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Abstract: In this paper, a novel control protocol method is developed to solve distributed
consensus control problems for multi-agent systems with switching directed topologies. Because
of the external disturbance, the information cannot transmit completely so that the proposition
of two-way topology is necessary. Besides, the external disturbance is considered naturally and
we give a control protocol and parameters of noise intensity function in this paper. Furthermore,
an example is given to support the proposed theorem. Finally, the simulation results prove the
correctness of the theory.
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1. INTRODUCTION

The consensus problem of multi–agent systems has re-
ceived compelling interest and has been studied extensive-
ly over the past years due to the rapid developments of
computer science and its wide application in many areas.
Consensus problem is the fundamental problem in multi–
agent systems. The essence of it is to construct proper
controller so that all agents can attain a consensus deci-
sion value by using the information of each agent and its
neighbours (Tu et al., 2017; Li et al., 2019; Zheng et al.,
2017). Recently, distributed consensus control for multi–
agent systems has attracted more and more attention com-
pared with the traditional centralized coordination control
approaches.

In the consensus problem of multi–agent systems, the
major objective is to make all agents converge to a com-
mon state (Shariati and Zhao, 2018; Shen et al., 2019).
The consensus control of multi–agent systems has been
researched a lot in recent years and has obtained many
good results (Li et al., 2020; Lan et al., 2019). For in-
stance, in (Moreau, 2005), it presents the necessary and/or
sufficient conditions for the convergence of the individual
agents’ states to a common value. In (Xin and Li, 2016),
it is shown that the observer–based protocol solves the
consensus problem when the sampling period is sufficiently
small and the average dwell time of the switching signal
is sufficiently large. Many researches have received, how-
ever, the consensus analysis for directed topology is more
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challenging than the case of undirected topology (Olfati-
Saber and Murray, 2004). Group consensus tracking is-
sue of continuous–time second–order multi–agent system-
s under directed fixed topology was studied in (Huang
et al., 2018).In addition, with the widespread application
of machine learning, various learning methods are intro-
duced to settle consensus problems. For instance, (Wei
et al., 2015) solves the optimization problem of a class
of stochastic nonlinear systems by reinforcement learning
algorithm. Moreover, for the case of multi–agent systems
with multiple leaders, the distributed exponential finite–
time containment of multi–agent systems was addressed in
(Liu et al., 2015).

Some preliminary results of multi–agent systems with di-
rected topology have reported in (Zeng et al., 2017; Liu
et al., 2016). According to the absence or presence of
leaders in a multi–agent system, consensus control can
be divided into leaderless consensus and leader–following
consensus. In (Jadbabaie et al., 2003), it introduced the
leaderless consensus problem of multi–agent systems un-
der directed topology. While in this paper, we introduce
the directed topology with a leader, which broaden the
applications by guaranteeing all the individual dynamics
converge to a desired trajectory.

Since the switching topology of multi–agent systems is
more practical than the fixed topology in the real en-
vironment, we analyse the property of the multi-agent
with switching topology in this paper. Inspired by the
preliminary literature (Lin et al., 2016), consensus control
of multi–agent systems with two–way switching directed
topologies is introduced in this paper.
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The configuration of this paper is given as follows. Graphs
and preliminaries of heterogeneous multi–agent systems
are presented in section 2. The multi–agent systems prob-
lem with directed topology is given in section 3. Consensus
control with switching directed topology of multi–agent
systems is presented in section 4. Section 5 provides the
simulation studies. Conclusion is given in section 6.

