
Learning to Play Hard Exploration Games

Using Graph-guided Self-navigation

Enmin Zhao1,2∗, Renye Yan2,1∗, Kai Li1, Lijuan Li1, Junliang Xing1,2†

1Institute of Automation, Chinese Academy of Sciences
2School of Artificial Intelligence, University of Chinese Academy of Sciences

Beijing 100190, P. R. China

{zhaoenmin2018, yanrenye2018, kai.li, lijuan.li}@ia.ac.cn, jlxing@nlpr.ia.ac.cn

Abstract—This work considers the problem of deep rein-
forcement learning (RL) with long time dependencies and s-
parse rewards, as are found in many hard exploration games.
A graph-based representation is proposed to allow an agent
to perform self-navigation for environmental exploration. The
graph representation not only effectively models the environment
structure, but also efficiently traces the agent state changes and
the corresponding actions. By encouraging the agent to earn a
new influence-based curiosity reward for new game observations,
the whole exploration task is divided into sub-tasks, which are
effectively solved using a unified deep RL model. Experimental
evaluations on hard exploration Atari Games demonstrate the
effectiveness of the proposed method. The source code and
learned models will be released to facilitate further studies on
this problem.

Index Terms—Reinforcement Learning, Hard Exploration
Games, Self-navigation, Graph-guided

I. INTRODUCTION

Reinforcement learning (RL) of game playing with long

time dependencies and sparse rewards remains a very chal-

lenging problem. During the early stage of the game, a game

playing agent needs to explore the environment without any

rewards. The first reward may occur at the middle or even the

end of the game. On exploring the environment with a very

long discrete sequence of actions, existing RL algorithms like

DQN [1] and its extended variants [2]–[8] may not produce a

good strategy if the rewards are sparse. One main reason is that

most of these algorithms aim to explore for a single reward of a

specific type and need the environments to provide sustained

feedback to guide the exploration process. When the game

reward is missing or is of an unusual type, these algorithms

often struggle to find the correct direction to explore.

To address the sparse reward problem, some existing meth-

ods [9]–[12] learn from demonstrations using game replays

of human replays [9]. Since the demonstrations from human

replays are usually noisy, discrete, and asynchronous with

the current game, new learning models built upon DQN [11]

or policy optimization [12] have been developed. They yield

impressive results on hard exploration Atari Games [1]. Con-

sidering the fact that human demonstrations are often not

available in practical RL applications, it would be very useful

to build upon the basic principles of human players when

∗Equal contribution,† Corresponding author.

playing hard exploration games, instead of learning from

human game replays.

Suppose that a man is trapped in a labyrinth. The only thing

he can do to reach the exit is to explore the labyrinth using trial

and error. To perform more efficient and effective exploration,

he needs to remember the environment of the labyrinth as well

as his position within it while moving around. He should also

backtrack to a previous path if a specific exploration path fails.

Inspired by these observations, we are motivated in this work

to design an agent with these abilities.

In particular, the visual input of the game can be viewed as a

grid map, which is similar to a map of an area using longitude

and latitude. Different locations of the agent on the grid map

represent different states of the game, and successive states

establish an exploration path. To remember the environment,

the agent needs to locate its position in the map, which can

be learned by the agent from consecutive visual inputs [13].

To help the agent track the exploration paths, a graph-based

representation is built by denoting different game states as

graph nodes and successive state pairs as graph edges. This

graph-based model has a much smaller size than the grid map,

and is useful for following exploration processes.

To encourage the agent to explore the environment, we

propose a new curiosity model in which intrinsic rewards drive

the agent to learn. The basic idea behind existing curiosity

based models [14]–[17], [17]–[20] is to give a reward for

novel observations. In contrast, our curiosity model guides the

agent to pay more attention only to those new observations

that contribute to the search for the game extrinsic rewards.

This model is inspired by human behavior which focuses on

observations that directly affect the person [16]. With this

new curiosity model and the graph representation, the agent

explores the environment and keeps a record of its exploration.

Through self-navigation of the agent in the environment, a

complex exploration task is divided into several small and

simple sub-tasks through the connectivity of the graph-based

representation. Then a deep RL model with a unified model

architecture is designed to learn policies for each sub-task.

