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a b s t r a c t 

Scene text detection is challenging due to the diverse text appearance, the complex background, and the 

expensive labeling of training data. For detecting arbitrary-shaped texts, most existing methods require 

heavy data labeling efforts to produce polygon-level annotations for supervised training. In order to re- 

duce the cost in data labeling, we propose to combine center point annotation into mixed-supervised 

scene text detection, in which the dataset comprises small number of fully annotated images and large 

number of weakly annotated images by center points. For better incorporating point supervision, we 

adopt self-training strategy based on a detector which locates texts by predicting their centers. Besides, 

in order to weight the pseudo labels generated during self-training, we also propose a novel regres- 

sion uncertainty estimation module to measure the quality of detection results. Extensive experiments 

on five benchmark datasets (ICDAR2015, C-SVT, CTW1500, Total-Text and ICDAR-ArT) show that using 

small amount of polygon annotated data and large amount of center point annotated data, our detector 

can achieve competitive detection performance. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

Scene text detection [1–3] , which is a fundamental step for 

cene understanding, autonomous driving, and human-computer 

nteraction [4] , aims to localize the text instances in scene images. 

ince text instances in real-world are variable in scale, direction 

nd shape, most scene text detection methods [5–7] use polygon 

nnotation for training robust text detectors. However, the cost of 

olygon labeling is extremely high, limiting its large-scale exten- 

ion in real-world applications. 

To reduce the cost of data annotation, particularly for 

rbitrarily-shaped text detection, an alternative is to utilize 

eak annotations. Some methods [8,9] attempt to annotate texts 

ith bounding boxes, which can roughly distinguish the fore- 

round and background locations. For lowering labeling costs, 

u et al. [10] adopted scribble lines to depict the texts. Although 

hese annotations reduce the labeling costs to some extent, they 

id not lead to competitive performance, while the annotation cost 

s still considerable. In this paper, we propose to use the very 

heap center point annotation in mixed-supervised scene text de- 

ection, for achieving competitive performance at low labeling cost. 

e annotate each text instance in the image by one center point 
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or two main reasons. Firstly, The center point annotation provides 

trong prior of object location, which is suitable for supervising 

he training of detector. Secondly, compared with other annotation 

ormats, center point annotation is extremely cheap and suitable 

or large-scale data scenarios. To compare the costs of four an- 

otation methods, we roughly calculate the average time cost of 

our annotation methods (polygons, bounding boxes, scribble lines, 

nd the proposed center points) to label 500 images from ICDAR- 

rT [11] . As shown in Fig. 1 , the average time per image is about

min for annotating with polygons, 39s with bounding boxes, 25s 

ith scribble lines, and only 17s with center points. We thus aim 

o utilize the center point annotations to boost the detection per- 

ormance. 

Some researchers adopted weakly-supervised learning [8,10] or 

emi-supervised learning [12] to scene text detection. However, 

he big performance gap of these methods with the fully super- 

ised model makes them impractical for real applications. Another 

romising approach is to utilize mixed-supervised learning, where 

nly a part of data is strongly annotated and the rest is labeled 

ith weak supervision forms. This approach is very practical in 

eal scenarios, where it is easy to acquire a large number of scene 

mages but hard to annotate them in detailed object boundaries. 

n such cases, mixed-supervised learning enables utilizing weakly 

nnotated data to improve the model performance. 

In this paper, we propose a self-training based mixed- 

upervised method for training scene text detectors combining 

https://doi.org/10.1016/j.patrec.2023.04.004
http://www.ScienceDirect.com
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Fig. 1. Examples of four labeling methods and the time cost of using them to label an image. 
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olygon labels and center point labels. Firstly, for facilitating the 

ncorporation of point labels, we adopt a detector [9] , which lo- 

ates text instances by predicting their centers. Secondly, in or- 

er to utilize the weakly annotated data to boost the performance, 

e adopt a self-training strategy. Specifically, a teacher model is 

rst obtained by training with a small set of strongly annotated 

ata and then used to annotate the weakly annotated data with 

he guidance of point labels. In practice, there will inevitably be 

ome negative samples in the pseudo labels. To evaluate the qual- 

ty of pseudo label, we add a novel regression uncertainty estima- 

ion module to the detector. Finally, we mix the strongly annotated 

ata with weakly annotated data with pseudo labels, and use them 

o train a student model. The estimated uncertainties of pseudo 

abels are used to weight their supervisions, so as to reduce the 

mpact of negative samples. As far as we know, this is the first at- 

empt to accomplish scene text detection using point supervision. 

