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ABSTRACT

Stroke classification for online handwriting aims at provid-
ing each stroke with a semantic label so as to fulfill hand-
writing segmentation. This task has attracted considerable
attention due to its significance in online handwriting anal-
ysis. Existing methods are designed for the static situation,
where stroke classification is conducted on the completion of
handwriting. With the popularity of pad devices and elec-
tronic whiteboards, streaming stroke classification becomes
increasingly important for instant handwriting processing and
feedback. However, streaming classification is much more
challenging due to the lack of contextual information and is
underexplored in the past. In this paper, we propose Multi-
ple Stroke State Transformer (MSST), a novel framework to
enable simultaneous real-time classification and modifiability
of previous predictions. Particularly, we set multiple states
with duration for each stroke and then divide all states into
chunks to perform message passing by Transformer. Exper-
iments on handwritten documents and diagrams demonstrate
the superiority of our method.

Index Terms— streaming stroke classification, online
handwriting analysis, Multiple Stroke State Transformer

1. INTRODUCTION

In recent years, the growing use of smart devices largely fa-
cilitates the creation of online handwritten documents, which
consist of strokes following the writing order. Compared to
offline images composed of pixels, online documents are ana-
lyzed by considering strokes as basic units. Stroke classifica-
tion, aiming at providing each stroke a semantic label such as
Text/Math/Figure/Table, lays the foundation for online docu-
ment analysis. Over past decades, many methods have been
proposed for the task and made great achievements. Proba-
bilistic graphical models [1, 2, 3] are used to model the tem-
poral stroke interactions. Recurrent neural networks [4, 5, 6]
make use of stroke’s trajectory to achieve stroke representa-
tion learning and contextual relation modeling. Graph neural
networks [7, 8, 9] are employed for stroke classification due
to their excellent performance on structural data.

However, all these methods are designed for static situa-
tions. Specifically, since they make use of global contextual
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Fig. 1. Visualization of streaming stroke classification.
Strokes s9 and s10 get their prediction at stroke step t = 9
and t = 10, but correct the prediction at t = 11. Different
colors denote different classes.

information, they have to wait for the completion of the whole
document before classification. For instant and user-friendly
processing, the more efficient way is making prediction in
real time, namely in the streaming mode. Because streaming
classification can only obtain information from strokes writ-
ten currently and before, the accuracy is limited. As writing
continues, written strokes can see their following strokes and
receive more context information, so the modification of writ-
ten strokes’ labels should be considered, as shown in Fig. 1.

Recently, chunk-based Transformer methods [10, 11, 12,
13, 14, 15, 16] have achieved promising results in streaming
speech recognition by using truncated history and limited
future information. For example, the idea of Transformer-
XL [17] and chunk-wise process are combined to design
a streamable model [14]. Some works [10, 12, 13] focus
on chunks with variable size, while AM-TRF [15] and Em-
former [16] employ memory banks to store the history infor-
mation of processed chunks.

However, the above methods can not be directly em-
ployed in streaming stroke classification because they do not
consider real-time inference and modifiability of labels si-
multaneously. In this paper, based on chunk-based methods,
we propose Multiple Stroke States Transformer (MSST) to
solve this problem. Each stroke is represented by several
states. The first stroke state takes responsibility for real-time
classification while others are in charge of label modification.
Each state is attached a duration to reduce computational
cost and strengthen history information utilization. We con-
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(c) Multiple Stroke States in Chunks

: Query : Key, Value

Stroke Stroke

Write Write

1 3 62 4 5 7 8 9 1 3 62 4 5 7 8 9 1 3 62 4 5 7 8 9 1 2 3 4 5 6 7 8 9

Fig. 2. Visualization of chunk-based Transformer in one layer and multiple stroke states. Given a document with T = 9 strokes,
we set chunk size n = 3 and history size m = 3. Transformer is conducted in all chunks simultaneously. Strokes in red dashed
boxes are Queries and in green dashed boxes are Keys and Values. Each stroke in different colors has different representations.

ducted experiments on online handwritten document dataset
IAMonDo [18] and diagram dataset FC [19], and the results
demonstrate the superiority of our method.

2. METHOD

2.1. Problem Definition
We are given an online handwriting document composed of
ordered strokes s = {s1, . . . , sT }, where T is the number of
strokes. Each stroke st is depicted by a sequence of trajectory
points and has a corresponding label yt ∈ {1, . . . , C}, where
C is the number of semantic classes. Our goal is to perform
stroke classification with high accuracy in a streaming mode:

p(y|s) =
∏
t

p(yt|s≤t) (1)

where s≤t denotes {s1, . . . , st} and y = {y1, . . . , yT }. On
the other hand, written strokes are allowed to correct their pre-
dictions in a predefined step latency f , where written strokes
can look f following strokes to improve inference accuracy:

pf (y|s) =
∏
t

p(yt|s≤t+f ). (2)

In the following, we first introduce the stroke states and chunk
construction scheme, and then present the Multiple Stroke
State Transformer (MSST) for streaming stroke classification.