These policies can be easily learned without using much

computation resource. To summarize, this work makes the

following three main contributions:

• We introduce an effective exploration strategy for hard

exploration games by encouraging an agent to navigate

978-0-7381-3366-9/21/$31.00 ©2021 IEEE

20
21

 In
te

rn
at

io
na

l J
oi

nt
 C

on
fe

re
nc

e
on

 N
eu

ra
l N

et
w

or
ks

 (I
JC

N
N

) |
 9

78
-1

-6
65

4-
39

00
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IJC
N

N
52

38
7.

20
21

.9
53

42
51

Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on April 19,2022 at 02:51:49 UTC from IEEE Xplore. Restrictions apply.

using a graph to record the environment and agent’s

positions. The graph enables the tracing of the state-

action history.

• We propose a new influence based curiosity model in

which the agent pays more attention to new observations

that guide the search for future game rewards.

• We design a new method for dividing a complex explo-

ration task into several small and simple sub-tasks, and

a unified architecture to perform efficient and effective

reinforcement learning for policy updating.

Based on the above contributions, we achieve an effective

algorithm for hard exploration game playing. On the Montezu-

ma’ Revenge, the algorithm obtains a score of 29,400, which

surpasses all previous pure-exploration algorithms without

using expert demonstrations. To facilitate further studies of

this problem, we will release the experimental results, trained

models, and source code of the proposed algorithm.

II. RELATED WORK

The sparse reward phenomenon is common in many hard

exploration tasks. Most previous works focus on improving the

effectiveness of exploration. Simple heuristic methods such as

ǫ-greedy [1] or Gaussian control noise [6] work well on a

wide range of tasks, but they are inefficient in sparse reward

environments such as those found in the Atari games like

Montezuma’s Revenge and Venture. For these games, standard

RL algorithms perform poorly without finding even one re-

ward. Policy gradient RL algorithms such as A2C/A3C [6],

TRPO [4] and PPO [5] are also inefficient in exploration.

To tackle the exploration problem with sparse rewards, a

natural idea is to use human replays or expert demonstration

trajectories to guide the learning procedure [9]. One typical

class of methods [21]–[23] formulate policies using demon-

strations collected passively (behavioral cloning). Another

class of methods [24]–[27] assumes an interactive expert to

provide demonstrations in response to actions taken by the

current policy. Researchers from OpenAI and DeepMind pro-

pose different methods based on learning from demonstration

to devise policies for the Montezuma’s Revenge with good

results. The two-stage learning algorithm from DeepMind [9]

extracts game features using two types of self-supervised

objectives, and uses videos on YouTube to learn the game

to 45,000 points. OpenAI applies imitation learning from the

end of the video and progressively moves back in time as

training proceeds [10]. This method turns an imitation learning

problem into a sub-goals reinforcement learning problem and

achieves 74,000 points.

Since the expert demonstrations are often not available,

there is a need for RL algorithms that can learn from some

internal motivation or rewards during game playing. Recent-

ly, curiosity-driven learning for environment exploration has

yielded promising results for the sparse reward problem [16]–

[20]. Different kinds of curiosity models have been proposed,

however the basic idea behind these models is to give novel

observations a reward bonus to encourage the agent to explore.

The random network distillation method [28] employs the

prediction error of a fixed randomly initialized neural network

as an exploration bonus and outperforms average human

performance on the Montezuma’s Revenge.

Recently, Ecoffet [29] proposed the Go-Explore algorithm

for the hard exploration Atari games, and obtained amazing

high scores in the Montezuma’s Revenge. Our algorithm shares

the same idea which is to encourage the agent to explore

environment using an intrinsic representation. However, our

algorithm does not read the agent position from the game

memory directly and the proposed processing pipeline is

completely different from Go-Explore.

III. GRAPH-GUIDED SELF-NAVIGATION

For many labyrinth-like Atari games, environmental ex-

ploration is of crucial importance. In fact, environmental

exploration is sometimes even more important than obtaining

the rewards. Imagine that a man is locked in a very complex

labyrinth and that the exit is a dark door. To get out of the

labyrinth, the man needs to remember the structure of the

labyrinth as well as his location within it. To reach the exit,

he has to explore the path to it first. With the environmental

structure in mind, he can backtrack to previous crossroads and

continue exploration each time he meets a dead end.

Our model is inspired by the above human exploration

procedure. Given a sequence of game playing images, the

proposed approach consist of three steps. It first represents

the game environment using a graph model defined over the

game grid. The agent position is automatically located using

the motion information of the target. Then the agent performs

self-navigation using the graph-representation to explore the

game and learns to obtain both the game extrinsic reward

and the intrinsic rewards derived from an influence based

curiosity model; Finally, the whole complex exploration task

is decomposed into multiple simpler sub-tasks and a unified

deep RL model is trained to deal with each sub-task.