In summary, the contributions of this paper are in three folds: 

(1) We propose a novel mixed-supervised scene text detection 

ethod by training with small amount of fully annotated data and 

arge amount of weakly point annotated data. It achieves a good 

rade-off between annotation cost and detection performance. 

(2) We adopt a self-training strategy incorporating a novel re- 

ression uncertainty estimation module to utilize large amount 

oint annotated data for boosting detection performance. 

(3) Extensive experiments on two multi-oriented text datasets 

ICDAR2015 [13] and C-SVT [14] ) and three arbitrary-shaped text 

atasets (CTW1500 [15] , Total-Text [16] and ICDAR-ArT [11] ) show 

hat using only 10% strongly annotated data combined with 90% 

eakly annotated data, our model yields performance comparable 

o fully-supervised models. 

. Related works 

.1. Fully supervised scene text detection 

The existing methods for scene text detection can be roughly 

ivided into two types: regression-based and segmentation- 

ased. The former is mainly built on generic object detec- 

ors [17,18] . To detect multi-oriented (non-horizontal) texts, the 

aster-RCNN [17] was adopted with the anchor modified to a ro- 

ated form to fit multi-oriented texts [19] . Liao et al. [20] pro- 

osed TextBoxes, which modified the anchors and kernels of 

SD [18] to detect large-aspect-ratio scene texts. SegLink [3] pre- 

icts the bounding boxes of character segments and their links. 

n basis of the Densebox [21] , DDR [22] and EAST [1] detect 

ulti-oriented texts by regressing text boundary as quadrangle. 

u et al. [23] proposed CE-Text, in which a task-specified hierar- 

hical attention scheme is adopted to enhance feature representa- 

ion ability on the basis of context information. These methods can 

nly detect oriented texts. 

Segmentation based methods take semantic segmentation 

ethods [24] for reference, and utilize convolution operations to 

xtract semantic information form feature maps for pixel-level la- 

el prediction. PSENet [6] segments text instance by progressively 

xpanding kernels at different scales. MaskTextSpotter [5] regards 

rbitrary-shaped text detection as an instance segmentation prob- 
2 
em. Wang et al. [7] proposed a pixel aggregation network, which 

s equipped with a low computational-cost segmentation head and 

 learnable post-processor. Jain et al. [25] explored harmonic fea- 

ures to represent the text component shape variations for clas- 

ifying text and non-text components. These methods can de- 

ect arbitrarily-shaped texts, but usually require large amount of 

trongly annotated data (e.g., in polygonal form) for training. 

.2. Scene text detection with weak labels 

To alleviate the requirement of strongly annotated data, some 

eakly supervised scene text detection methods where proposed. 

eText [26] and CRAFT [27] use character-level labels to boost 

he word detection performance. While to alleviate the cost of 

haracter-level labeling, they train a character detector using a 

mall number of character-level annotated text images or syn- 

hetic data, and apply rules or threshold to pick the most reli- 

ble predicted candidates, to be used as additional supervisions 

o boost the performance of word detector. Some other meth- 

ds [8,10,14] use partially annotated data to train the text detec- 

or. Specifically, Wu et al. [10] use scribble line annotated text im- 

ges in weakly supervised framework for scene text detection. Sun 

t al. [14] published a large dataset, where each image is only 

nnotated with one dominant text, and proposed an algorithm 

o combine these partially annotated data and strongly annotated 

ata for joint training. Wu et al. [8] proposed to train arbitrarily- 

haped text detector with bounding boxes annotated data in dy- 

amic self-training strategy. Further, Liu et al. [12] proposed a 

emi-supervised text detection framework named SemiText, which 

rstly used fully annotated synthetic dataset for pretraining, then 

onducted inductive and transductive semi-supervised learning on 

he unlabeled data. 

Although these methods can reduce the cost of annotation sig- 

ificantly, their performance is far inferior to the fully supervised 

odels. In this paper, we propose to train detector using text im- 

ges annotated as center points, which are much cheaper and eas- 

er to annotate compared to polygons, bounding boxes, and lines. 

o better trade off between annotation cost and performance, we 

ropose a mixed-supervised learning strategy with a center based 

etector. Using only a small set of strongly annotated images and 

arge amount of weakly annotated images, our mixed-supervised 

odel can yield competitive performance. 

. Method 

.1. Point annotations 

We annotate each text instance with a center point (see Fig. 1 ). 

s a weak supervision, point labeling has been used to reduce the 

nnotation time for semantic segmentation [28] and generic ob- 

ect detection [29] , but it has not been explored well in scene text 

etection. The existing methods [22,30] usually treat scene text de- 

ection as a multi-task learning problem consisting of classifica- 

ion and regression. The classification task is to classify the pixels 

nto text and non-text. Since, the center point annotation contains 
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Fig. 2. Illustration of the structure of the text detector. 
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Fig. 3. The architecture of the detection head added with regression uncertainty 

estimation module. 
trong prior of text location, it is suitable for supervising the train- 

ng of text detector. With the guidance of text center, the text de- 

ection degenerates into a simpler task: regressing the offsets from 

he given points to the text contours. 