2. GRAPHS AND PRELIMINARIES OF
HETEROGENEOUS MULTI–AGENT SYSTEMS

2.1 Graphs

LetGr be a directed graph with a set of V = {v1, v2, · · · , vN},
a set of directed edges ε ⊆ V × V , the adjacency element
aij of weighted adjacency matrix ∆ = [aij ] is non–negative
value. The edges of Gr are denoted by eij . A edge eij in
graph Gr is denoted by the ordered pair of nodes (vj , vi),
where vj and vi are called the parent and child nodes,
respectively. The adjacency element corresponding to the
edge of the graph is positive, i.e., aij > 0 if and only if
eij ∈ ε. Moreover, we assume that aii = 0 for all the i.
If there is information flowing from vertex i to vertex j,
aij > 0; otherwise aij = 0. Laplacian matrix L = D −∆,

D = [Dij ] is a diagonal matrix, Dii =
N∑
j=1

aij . Therefore,

the Laplacian matrix L = [lij ] can be written as

lij =


n∑

k=1,k ̸=i

aik, i = j

−aij, i ̸= j

For the multi–agent system with a leader and N followers,
we define that 0 represents the leader and 1, 2, ..., N
represent N followers, respectively. We define a diagonal
matrix D =diag[di], i = 1, 2, ..., N . di > 0 if it is connected
between the leader and the ith follower. We can define that
di > 0 if there is information flowing between the leader
and the ith follower; otherwise, di = 0. The Gr is defined
on the vertices 0, 1, ..., N .

Besides, for the whole paper, RN×N is the set of n × n
real matrix. IN is the identity matrix of dimension N . In
this paper, S is positive symmetric matrix. A ⊗ B is the
Kronecker product of matrix A and B.

There are some matrices defined for simplification, i.e.,
Hτ(t) = Lτ(t)+Dτ(t) ∈ RN×N ,R1 =diag(R1, R2, · · · , RN ),

R2 = [Rji] ∈ RN×N i, j = 1, 2, ..., N .

3. THE MULTI–AGENT SYSTEMS PROBLEM WITH
DIRECTED TOPOLOGY

In this paper, multi–agent system with directed topology
is considered, which contains an active leader indexed by
0 and N agents indexed by 1,2,...,N in graph Gr. The
dynamics of the ith agent is given by

ẋi(t) = Axi(t) + C(t)φ(xi(t), t) +Bui(t) (1)

where xi ∈ Rn is the state of the ith agent, i =
1, 2, ..., N and ui ∈ Rm is the control input of the ith
agent which can only use local information of its neigh-
bours and itself. A and B are constant real matrices.
C(t) ∈ Rn×n is the function of time. The φ(xi(t), t) =

Fig. 1. Switching directed topology of multi-agent systems

(φ0(xi(t), t), φ1(xi(t), t), ..., φn(xi(t), t))
T, i = 1, 2, ..., N is

the noise intensity function vector. The dynamics of the
leader denoted by 0 is represented as

ẋ0(t) = Ax0(t) + C(t)φ(x0(t), t) (2)

where x0 is the state of the leader. Because the dynamics
of the leader is independent of the others, i.e.,u0(t) ≡ 0.
There is no control input for the leader. φ(x0(t), t) : R

n is
the noise function vector of the leader.

4. CONSENSUS CONTROL WITH SWITCHING
TOPOLOGY OF MULTI–AGENT SYSTEMS

In this section, we design a control protocol with switching
directed topology of multi–agent system which can be seen
in figure 1. Before moving on, let C(t) be the scalar zero
mean with Gaussian white noise matrix and there are some
Assumptions applied to the subsection.

Assumption 1. There is a nonnegative constant ρ , which
satisfies the Lipschitz condition

∥φ(y, t)− φ(z, t)∥ ≤ ρ ∥y − z∥ (3)

the condition holds for all y, z ∈ Rn, t > 0.

Assumption 2. The vertex 0 associated with the leader is
global reachable vertex.

Assumption 3. The internal dynamics matrix A has eigen-
values with negative real part.

We give the general assumptions to analyse the switching
directed topology of the multi–agent system.

(1) Consider a switching signal τ : [t0,∞) → Ψ, it’s
piecewise constant. Ψ is a finite set of all possible
interconnection topologies of the multi–agent system,
which initial time is t0. All the possible graphs are
defined on the vertices 0,1,...,N by {Gp : ϕ ∈ Ψ} and
{Ga : ϕ ∈ Ψ} is used to denote subgraphs that defined
on vertices 1,2,...,N.