A. Graph-based game representation

The input of many labyrinth-like games is a set of visual

images I = {I1, I2, . . . , It, . . . }, each of which can be viewed

as a dense rectangular grid with the width W and height H .

The agent chooses a set of predefined actions A = {ak}
K
k=1

to get through different game levels, where K is the number

of different actions.

To perform game exploration, the agent needs to remember

the structure of the game environment and its position within

it. However, the agent does not know its position at first, but

has to “guess” it while moving around the game environment.

Unlike previous works [20], [29] that read the agent position

from the game memory directly, in this work, a simple agent

detection model is developed to learn the agent position using

the agent motion information. When the agent moves around

the game environment using different actions, the motion

information in two consecutive frames is obtained by simple

frame subtraction [30]. The detected motion areas may also

contain some other parts of the game environment, but by

sequential analysis of the motion area and agent actions, those

Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on April 19,2022 at 02:51:49 UTC from IEEE Xplore. Restrictions apply.

areas can be easily removed. Although more sophisticated

approaches [31] can be used to learn the agent position, we

find in the experiments this simple approach works well.

Given the agent position p = (x, y) on the grid map, the

game state is denoted as s. By connecting different game

states with an edge when the agent moves around the grid,

a graph-based game representation is obtained for the game

playing process. Denote this graph as G = {V,E}, where

V = {sn}
N
n=1 is the graph node set with N elements, each of

which is one specific game state, and E = {(si, sj), . . . } is

the directed graph edges connecting the adjacent game states

when the agent moves from si to sj by a specific action

a. In a deterministic game like most hard exploration Atari

games, executing a specific action in a given game state takes

the agent to a deterministic, non-random, state. This graph-

based game representation enables the agent to remember the

structure of the game environment and game playing history.

It will facilitate the game exploration and learning process.

B. Influence-based curiosity model

In the above graph-based game representation, different

kinds of reward signals can be associated to the graph nodes

and/or graph edges. In hard exploration tasks like Montezuma’

Revenge, the game reward associated to the graph node is

obtained only when the agent successfully passes a game

level, which is not sufficient to drive the agent to perform

game exploration. To deal with this problem, many existing

works [16], [17], [19], [20], [28] define different kinds of

intrinsic rewards on the graph node to drive the agent to

explore. Among these works, the curiosity-based models [16],

[17], [19], [20] generate additional rewards when the agent

makes a novel observation on a graph node. Inspired by human

behavior which shows more curiosity about changes that may

affect the person, instead of defining the reward signal on

the graph node, this paper proposes a new influence based

curiosity model on the graph edges to ensure that the agent

explores the environment efficiently.

Given an initial game state si, if the game proceeds to state

sj after executing a specific action a, the intrinsic reward for

the edge from state si to state sj is denoted as rsi→sj
, which

is set in the following two situations:

• rsi→sj
> 0: executing an action a at state si to proceed to

state sj results in positive influence or new environmental

observations.

• rsi→sj
< −R: executing an action a at state si to proceed

to state sj results in negative influence.

The above curiosity model encourages the agent not only to

explore new game states as previous methods do, but also

pay more attention to game states that will affect the agent

itself. In Atari games, the influence to agent can be naturally

defined using the remaining lives of the agent. Fig. 1 shows

an example of an intrinsic reward for each state-action.

With the definition of the influence-based reward rsi→sj
,

the agent can perform game exploration using reinforcement

Fig. 1: An example of intrinsic rewards used in defining the curiosity
model in the Montezuma’s Revenge. The agent gets a positive intrinsic
reward with a single action ‘right jump’ and a negative intrinsic
reward with an action ‘left jump’.

learning with the hybrid reward r, which is the sum of the

intrinsic reward and the game extrinsic reward re,

r = re + rsi→sj
, (1)

From the above definition of the hybrid reward, it can be

seen that the game reward item corresponding to a reward at

the node of the graph representation, and the intrinsic reward

corresponds to the reward item defined in the edge of the

graph representation. The proposed curiosity model not only

produces more game rewarding signals to make RL based

game exploration feasible, but also points out the possible

exploration directions for an RL algorithm. These benefits

result in a new game playing paradigm. The agent can be

guided more efficiently to the final game objective.