To evaluate the effectiveness of the mixed-supervised text de- 

ection in experiments, the weak labels are generated from the 

olygon-level labels provided by public datasets. In real applica- 

ions, the annotator only needs to click within the midpoint of the 

ext centerline without being very accurate. This is a very natural 

ay for people to find text in the image. 

.2. Basic detection model 

The detector of [9] is suitable for incorporating point supervi- 

ion because it localizes text instance by predicting their center 

oints. The whole architecture is illustrated in Fig. 2 . The frame- 

ork consists of four modules: backbone network, text proposal 

etwork, contour initialization network, and contour deformation 

etwork. Specifically, text proposal network generates horizontal 

ext proposals based on features extracted by the backbone net- 

ork. Given the original features and text proposals, the contour 

nitialization network are used to get more accurate and suitable 

nitial contour for each text instance. Finally, the contour deforma- 

ion network takes the initial text contours and original features as 

nput, and perform iterative contour regression to produce outputs. 

Text Proposal Network consists of only two branches: (1) The 

lassification branch calculates a heatmap, where the peaks are 

upposed to be the text centers; (2) The regression branch pre- 

icts the offsets from each peak to the upper left and lower right 

orners of the proposal box. 

Contour Initialization Network is essentially a regression 

odel, which could output four extreme points of the text pro- 

osal. We extend a line in both directions at each extreme point, 

nd connect their endpoints to obtain a octagon, which can be re- 

arded as the initial contour. 

Contour Deformation Network is used to regress the offsets 

rom points on the initial contour to the corresponding points on 

he ground-truth. And the same regression method is adopted as 

he contour initialization. 

The above three networks are jointly trained in multi-task 

earning, with loss defined as: 

 = L cls + λ1 L reg + λ2 L cin + λ3 L cdn . (1) 

 cls and L reg , the loss functions of the classification task and 

egression task in text proposal generation network, adopt the 

mooth � 1 loss and focal loss [31] , respectively. L cin and L cdn are 

he loss functions of contour initialization network and contour de- 

ormation network, respectively, and smooth � 1 loss is adopted. λ1 , 

2 and λ3 are balancing parameters and are all set to 1 in our ex- 

eriments for simplicity (observing that fluctuating around 1 does 

ot influence the performance significantly). 

.3. Learning strategy 

For mixed supervised learning with a small number of strongly 

nnotated images and a large number of weakly annotated images, 
3

e adopt the self-training strategy, which has made considerable 

rogress in semi-supervised learning [32,33] . The main steps are 

s follows: 

(1) Based on the detector in Section 3.2 , we firstly train a 

eacher model using the strongly annotated images. 

(2) The trained teacher model is used to generate pseudo-labels 

or the center point annotated images. Specifically, the peaks on 

he heatmap of the classification branch output of the teacher 

odel are replaced with the ground truth text centers so as to 

enerate more accurate text proposals. Accordingly, the following 

ontour regression parts can predict better text boundaries, which 

re used as pseudo labels. 

(3) The pseudo labeled images are combined with fully labeled 

mages to train a superior student model. 

Inevitably, there are low quality pseudo labeled samples in the 

ixed dataset used in the third step. Using the confidence of the 

seudo label to weight the pseudo supervision can alleviate the 

eterioration caused by noisy pseudo labels. The existing text de- 

ection methods usually use the classification score as the confi- 

ence of the output text boundary. However, the pseudo labels in 

ur pipeline are generated based on the ground-truth text centers, 

he classification scores are not available. Hence, we use the un- 

ertainty of regression to evaluate the pseudo labels, which will be 

escribed in detail in the next subsection. 

.4. Regression with uncertainty estimation 

A regression uncertainty estimation branch is parallel to the re- 

ression branch in the text proposal network, as shown in Fig. 3 . 

t has the same structure with the other two branches. Specifi- 

ally, the original features are passed through a 3 × 3 convolution, 

eLU and another 1 × 1 convolution to produce the output of four 

hannels, representing the uncertainty of the horizontal and verti- 

al offset prediction from the center point to upper left and lower 

ight corners of the bounding box, respectively. During training, the 

egression uncertainty estimation branch is optimized by the KL 

oss [33] . 