2.2. Multiple Stroke States
Streaming chunk-based Transformer [14] is an effective
method for stroke classification with low latency, where
all strokes are divided into chunks with predefined size n in
chronological order and conduct Transformer procedure in
chunks, as shown in Fig. 2a. To make good use of historical
information, each chunk has a history window with prede-
fined size m to memorize strokes written before, which are
not updated in the chunk.

However, the division of strokes in chunk-based Trans-
former leads to few chunks in each document, which causes
the inadequate utilization of training data. To overcome the
disadvantage, we shift chunks and history windows (Fig. 2b)
to build more chunks. Then we put chunks from one doc-
ument together and fill stroke representation in history win-
dows with the latest updated one, as shown in Fig. 2c, where
each stroke step t corresponds to a chunk Chunkt. Each
stroke st has variable representations in different chunks,
and we identify them with B multiple chronological states{
s1t , . . . , s

B
t

}
. The first state s1t only obtains information of

strokes written before st, so it is used for real-time classifica-
tion. Subsequent states sbt (1 < b ≤ B) take responsibility
for correcting real-time inference by exploring information
of limited future strokes. The future strokes provide more
context information, so the larger b is, the more strokes sbt
looks ahead, and the more effective representation sbt learns.

2.3. Stroke State Duration

The multiple states in Fig. 2c are too dense and the method
suffers from high computational cost with large chunk size.
This is because

{
s1t , . . . , s

B−1
t

}
only last one stroke step,

which leads to frequent updates of stroke representation. To
solve this problem, we provide each state a predefined dura-
tion Db (Db ≥ 1) and Db is the same for all strokes. Stroke
state sbt with small b learns insufficient representation due to
less future information, so it should have short Db, while sbt
with larger b can last longer. Thus, Db increases monotoni-
cally as b grows (D1 ≤ D2 ≤ · · · ≤ DB). Our final method
is shown in Fig. 3, and the set of stroke state duration can
strengthen information utilization (e.g., in Fig. 3, s33, s25 and
s16 from Chunk6 make use of Chunk5’s information through
not only s32 but also s24.).

After each stroke state is given a duration time, the com-
position of chunks should be reconsidered. Let Cb add up
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Fig. 3. Visualization of MSST and the message passing of stroke states as Transformer layer grows. We set B = 3, D1 = 1,
D2 = 2, D3 = 2. The example diagram has 7 strokes and leads to 7 chunks. Message passing in Chunk6 is shown in yellow.

Algorithm 1 Construction of Chunks
Input:S=

{
s11, . . . , s

B
1 , s

1
2, . . . , s

B
2 , . . . , s

B
T

}
,

C={C1, . . . , CB},D={D1, . . . , DB}

1: for i = 1, 2, . . . , T do
2: ChunkQi = {}, ChunkKV

i = {}
3: for b = 1, 2, . . . , B do
4: t = i− Cb

5: Add sbt to ChunkQi .
6: for j = t, t+ 1, . . . , t+Db − 1 do
7: Add sbj to ChunkKV

i .
8: end for
9: end for

10: end for

duration of stroke st before sbt :

Cb =

{
0 , b = 1∑b−1

k=1 Dk , 1 < b ≤ B
(3)

Let ChunkQi and ChunkKV
i denote the set of stroke states to

be updated (Queries in Transformer) and the ones to provide
information (Keys and Values in Transformer) in Chunki.
The chunk construction scheme is illustrated in Algorithm 1.

2.4. Multiple Stroke State Transformer

After the construction of chunks, we conduct Transformer
procedure to all chunks simultaneously, and we name our
method Multiple Stroke State Transformer (MSST). Let
X l

i ∈ Rd×n1 and H l
i ∈ Rd×n2 denote features of stroke

states in ChunkQi and ChunkKV
i , where l is the layer index,

d is dim of hidden features, n1 and n2 denote the number of
states in ChunkQi and ChunkKV

i . Let W l
Q,W

l
K ,W l

V ∈
Rd×d denote three parameter matrices. The standard Trans-

former procedure can be formulated as:

X̃
l

i = LayerNorm(X l
i) (4)

Ql
i = W l

QX̃
l

i, Kl
i = W l

KH l
i, V l

i = V l
KH l

i (5)

X̂
l

i = Attention(Ql
i,K

l
i,V

l
i,R

l
i) +X l

i (6)

where Attention(·) is the attention operation defined in [20].
Layer normalization and residual connection are applied to
facilitate training. Rl

i ∈ Rn2×n1×d is relative position encod-
ings using methods [21] and [22] to exploit temporal and spa-
tial information between strokes. A feed-forward networks
(FFN) made of two fully connected layers and GeLU non-
linearity follows behind to generate features for the next layer:

X l+1
i = FFN(LayerNorm(X̂

l

i)) + X̂
l

i (7)

Finally, a fully connected layer is employed for classifica-
tion, and the whole model is learned by minimizing the stan-
dard cross-entropy loss.