C. Task-decomposition for effective learning

With the hybrid reward signals defined over the graph-based

representation, the agent is able to explore more game levels.

In complex exploration tasks, it is still very challenging to

learn the whole exploration task, as it requires an RL algorithm

to explore in all possible directions and trajectories. Since

the graph-based representation is very flexible in tracing the

game states and exploration trajectories, by incorporating the

proposed curiosity model, it can be used to record only the

useful exploration history and to avoid multiple exploration

of similar tasks. Based on these considerations, we propose

a task-decomposition procedure leveraging the graph-based

representation and the influence-based curiosity model to

further improve the exploration effectiveness.

When exploring the environment, the game states associated

with non-zero extrinsic and intrinsic rewards are recorded. In

particular, given a game state si, a specific action a is executed

which causes the game to move to state sj and yields a positive

intrinsic reward rsi→sj
> 0, or equally denoted as rsi,a >

0. The game actions are continued until a negative intrinsic

reward is obtained. The route is recorded as (ps, pe), where ps
is the start position and pe is the end position. In principle, the

agent should search such routes for all the reachable states and

the corresponding action sequences. Fig. 2 shows an example

Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on April 19,2022 at 02:51:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: An example of the route search. The agent will get a negative
intrinsic reward if it goes down to the floor.

5 4 1 2 3
9

768

right jump

left jump

right

left left

left left

right

right right
down

up

right jump

left jump

left jump

right jump

right jump

1

24 35

8 6 7
9

Fig. 3: An example of the graph route search path for Montezuma’s
Revenge. It helps the agent to quickly explore the environment.

of the route search. The agent will obtain a negative intrinsic

reward if it goes down to the floor.

However, the structure obtained from this traversal state is

too complex for the agent to directly apply it for learning.

This work thus proposes an approach for updating the reward

to simplify the structure of the graph-based representation. For

one ps, if there is only one pe for all (ps, pe) in rs,a (The out-

degree of ps is only one), we get the sequence (p1, p2, . . . , pn)
which contains (ps, pe) and the same action and the out-degree

of pk is one. Then, we update rs,a as follows:

rs,a ← rs,a + γrs−1,a + γ2rs−2,a + · · ·+ γnrs−n,a, (2)

where γ is the discounting factor. Then we can delete all the

graph nodes inside the route path (p1, p2, . . . , pn). The specific

methods are described in Algorithm 1. In this way an agent

is made to explore all the areas it has reached. After that, the

agent finds the turning points in the game and forms a compact

graph route search path. One example of graph route search

path for Montezuma’s Revenge is shown in Figure 3.

With the above self-negation process, every time the agent

fails in an exploration process, a route path is formed in the

graph-based representation. RL model is trained to help the

agent to pass the exploration failure. In particular, denote the

navigation route as (p1, p2, . . . , pk−1, pk) and the navigation

action as (a1, a2, . . . , ak). If in a certain step m(1 ≤ m ≤ k),
according to the navigation route (pm−1, pm) and the navi-

gation action am, the agent gets the reward rsm−1→sm
< 0,

then the agent generates random experimental samples to the

position pm from the position pm−1 and trains a deep RL

model using these samples with an RL learning algorithms.

Algorithm 1: Graph route path searching.

Input: The initial graph-based representation G.

Output: Action set A, Route buffer B, Reward set R.

Initialize: A ← ∅, B ← ∅, R ← ∅
for all states in G do

for k = 1, . . . ,K do
Get the position ps from current state s.

Give a new action ak.

Update the proceeded position pe.

Get reward rs,ak
for this action.

if rs,ak
> 0 then

B ← {(ps, pe)}, A ← {a}, R ← {rs,ak
}

for all ps in B do

if there is only one pe for all (ps, pe) then
Get the sequence (p1, p2, . . . , pn) by Rsr

which contains (pi−1, pi) and the same

action ak.

Update rs,ak
.

Delete all the items in B with rs,ak
< 0.

Record A, B, and R in V and E .

Take the A2C algorithm [6] as an example. The learning

objective is,

La2c = Es,a∼πθ
[La2c

policy + βa2cLa2v
value],

La2c
policy = − log πθ(at|st)(R− Vθ(st))− αHπθ

t ,

La2c
value =

1

2
‖(Vθ(st)− V n

t)‖2 ,

Hπθ

t = −πθ(a|st) log πθ(a|st),

(3)

where (x)+ = max(x, 0), θ is the model parameters, α

and β are the regularizers. Driven by the learning algorithm,

the agent can succeed in reaching the position pm from

the position pm−1 finding the optimal policies. The agent

performs exploration with the navigation routes and actions

until obtaining negative internal rewards. Algorithm 2 outlines

the above procedure. Through this navigation map, the agent

decomposes the complex whole game task into many smaller

tasks, which can be easily learned with a light-weight neural

network.

