with RGB
data stream, optical flow (Flow) data stream also serves as the input
of our model, and then both results of these two inputs are fused
for final prediction in this experiment. The results on THUMOS’14
dataset with different modalities are shown in Table 7. Similar to
RGB model, evident improvements could be obtained when replacing
random sampling with our proposed TPE and TCI method in the
experiments of Flow stream. Specifically when given 25% labeled data,
TPE offers 3.22% gains in average 𝑚AP as compared to using random
sampling, and TCI attains 3.37% improvement. Besides, the localization
performance could be further boosted with multi-modal fusion, and the
improvements also can be achieved in fusion results. Using 25% labeled
data, the average 𝑚AP of TPE and TCI method are reaching 44.39% and
44.74% respectively. The consistent improvements in RGB, Flow and
multi-modal fusion experiments again demonstrate the effectiveness of
our proposed AL-STAL method.

5. Conclusion and future work

In this paper, we focus on a rarely investigated yet practical problem
of expensive label cost in temporal action localization and propose
an effective active learning method for this task, named AL-STAL. We
address the motivation of only selecting highly-informative samples for
annotation, and present two scoring functions which facilitate the video
sample ranking and selection based on the uncertainty of localization
model. TPE takes entropy of predicted label distribution as measure
of uncertainty, and TCI introduces a new metric based on mutual
information between adjacent action proposals along the temporal axis.
Experiment results on THUMOS’14, ActivityNet 1.3 and ActivityNet 1.2
demonstrate the effectiveness and superiority of our proposed method.
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Table 7
Avg. 𝑚AP (%) results with different modalities on THUMOS’14 dataset.

Method Modality Proportion of labeled samples

RGB Flow 5.0% 10.0% 15.0% 20.0% 25.0%

Rand.
✓ 26.21 31.93 33.45 33.79 33.85

✓ 26.57 31.08 32.49 33.10 33.32
✓ ✓ 34.03 39.25 40.83 41.71 42.40

TPE
✓ 26.21 34.77 36.19 36.45 36.59

✓ 26.57 33.91 35.22 36.33 36.54
✓ ✓ 34.03 42.33 43.62 43.90 44.39

TCI
✓ 26.21 34.81 36.41 36.75 36.88

✓ 26.57 34.46 35.78 36.43 36.69
✓ ✓ 34.03 43.12 44.21 44.59 44.74

Furthermore, we consider that a comprehensive system including ac-
tive learning, weakly-supervised learning and semi-supervised learning
would benefit a larger reduction of label cost in practice. In our future
plan, active learning would incorporate multi-level supervisions (𝑒.𝑔.
video-level and instance-level) derived from annotators, and the labor
efforts would be continually saved.
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