Specifically, let z denotes an offset, which is the prediction tar- 

et of the regression task. Assuming the offsets are independent, 

e use a single variate Gaussian for simplicity, and get the follow- 
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ng probabilistic model: 

 � = 

1 √ 

2 πσ 2 
e −

(z−z e ) 
2 

2 σ2 , (2) 

here � is parameters of detection model. z e is the estimated 

ffset. Standard de viation σ measures the uncertainty of the pre- 

iction. When σ → 0 , it means the model is extremely confident 

bout the predicted offset. 

The ground-truth offset can also be formulated as a Gaussian 

istribution, with σ → 0 , which is a Dirac delta function: 

 D = δ(z − z g ) , (3) 

here z g is the ground-truth offset. 

Here, we take [33] for reference, and try to estimate ˆ � by min- 

mizing KL-Divergence between P �(z) and P D (z) : 

ˆ = arg min 

�

1 

N 

∑ 

D KL (P D (z) || P �(z)) , (4) 

here N is the number of training samples. And the KL loss L KL 

an be formulated as: 

 KL = D KL ( P D ( z ) ‖ P �( z ) ) 

= 

∫ 
P D ( z ) log ( P D ( z ) ) dz −

∫ 
P D ( z ) log ( P �( z ) ) d z 

= 

( z g − z e ) 
2 

2 σ 2 
+ 

log 
(
σ 2 

)
2 

+ 

log ( 2 π) 

2 

− H ( P D ( z ) ) . 

(5) 

hen the offset z e is predicted inaccurately, the variance σ 2 is 

xpected to be larger so that L KL will be lower. log(2 π) / 2 and

(P D (z)) do not depend on �, hence: 

 KL ∝ 

(z g − z e ) 2 

2 σ 2 
+ 

log(σ 2 ) 

2 

. (6) 

he loss is differentiable w.r.t offset z e and offset standard devia- 

ion σ : 

d 

d z e 
L KL = 

z e − z g 

σ 2 

d 

d σ
L KL = − ( z e −z g ) 

2 

σ 3 + 

1 
σ . 

(7) 

ince σ is in the denominators, the gradient sometimes can ex- 

lode at the beginning of training. To avoid gradient exploding, our 

etwork predicts α = log (σ 2 ) instead of σ in practice: 

 KL ∝ 

e −α

2 

(z g − z e ) 
2 + 

1 

2 

α. (8) 

eanwhile, considering the influence of outliers, we adopt a 

mooth L 1 loss: 

 KL = e −α(| z g − z e | − 1 

2 

) + 

1 

2 

α. (9) 

Therefore, the loss of the whole detection framework is updated 

o: 

 = L cls + λ1 L reg + λ2 L cin + λ3 L cdn + λ4 L KL , (10) 

here λ4 is set to 1 in our experiments. 

For using the estimated uncertainty to measure the quality of 

utput result in inference, we convert the network output α back 

o σ , and calculate the confidence of each text contour by: 

 = 1 − 1 

4 

( 

4 ∑ 

i =1 

Sigmoid (σi ) 

) 

, (11) 

here σi is the standard deviations of i-th offset prediction. Finally, 

o weight the pseudo labels generated during self training (de- 
4 
cribed in Section 3.3 ), a confidence weighted loss ˆ L is proposed 

s follow: 

ˆ 
 = s L , (12) 

hich makes the training focus more on reliable samples. 

In short, the learning strategy of the proposed mixed- 

upervised framework can be summarized as Algorithm 1 . Specif- 

lgorithm 1 Self-training based learning strategy. 

equire: Polygon labeled images: (x 1 , y 1 ) , (x 2 , y 2 ) , . . . , (x n , y n ) ;

Center point labeled images: ( ̂  x 1 , p 1 ) , ( ̂  x 2 , p 2 ) , . . . , ( ̂  x m 

, p m 

) . 

nsure: Trained parameters θ . 

1: Training the model θ on (x 1 , y 1 ) , (x 2 , y 2 ) , . . . , (x n , y n ) ; 

2: Infer pseudo label ˆ y j ← M(( ̂  x j , p j )) , θ ) ; 

3: Calculate the confidence s j of each pseudo label ˆ y j by Eq. (11); 

4: Mixed retraining model θ on the union of (x 1 , y 1 ) , (x 2 , y 2 ) ,

. . . , (x n , y n ) and ( ̂  x 1 , ̂  y 1 , s 1 ) , ( ̂  x 2 , ̂  y 2 , s 2 ) , . . . , ( ̂  x m 

, ̂  y m 

, s m 

) . 