IV. EXPERIMENTS

The proposed approach is evaluated on four hard explo-

ration Atari 2600 games: Montezuma’s Revenge, Freeway,

Hero, and Private Eye. The following parts first introduce

the implementation details, and then describe experimental

evaluations to verify the effectiveness of the proposed method

by ablation studies and comparisons with the state-of-the-art.

Some discussions on the learned results are also provided in

the last.

A. Implementation details

For the unified deep RL model, we adopt a three-layer

convolutional neural network used in DQN [1] with the last

Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on April 19,2022 at 02:51:49 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: Task-decomposition for A2C learning.

Input: Action set A, Route buffer B, Reward set R.

Output: Learned parameter θ.

Initialize θ randomly.

while NotEmpty(B) do
Take a sub-task from A, B and R into T .

Get internal reward rsi→sj
from T .

if rsi→sj
< 0 then

while NotConverge do
Generate random experimental data.

Perform one round of the A2C learning:

θ ← θ − η∇θL
a2c.

4 stacked frames as input. Our basic RL algorithm is based

on the A2C algorithm implemented from the OpenAI base-

lines [32]. The specific parameters of the network architecture

and the A2C learning algorithm are shown in Table I. In all

the experiments, the reported results of the proposed approach

are all averaged over 5 trials of model learning.

TABLE I: Parameter settings in the experiments when learning the
RL model using the A2C algorithm.

Parameter Value

Network Architecture

Input: 210×160×4
Conv (32-8×8-4)
Conv (64-4×4-2)
Conv (64-3×3-1)

FC (512)
Output: # of game actions

Learning rate 0.0007
Number of environments 16

Number of steps per iteration 5
Entropy regularization (α) 0.01

Value loss regularization (β) 0.5
Discount factor (γ) 0.01

B. Ablation studies

To verify the effectiveness of the different components

in the proposed algorithm, we perform ablation studies on

Montezuma’s Revenge. We compare three different variants

of the proposed algorithm, including:

• A2C baseline from OpenAI’s implementation (A2C).

• A2C+Graph-based game representation & Influence-

based curiosity model (A2C+GDc).

• A2C+Graph-based game representation & Influence-

based curiosity model & Task-decomposition for effective

learning(Graph-guided Self-navigation) (A2C+GS).

By designing these three variants, we intend to verify the im-

portance of the influence-based curiosity model and the task-

decomposition for effective learning. The learning curves of

these variants on Montezuma’s Revenge are shown in Figure 4.

The X-axis and Y-axis represent learning steps and the average

game score, respectively. The baseline A2C algorithm failed to

obtain even one game reward in this game. With the curiosity

model defined over the graph-based representation, the agent

succeeded in obtaining some game rewards. By learning a deep

RL model for each sub-task, the agent obtained a final score of

24,500. These experiments show that our full model helps the

deep reinforcement learning work in long time dependencies

with sparse rewards well. The graph representation acts like a

map to divide the whole task into small tasks and guide agents

to get more rewards.

2.5

2

1.5

1

0.5

0

10
4

A2C

A2C+GDc

0 2 12106 8

Learning steps 10
6

A2C+GS

A
v
er

g
e

g
am

e
sc

o
re

Montezema's Revenge

4

Fig. 4: Learning curves of different variants of the proposed learning
algorithm on Montezuma’s Revenge. Each learning step use 32 Atari
frames.

Through the above experimental results, we can draw the

following three observations: 1) the graph-based representation

provides a general way for hard exploration game modeling;

2) the influence-based curiosity model increases the number

of rewards and helps the agent learn better strategies; and 3)

the task-decomposition for effective learning helps the agent

to form navigation maps and divide a complex exploration

task into some small and simple ones. Based on this divide-

and-conquer strategy, the agent further effectively utilizes the

advantages of the graph-based game representation and greatly

simplifies the learning for game playing.