(2) The time–interval [t0,∞) is composed of an infinite
sequence of bounded, non–overlapping, contiguous
time–intervals [tj , tj + 1) for j = 0, 1, ...with t0 = 0.
What’s more, there is a sequence of non–overlapping
subintervals for each interval [tk, tk + 1), the subin-
tervals are [t0k, t

1
k), [t1k, t

2
k), ..., [t

mk−1,
k tmk

k ), tk = t0k,

tk+1 = tmk

k , satisfying tj+1
k − tjk ≥ µ, 0 ≤ j ≤ mk −

1 for some integers mk ≥ 1 and constant µ ≥ 0.
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Therefore, the interconnection topology is fixed dur-
ing each of such subintervals. We define each subin-
terval [tjk, t

j+1
k ) by Gj

k and the graph defined by Gτ(t)

is fixed.

Assumption 4. The graphs are jointly connected across
each interval [tk, tk+1), k = 0, 1, ....

The consensus control with two–way directed topology of
multi–agent system can be achieved, if the following equa-
tion is satisfied for initial condition xi(0), i = 1, 2, ..., N .

lim
t→∞

E{||xi(t)− x0(t)||2} = 0, i = 0, 1, ..., N

where E[·] is the mathematical expectation of a given
random variable.

Now, we give the control protocol of the multi–agent with
the system (1) and (2). The protocol is designed as

ui = K[

N∑
j=1

αijaij(xi − xj) + αidi(xi − x0)],

α̇ij = ηijaij(xi − xj)
TΓ(xi − xj),

α̇i = ηidi(xi − x0)
TΓ(xi − x0) i = 1, 2, ..., N,

(4)

where K ∈ Rm×n is the feedback gain matrix. aij is the
(i, j) entry of the adjacency matrix ∆ and di is the ith
diagonal entry of the leader adjacency matrix D. αij is the
time–varying coupling weight between agent i and agent j
and αi is the time–varying coupling weight between agent
i and agent 0. Because of aij ̸= aji, the values of α̇ij and
α̇ji are different, i.e., α̇ij ̸= α̇ji. Besides, ηij and ηi are
both positive constants.

From the system (1), we can rewritten the system as

dxi(t) = [Axi(t) +Bui(t)]dt+ φ(xi(t), t)dW (t) (5)

where dW (t) = C(t)dt and C(t) is Gauss white noise
generated by Brown motion W (t) ∈ Rn×n. According to
the knowledge we learned, it’s easy to get that E{W (t)} =
0, E{[W (t)]2} = dt. The system of the leader is rewritten
as

dx0(t) = Ax0(t)dt+ φ(x0(t), t)dW (t). (6)

Let ei(t) = xi(t)−x0(t), integrating equations (5) and (6),
the state error is as follows

dei(t) = Aei(t)dt+Bui(t)dt+ φ̃(ei(t), t)dW (t), (7)

where φ̃(ei(t), t) = φ(xi(t), t)−φ(x0(t), t), substituting (4)
into (7), we can get

dei = Aeidt+BK[
N∑
j=1

αijaij(ei − ej) + αidiei]dt

+ φ̃(ei, t)dW (t) i = 1, 2, ..., N.

(8)

The positive symmetric matrix S > 0 is the solution to
the inequality as follows

S < ξI,
SA+ATS − 2SBBTS + ξγ < 0,

(9)

where ξ > 0 is the tuning parameter and γ = ρI4. The
feedback gain matrix can be considered as

K = −BTS. (10)

For the symmetry and neat, the constant gain matrix in
(4) is represented as

Γ = SBBTS. (11)

Theorem 5. Consider the multi–agent system given by
(1) and (2), under the Assumptions 2-4, the problem of
consensus control is solved by the controller (4). Besides,
the coupling weighting αij and αi converge to some finite
constants.