cally, we have limited polygon labeled images { (x i , y i ) } n i =1 
, where

 i and y i denote the i-th images and its polygon-level label, and a 

arge set of center point labeled images { ( ̂  x j , p j ) } m 

j=1 
, where ˆ x j and

p j denote the j-th image and its center point label. We firstly use 

he polygon labeled images to train an teacher detector θ . Then 

e send the weakly annotated images { ̂ x j } m 

j=1 
to the detector θ

o generate pseudo labels. M(·) in the Algorithm 1 refer to the 

nference. Specifically, the peaks on the heatmap of the classifi- 

ation branch output of the teacher model are replaced with the 

round truth text centers { p j } m 

j=1 
so as to generate more accurate 

ext proposals. Accordingly, the following contour regression parts 

an predict better text boundaries, which are used as pseudo labels 

 ̂ y j } m 

j=1 
. In addition, the regression uncertainty estimation module 

utputs the confidence { s j } m 

j=1 
of the pseudo labels. Finally, we 

onduct mixed retraining of the model by using both { (x i , y i ) } n i =1 
nd { ( ̂  x j , ̂  y j , s j ) } m 

j=1 
, and confidence s j is used to weight the super-

ision of pseudo labels, which makes the training focus more on 

eliable samples. 

. Experiments 

.1. Datasets 

To demonstrate the effectiveness of the proposed method, we 

onduct experiments on five public benchmark datasets. 

ICDAR2015 dataset [13] contains 10 0 0 training images and 500 

est images. This dataset is focused on incidental scene text, in 

hich each text is labeled as a quadrangle with 4 vertexes in 

ord-level. 

C-SVT dataset [14] contains 430,0 0 0 training images, of which 

0,0 0 0 are fully annotated and the remaining are weakly anno- 

ated, where only the corresponding text-of-interest in the regions 

s given as weak annotations. Each text is labeled with adaptive 

umber of vertices. In our experiment, we only use the fully anno- 

ate images for the convenience of evaluation. 

CTW1500 dataset [15] contains 10 0 0 training images and 500 

est images. Besides horizontal and multi-oriented texts, at least 

ne curved text is contained in each images. Each text is labeled 

s a polygon with 14 vertexes in line-level. 

Total-Text dataset [16] has 1255 training images and 300 test 

mages, which contains curved texts, as well as horizontal and 

ulti-oriental texts. Each text is labeled as a polygon with 10 ver- 

exes in word-level. 

ICDAR-ArT dataset [11] consists of 5603 training images and 

563 test images, which contains multilingual arbitrary-shaped 

exts. Each text is labeled with adaptive number of vertices. 
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Table 1 

Detection results on ICDAR2015. The subscript indicates the standard deviation. 

Method Precision Recall F-measure FPS 

EAST [1] 83.6 73.5 78.2 13.2 

TextSnake [2] 84.9 80.4 82.6 1.1 

SegLink + [36] 80.3 83.7 82.0 - 

TextField [37] 84.3 83.9 84.1 1.8 

PSENet [6] 86.9 84.5 85.7 1.6 

FCENet [38] 90.1 82.6 86.2 - 

TextMountain [39] 87.3 84.1 85.7 10.4 

PAN + [7] 91.4 83.9 87.5 12.6 

MOST [40] 89.1 87.3 88.2 10.0 

100%Poly 89.4 82.4 85.8 

10%Poly&90%Point 86.2 ±0 . 36 80.1 ±0 . 28 83.0 ±0 . 31 

10%Poly&90%Unlabeled 80.9 ±0 . 39 77.6 ±0 . 31 79.2 ±0 . 36 21.6 

10%Poly 77.2 ±0 . 31 76.9 ±0 . 27 77.0 ±0 . 29 
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Table 3 

Detection results on CTW1500. The subscript indicates the standard deviation. 

Method Precision Recall F-measure FPS 

TextSnake [2] 67.9 85.3 75.6 - 

TextRay [42] 82.8 80.4 81.7 - 

PSENet-1s [6] 84.8 79.7 82.2 3.9 

Wu et al. -TAS [10] 83.8 80.8 82.3 9.2 

CRAFT [27] 86.0 81.1 83.5 - 

TextDragon [30] 84.5 82.8 83.6 8.7 

ContourNet [43] 83.7 84.1 83.9 4.5 

TextMountain [39] 83.3 83.6 83.4 - 

PAN + [7] 87.1 81.1 84.0 36.0 

Zhang et al. [44] 87.8 81.5 84.5 12.2 

Dai et al. [45] 82.3 87.2 84.7 11.8 

ABCNet v2 [46] 85.6 83.8 84.7 - 

100%Poly 86.1 82.1 84.1 

10%Poly&90%Point 83.9 ±0 . 39 81.8 ±0 . 27 82.8 ±0 . 29 32.3 

10%Poly&90%Unlabeled 83.4 ±0 . 67 79.1 ±0 . 59 81.2 ±0 . 13 

10%Poly 81.3 ±0 . 79 79.1 ±1 . 02 80.2 ±0 . 26 
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oriented and curved texts. 
.2. Implementation details 