One important principle of our method is to use limited
future information. As Transformer layer grows, every stroke
state to be updated can obtain information only from current
and previous chunks, as illustrated in Fig. 3.

3. EXPERIMENTS

3.1. Experimental Setup
We conduct experiments on online handwritten document
dataset IAMonDo [18] and diagram dataset FC [19] to vali-
date our method. MSST is trained with Adam Optimizer with
batchsize = 8, learning rate = 0.0005 and decay rate = 0.0001.
MSST has L = 5 Transformer layers and 8 heads in multi-
head self-attention. We set the embedding dimensionality
d = 256, and the dropout rate as 0.1. All states of the same
stroke are initialized with the same contour-based features
following [9]. We set Db = 2b−1, B = 7 for IAMonDo and
Db = 3b−1, B = 3 for FC.



Table 1. Comparison results on IAMonDo and FC. Subscript
of MSST represents the state used for prediction. For exam-
ple, MSST3 denotes using strokes’ third state for evaluation.

Dataset IAMonDo FC
Method SCAo SCAa Delay SCAo SCAa Delay
Static 97.96 95.29 - 98.80 97.79 -

Real-time 92.52 83.74 0 96.14 92.22 0
Stream-1 92.52 83.74 0 96.14 92.22 0
Stream-2 93.09 84.22 1 97.38 94.97 1
Stream-3 94.21 87.35 3 97.78 95.64 4
Stream-4 95.16 89.88 7 97.95 96.10 13
Stream-5 95.75 90.77 15 - - -
Stream-6 96.57 91.55 31 - - -
Stream-7 96.71 92.05 63 - - -
MSST1 94.26 87.27 0 96.55 93.14 0
MSST2 94.56 87.88 1 97.71 95.37 1
MSST3 95.12 88.87 3 98.10 96.24 4
MSST4 95.79 90.04 7 98.25 96.26 13
MSST5 96.51 91.36 15 - - -
MSST6 97.01 92.18 31 - - -
MSST7 97.21 92.55 63 - - -

Several methods are chosen for comparison. Static is
the standard Transformer where documents are complete and
all strokes can see each other, and the result acts as the up-
per bound for streaming methods. Real-time is the Trans-
former with masked attention to make streaming classifica-
tion. Stream is the chunk-based method [14], and we adopt
different chunk sizes to obtain different average stroke delay.
MSST is tested with different stroke states to classify under
different delays. We evaluate all methods with the overall
stroke classification accuracy (SCAo) and the class-averaged
stroke classification accuracy (SCAa) following [9].

3.2. Comparison Results
Tab. 1 shows the stroke classification results of MSST and
compared methods. There is a big performance gap be-
tween streaming methods (including Real-time, Stream and
MSST) and the Static method on both IAMonDo and FC.
For the same stroke delay, MSST consistently outperforms
Stream, and more stroke delay makes the gap decrease (from
1.74% to 0.50% on IAMonDo on SCAo). MSST can make
real-time prediction and modify the classification by looking
ahead. The more strokes MSST looks ahead, the more future
information they get and the better performance they achieve,
as SCAo grows from 94.26% to 97.21% on IAMonDo and
from 96.55% to 98.25% on FC. Examples are shown in Fig. 4.

3.3. Effect of State Number
In this section, we analyze the effect of strokes’ state number
B in MSST on IAMonDo. We set B from 1 to 7, and state
duration Db is 2b−1. To make the model of different B have
the same size of receptive field, We then increase DB to 127,
126, 124, 120, 112, 96 for B being 1, 2, 3, 4, 5, 6, respec-
tively. The result is shown in Fig. 5. We can see that more
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Fig. 4. Streaming stroke classification examples using MSST.
Different colors denote different classes. The incorrect pre-
dictions have been framed by grey dashed boxes.
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Fig. 5. SCAo of MSST with different state numbers on IA-
MonDo. Horizontal axis denotes the state used for prediction.

stroke states are beneficial for classification. When using the
same state for inference, MSST with more states gets better
performance (e.g., SCAo of MSST1 with B = 7 is higher
than the one with B = 1). That means high states help mes-
sage passing to low ones.

4. CONCLUSION

In this work, we propose a Transformer-based framework
called MSST for real-time stroke classification. We set mul-
tiple states with different duration for each stroke and divide
them all into chunks to perform message passing by Trans-
former. Experiments on public handwriting datasets show
encouraging results outperforming existing chunk-based
method. Our future work will be considering dynamic stroke
state which makes inference modification more flexible.
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