Proof. Given the Lyapunov function as follows

V (t) =
N∑
i=1

eTi (t)Sei(t)

+
N∑
i=1

N∑
j=1,j ̸=i

(αij − b)
2

ηij
+

N∑
i=1

(αi − b)
2

ηi
,

(12)

where b is a positive constant, using (8), the derivative of
V (t) is calculated as follows

dV (t) =
N∑
i=1

2ei
TSdei +

N∑
i=1

φ̃T(ei, t)Sφ̃(ei, t)dt

+ 2

N∑
i=1

N∑
j=1,j ̸=i

(αij − b)

ηij
dαij(t)

+
N∑
i=1

2(αi − b)

ηi
dαi(t)

(13)

using (4), we get
N∑
i=1

N∑
j=1

(αij − b)

ηij
dαij(t)

=
N∑
i=1

N∑
j=1,j ̸=i

(αij − b)aije
T
i × SBBTS(ei − ej)dt

+

N∑
i=1

N∑
j=1,j ̸=i

(αji − b)ajie
T
i × SBBTS(ei − ej)dt (14)

Substituting (14) into (13), the derivative of V (t) is derived
as follows

dV (t) =2
N∑
i=1

eTi SAeidt+
N∑
i=1

φ̃T(ei, t)Sφ̃(ei, t)dt

+ 2

N∑
i=1

eTi Sφ̃(ei, t)dW (t)

− 2b
N∑
i=1

N∑
j=1

aije
T
i SBBTS(ei − ej)dt

− 2b
N∑
i=1

die
T
i SBBTSeidt

+

N∑
i=1

N∑
j=1

2(αji − b)ajie
T
i SBBTS(ei − ej)dt.

(15)

According to the Assumption 1 ,we get
N∑
i=1

φ̃T(ei, t)Sφ̃(ei, t)dt ≤ ξ
N∑
i=1

eTi γeidt, (16)

where ξ is the maximum eigenvalue of the matrix S,
γ = ρI4 and we obtain E{W (t)} = 0. Hence, the (15)
can be rewritten as
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dE{V (t)} ≤ E{
N∑
i=1

eTi (2SA+ ξγ)eidt

− 2b
N∑
i=1

N∑
j=1

Hije
T
i SBBTSejdt

+ 2
N∑
i=1

Mie
T
i SBBTSeidt

− 2

N∑
i=1

N∑
j=1

Mjie
T
i SBBTSejdt},

(17)

where Hij denotes the (i, j)th entry of the matrix Hτ(t) =

Lτ(t) + Dτ(t). Let Rji = (αji − b)aji and Ri =
N∑
j=1

Rji.

Denoting ε = (eT1 , e
T
2 , · · · , eTN ), R1 =diag(R1, R2, · · · , RN )

and R2 = [Rji], i, j = 1, 2, ..., N . We can get

dE{V (t)} ≤ E{εT[IN ⊗ (SA+ATS + ξγ)

− 2(bH −M1 +M2)⊗ SBBTS]εdt}.
(18)

Let bH − R1 + R2 = QTΛQ, where Q is an orthogonal
matrix and we assume that Q exists. Denoting δ = (Q ⊗
In)ε, the (18) becomes

dE{V (t)} ≤ E{δT[IN ⊗ (ATS + SA+ ξγ)

− 2bΛ⊗ SBBTS]δdt}

≤ E{
N∑

i∈l(τ(t))

δTi (A
TS + SA

− 2bλiSBBTS + ξγ)δidt}

≤ −E{
N∑

i∈l(τ(t))

δTi πδidt},

(19)

where λi are the eigenvalues of matrix bH −R1 +R2 and
−π is the maximum eigenvalue of the matrix SA+ATS−
2SBBTS+ξγ. What’s more, bλi > 1, i = 1, 2, · · · , N hold,
because the coupling weights αij and αi are nondecreasing,
the constant b can be sufficiently large to make bλi > 1,
∀i ∈ l(τ(t)). Therefore, dE{V2(t) ≤ 0}, αij and αi

converge to some constants.