We implemented the experiments with Pytorch 1.1 on a work- 

tation with 2.9 GHz 12-core CPU, 256G RAM, GTX Titan X and 

buntu 64-bit OS. We adopt the DLA-34 [34] as the backbone net- 

ork. The model is pre-trained with SynthText [35] dataset, and 

hen fine-tuned on the real datasets separately for 200 epochs with 

atchsize 36. The initial learning rate is set to 1 × 10 −4 and is di-

ided by 2 at 80th, 120th, 150th, and 170th epoch. The data is 

ugmented by: (1) rescaling images with ratio from 0.5 to 2.0 ran- 

omly, (2) flipping horizontally and rotating in range [ −10 ◦, 10 ◦] 

andomly, (3) cropping 640 × 640 random samples from the trans- 

ormed image. In the inference stage, the short side of the in- 

ut image is scaled to a fixed length (720 for ICDAR2015, 460 for 

TW1500, 960 for ICDAR-ArT, and 640 for C-SVT and Total-Text), 

ith the aspect ratio kept. 

.3. Experimental results 

For the three datasets, we randomly select 10% of original train- 

ng images as strongly annotated data and take the rest 90% as 

eakly (center point) annotated data, resulting in a 10 0–90 0 split 

or ICDAR2015 and CTW1500, a 125-1,130 split for Total-Text, a 

60-5,043 split for ICDAR-ArT, and a 3,0 0 0-27,0 0 0 split for C-SVT. 

ased on the data division, we can get the following models: 

(1) 100%Poly: Model trained with all images, which are anno- 

ated with polygons. 

(2) 10%Poly: Model trained with 10% images, which are anno- 

ated with polygons. 

(3) 10%Poly&90%Point: Model trained with all images, of which 

0% are annotated with polygons, and 90% are annotated with cen- 

er points. 

(4) 10%Poly&90%Unlabeled: Model trained with all images of 

hich 10% are annotated with polygons, and 90% are unlabeled. 

he learning strategy used is similar to that of “10%Poly&90%Point”, 

ut there is no point guidance in the generation of pseudo labels. 

e use a threshold 0.35 to filter low-quality samples. 
Table 2 

Detection results on C-SVT. The subscript indic

Method Precisi

DB + oCLIP [41] 81.5 

EAST [1] 73.4 

PSENet + oCLIP [41] 90.7 

Sun et al. -Train [14] 80.4 

Sun et al. -Train + 400K Weak [14] 81.7 

100%Poly 83.5 

10%Poly&90%Point 80.6 ±0

10%Poly&90%Unlabeled 77.8 ±0

10%Poly 73.5 ±0

5

Considering the impact of data split on the final results, we split 

he data five times randomly, and report the average results and 

tandard deviations. The results on five benchmarks are given in 

ables 1 –5 , respectively. 

Results on Multi-Oriented Text : As shown in Tables 1 and 2 , 

ur mixed-supervised model “10%Poly&90%Point” achieves 83.0% 

nd 76.9% of F-measure on ICDAR2015 and C-SVT, respectively. 

ompared with the two baseline models “10%Poly”, the per- 

ormance gains are 6.0% and 3.7%, respectively. This demon- 

trates the effectiveness of the proposed mixed-supervised learn- 

ng in the sense that adding weakly annotate data improves 

he performance. When comparing with “10%Poly&90%Unlabeled”, 

10%Poly&90%Point” outperforms by 3.8% and 1.9% on ICDAR2015 

nd C-SVT, respectively, which proves the significance of point su- 

ervisions. Although there are still gaps between fully-supervised 

odels and mixed-supervised models (2.8% and 2% on ICDAR2015 

nd C-SVT, respectively), considering that the cost of point anno- 

ation is much lower, the results are valuable. Some qualitative 

esults are shown in the first and second columns of the Fig. 4 ,

here we can see that our method can handle multi-oriented texts 

ery well. 

Results on Arbitrary-Shaped Text : We further conduct ex- 

eriments on more challenging arbitrary-shaped texts, and the 

esults are shown in Tables 3–5 . We can see that our mixed- 

upervised models “10%Poly&90%Point” have greatly exceeded the 

aseline models “10%Poly” and achieved 82.8%, 83.2%, and 72.0% 

f F-measure on CTW1500, Total-Text, and ICDAR-ArT respec- 

ively, demonstrating the effectiveness of the proposed method 

hen handling texts with arbitrary shapes. Meanwhile, our mixed- 

upervised learning strategy does not affect the inference speed, 

hich is still competitive. Some examples of text detection results 

re shown in the third to fifth columns in Fig. 4 , where it is seen

hat the detection model can accurately locate horizontal, multi- 
ates the standard deviation. 

on Recall F-measure FPS 

70.9 75.8 - 

79.3 76.2 - 

67.0 77.1 - 

74.6 77.4 - 

75.2 78.3 - 

74.5 78.9 

 . 27 73.6 ±0 . 36 76.9 ±0 . 29 24.2 

 . 29 72.4 ±0 . 35 75.0 ±0 . 31 

 . 33 72.9 ±0 . 28 73.2 ±0 . 32 
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Fig. 4. Examples of text detection results. First column: ICDAR2015; second column: C-SVT; third column: CTW1500; fourth column: Total-Text; fifth column: ICDAR-ArT. 

Table 4 

Detection results on Total-Text. The subscript indicates the standard deviation. 

Method Precision Recall F-measure FPS 

SemiText-Transductive [12] 78.0 58.3 66.7 2.1 

SemiText-Inductive [12] 79.2 59.0 67.6 2.1 

Wu et al. -TAS [10] 78.5 76.7 77.6 11.2 

SelfText [8] 82.5 77.6 80.1 - 

TextRay [42] 83.5 77.9 80.6 - 

PSENet-1s [6] 84.0 78.0 80.9 3.9 

CRAFT [27] 87.6 79.9 83.6 - 

Dai et al. [45] 82.0 88.5 85.2 11.8 

PAN + [7] 89.9 81.0 85.3 38.3 

FCENet [38] 89.3 82.5 85.8 - 

SRSTS [47] 92.0 83.0 87.2 18.7 

Zhang et al. [44] 90.3 84.7 87.4 10.3 

100%Poly 88.2 83.3 85.6 

10%Poly&90%Point 84.4 ±0 . 69 82.1 ±0 . 47 83.2 ±0 . 33 24.2 

10%Poly&90%Unlabeled 82.9 ±0 . 30 78.8 ±0 . 49 80.8 ±0 . 27 

10%Poly 80.2 ±0 . 51 78.5 ±0 . 38 79.4 ±0 . 23 

Table 5 

Detection results on ICDAR-ArT. The subscript indicates the standard deviation. 

Method Precision Recall F-measure FPS 

TextRay [42] 76.0 58.6 66.2 - 

Dai et al. [45] 66.1 84.0 74.0 11.8 

100%Poly 80.8 68.7 74.3 16.4 

10%Poly&90%Point 80.5 ±0 . 57 65.1 ±0 . 39 72.0 ±0 . 42 

10%Poly&90%Unlabeled 77.9 ±0 . 49 64.2 ±0 . 55 70.4 ±0 . 51 

10%Poly 77.2 ±0 . 63 58.9 ±0 . 38 66.8 ±0 . 42 
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Table 6 

The benefits of the KL loss and confidence weighted loss on “10%Poly&90%Point”. 

“KL” and “CW” indicates KL loss and confidence weighted loss, respectively. 

Dataset KL CW Precision Recall F-measure 

CTW1500 - - 83.6 80.5 82.0 

� - 84.0 80.6 82.3 

- � 85.3 80.0 82.6 

� � 83.9 81.8 82.8 

Total- 

Text 

- - 84.1 80.8 82.4 

� - 84.9 80.6 82.7 

- � 83.5 82.5 83.0 

� � 84.4 82.1 83.2 
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Comparison with Other Methods Using Weak labels : Com- 

ared with the method which use character box to boost the per- 

ormance of word detection, as shown in Tables 3 and 4 , the per-

ormance of our mixed-supervised model “10%Poly&90%Point” is 

lightly lower (0.7% and 0.4% on CTW1500 and Total-Text, respec- 

ively) than that of CRAFT [27] . However, it should be noted that 

RAFT needs complete strong annotations and additional charac- 

er annotations, while our method only needs 10% strong annota- 

ions combined with 90% weak annotations. We achieve the per- 

ormance close to CRAFT with much lower labeling cost. 