Then, we are going to prove that e(t) converges to 0 in
the mean square. we can get that for any σ > 0, there
is a positive number M due toE{V2(t)} limits. Hence, for
∀k ≥ M

E{V2(tk+1)− V2(tk)} < σ. (20)

Consider e(t), we can get

E

{
π
[ ∫ t1k

t0
k

∑
i∈l(τ(t0

k
))

δTi (t)δi(t)dt+ · · ·

+

∫ t
mk
k

t
mk−1
k

∑
i∈l(τ(t

mk−1
k

))

δTi (t)δi(t)dt
]}

≤ σ,

for ∀k ≥ M , we have

E

{
π
[ ∫ t0k+µ

t0
k

∑
i∈l(τ(t0

k
))

δTi (t)δi(t)dt+ · · ·

+

∫ t
mk−1
k

+µ

t
mk−1
k

∑
i∈l(τ(t

mk−1
k

))

δTi (t)δi(t)dt
]}

≤ σ,

then

lim
t→∞

∫ t+µ

t

E{
∑

i∈l(τ(t))

δi
T(s)δi(s)}ds = 0. (21)

According to the Assumption 4, we get

lim
t→∞

∫ t+µ

t

E{
N∑
i=1

riδ
T
i (s)δi(s)}ds = 0,

where r1, ..., rN are positive number and we can get
E{riδTi (s)δi(s)} = 0 when s tend to infinity. Hence, δi
converges to the mean square, so does ei, i = 1, 2, ..., N .

5. SIMULATION STUDIES

In this part, we give an example to demonstrate the
effectiveness of the approach proposed in this paper.

Example. First, given a multi–agent systems of 4 follow-
ers denoted as 1, 2, 3, 4 and a leader labelled as 0, the
dynamics of the ith agent satisfies the (1) and (2)

A =

 0 1 0 0
−48.6 −1.26 32.5 0

0 0 0 10
1.95 0 −1.95 0

 , B =

 0
7.2
0
0

 .

It is easy to get that (A,B) is stabilisable and the eigen-
values of matrix A have negative real part. The intensity
function φ(xi(t), t) = [1.3 sin(xi1(t)), 0, 1.5 sin(xi3(t)), 0]

T,
which satisfies the Lipschitz condition. The possible in-
teraction graphs are {G1, G2, G3, G4, G5, G6} shown in
Figure 1. The interaction topologies are switched in or-
der of G1 → G2 → G3 → G4 → G5 → G6 →
G1 · · · , and each graph is kept for 1

3s. The initial s-

tates are x0 = [ 1, 2, 3, 4 ]
T
, x1 = [ 2.1, 2.5, 4, 3.5 ]

T
,

x2 = [ 1.8, 2.5, 5, 4.6 ]
T
, x3 = [ 3, 3, 6, 5 ]

T
, x4 =

[ 1.2, 3, 4, 5.2 ]
T
.

According to the condition of the paper, using Matlab we
get

S =

 1.3783 −0.0163 −0.2925 −0.0512
−0.0163 0.0249 0.0131 −0.0115
−0.2925 0.0131 0.4117 0.0855
−0.0512 −0.0115 0.0855 1.4729

 ,

K = [ 0.1174, −0.1793, −0.0943, 0.0828 ] ,

Γ =

 0.0138 −0.0210 −0.0111 0.0097
−0.0210 0.0321 0.0169 −0.0148
−0.0111 0.0169 0.0089 −0.0078
0.0097 −0.0148 −0.0078 0.0069

 .

From the Figure 2 and 3, we can know that the error state
of followers ei, i = 1, 2, 3, 4 reaches 0 and trajectories of the
coupling weights αij , i, j = 1, 2, 3, 4 and αi, i = 1, 2, 3, 4
reach some constant within limit time, which prove the
correctness of the theorem.
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Fig. 2. The trajectories of coupling weights during the state of each agent be gradually consistent
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(d) The trajectories of e4

Fig. 3. The state error trajectories of the followers during the state of each agent be gradually consistent
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6. CONCLUSION

In this paper, we discuss the consensus control of multi–
agent systems with directed-switching topology. In addi-
tion, we design the control protocol to solve the problem
and the consensus control is reached under the methods
we propose. Finally, the simulations are given to prove
that the controllers are efficient to settle consensus control
problems of multi-agent systems with directed-switching
topology.

Future work will attempt to further research multi–agent
systems with optimization and time–varying topology.
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