Compared to methods which use partial annotations to re- 

uce labeling cost, our method also shows advantage. As shown 

n Tables 3 and 4 , our mixed-supervised model outperforms the 

orresponding model (TAS) of Wu et al. [10] , which uses line- 

evel annotations to supervise model training. Compared with Self- 

ext [8] , which trains PSENet [6] with pseudo labels generated 

ith the aid of bounding box annotations, as shown in Table 4 , our

ixed-supervised model also achieves better performance (83.2% 

s 80.1%). In addition, Sun et al. [14] proposed to use a large par-

ially labeled dataset (each image annotated with one dominant 

ext) to boost performance, and obtained 0.9% improvement by 

dding 4,0 0 0,0 0 0 weakly annotated data (as shown in Table 2 ). In
6

ontrast, our mixed-supervised model yields significant improve- 

ent compared to the baseline. 

Compared to semi-supervised method [12] , our method also 

utperforms by a large margin, as shown in Table 4 . Although the 

ethod does not use any strong annotation, our method uses only 

0% strong annotation to obtain a big advantage, which is very 

orthwhile. 

.4. Ablation studies 

Influence of the Regression Uncertainty Estimation Module. 

he proposed regression uncertainty is learned by optimizing the 

L loss. Therefore, we conduct experiments with or without the 

L loss, and the results on CTW1500 and Total-Text are shown in 

able 6 . It is verified that the models trained with KL loss pre- 

orm better. Although the improvement brought by adding KL loss 

s relatively weak, our intention is to estimate the uncertainty of 

egression, which can be used to weight the pseudo supervision. 

Influence of the Confidence Weighted Loss. We evaluate the 

nfluence of the confidence weighted loss (see Eq. 12 ) via experi- 

ents with or without it. The results of experiments on CTW1500 

nd Total-Text are shown in Table 6 . We can find that the con- 

dence weighted loss improves the basic models obviously. It at- 

ributes to that with confidence weighting, the influence of noise 

amples on training would be limited, and the model learning 

ends to focus on reliable samples. 

Influence of the Proportion of Strongly Annotated Data. We 

erform experiments with variable proportions (from 1% to 40%) 

f strongly annotated data on the ICDAR-ArT dataset. The model 

rained with only strongly annotated data is regarded as baseline. 

s shown in Fig. 5 , the performance of mixed supervised model 

mproves as the proportion of strongly annotated data increases, 

nd outperforms baseline in all data split settings, which demon- 

trates that images with point annotations can improve the perfor- 

ance. 

Influence of the Point Location. We explored the influence of 

enter point location fluctuation in text line direction and the per- 

endicular direction of the text line, respectively. Specifically, we 
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Fig. 5. F-measure versus proportions of strongly annotated data for mixed- 

supervised models on ICDAR-ArT test set. 

Table 7 

The influence of point location on “10%Poly&90%Point” on ICDAR2015. 

Fluctuation Direction Ratio Range Precision Recall F-measure 

No Fluctuation - 86.2 80.1 83.0 

Text Line Direction [0 . 00 , 0 . 05] 86.6 79.2 82.8 

[0 . 05 , 0 . 10] 85.1 80.0 82.5 

[0 . 10 , 0 . 15] 84.2 80.4 82.2 

Perpendicular 

Direction of Text Line 

[0 . 00 , 0 . 05] 85.9 80.1 82.9 

[0 . 05 , 0 . 10] 85.0 80.8 82.8 

[0 . 10 , 0 . 15] 84.5 80.5 82.4 

Both Directions [0.00, 0.10] 84.8 80.7 82.7 
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[

andomly move the center point along the direction of the text line 

nd the perpendicular direction of the text line within a certain 

ange, which is defined as a certain ratio of the length or height 

f the text line. As shown in Table 7 , for two directions, when the

uctuation ratio is lower than 0.1, the performance does not de- 

eriorate. This is because our text detector predicts the region of 

enter point rather than a single center point. When the ratio is 

igher than 0.1, the performance degrades slightly due to the poor 

uality of pseudo labels. In addition, we also explore the situation 

f fluctuations in both line and perpendicular directions, that is, 

andomly moving the center point within an ellipse with a radius 

f (0 . 1 l, 0 . 1 h ) , where l and h are the length and height of the text

ine, respective. We can find that performance can still be main- 

ained. The stability of performance against slight fluctuation of 

enter point annotation justifies the practicality of the proposed 

ethod. 

. Conclusion 

In this paper, we verify the effectiveness of center point annota- 

ions in mixed-supervised scene text detection task, which greatly 

educe the cost of labeling. We adopt a self-training strategy based 

n the a detector which localizes texts by predicting their centers. 

or weighting the pseudo labels, we propose a regression uncer- 

ainty estimation module to measure the confidence. Extensive ex- 

eriments show that our mixed-supervised method achieves com- 

etitive performance, and adding weakly labeled data can improve 

he detection performance evidently compared to training with 

trongly annotated data only. 
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