C. Comparisons with the state-of-the-art

To evaluate the overall performance of the proposed model,

we first compare it against many state-of-the-art RL algorithms

on different hard exploration games under standard game

settings. The algorithms to be compared are: 1) the PPO

algorithm [5]; 2) the self-imitation learning [33]; 3) the state-

of-the-art count-based exploration actor-critic agents A3C-

CTS [34]; 4) the Reactor-PixelCNN [34]; 5) the curiosity

based method RND [28]; and the unified count and curiosity

method UCC [19]. These methods imitate good experience

which gets rewards or learns a density model of the ob-

servation. Similar to state-of-the-art count-based exploration

actor-critic agents A3C-CTS [34] and Reactor-PixelCNN [34],

our method has an explicit exploration bonus to encourage

exploration. The experiment result is shown in Table II. The

reported results of other methods are directly taken from the

Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on April 19,2022 at 02:51:49 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Comparison with the Go-Explore approach on the first room
of Montezuma’s Revenge.

corresponding papers. The proposed approach obtains the best

results among all the methods. It also outperforms the average

human performance in all the games except Private Eye.

To compare with the recent Go-Explore method [29], we

follow the experimental settings in the Go-Explore paper

to retrain our model on Montezuma’s Revenge. Three main

experimental tricks are borrowed from Go-Explore to speedup

the model training: 1) the agent position is directly read from

the game memory; 2) the game running process is controlled

to jump from different game states; and 3) simulated samples

at different games states are generated to train the model.

Figure 5 compares the success rate curves of Go-Explore and

our model. Both methods divide the whole task into four

subtasks and use the same A2C algorithm to train the strategy.

We can see our model learns a good policy with fewer steps

compared to Go-Explore.

D. Discussions

Finally, we analyze some learned results of the proposed

model. Take Montezuma’s Revenge as an example, in most

experiments the first level is explored, but with game strategy

differing from the one suggested in the game manual1, in

which all 24 rooms in the first level are visited. Our agent finds

the quickest way out of the first level , which involves visiting

only 15 rooms. This strategy is different from all the previous

ones. The agent learned a special way to play Montezuma’s

Revenge and improve its scores over successive trials, in the

same way as a human player.

Graph-guided self-navigation also helps the agent divide

a complex task into some simple and small ones, which

can be directly solved or learned quickly. If the goal of the

agent is to get out of the first level rather than get as many

rewards as possible, graph-guided self-navigation also helps

the agent find the best strategy. Most existing reinforcement

learning methods still need many experiments in which the

agents traverse the first level. Graph-guided self-navigation

helps agents decompose tasks effectively and continues the

1https://en.wikipedia.org/wiki/Montezuma’s Revenge (video game)

TABLE II: Comparisons with the state-of-the-arts using averaged
obtained scores on hard exploration Atari games.

Montezuma Freeway Hero Private Eye

PPO 2,497 32.5 - 105
A2C+SIL 2,500 34 33,069 8,684
A3C+CTS 400 30 15210 99

Reactor-PixelCNN 100 32 28,000 200
RND 8,152 34 - 8,666
UCC 3,439 30 34,880 15,806

Proposed 24,500 34 38,604 33,628

Avg. Human 4,753 16 28756 69,571

learning procedure efficiently. The graph-representation helps

the agent record every task and self-navigation helps the agent

find a solution to the whole task automatically.

(a) The suggested strategy from the game manual for getting out the first level
in Montezuma’s Revenge.

(b) The learned sequence of the 15 rooms from the model for getting out the
first level in Montezuma’s Revenge.

Fig. 6: Comparison between the suggested strategy and the learned
strategy for getting out the first level in Montezuma’s Revenge.

V. CONCLUSIONS

In this paper we propose a graph-guided self-navigation

approach for agent exploration. It contains a graph-based

game representation for the game environment, an influence-

based curiosity model, and a task-decomposition for effective

learning. The graph-based game representation effectively

simulates the game environment, influence-based curiosity

helps the agent to increase curiosity about some areas of the

graph and inspires the agent to explore these areas. The task-

decomposition for effective learning divides a complex task

into small and simple ones. In this way, the agent forms self-

navigation maps for game exploration and learning.

VI. ACKNOWLEDGMENTS

This work was supported in part by the Natural Sci-

ence Foundation of China under Grant No. 62076238 and

61902402, in part by the National Key Research and Develop-

ment Program of China under Grant No. 2019AAA010340X,

in part by the CCF-Tencent Open Research Fund under Grant

No. RAGR20200104, and in part by the Strategic Priority

Research Program of Chinese Academy of Sciences under

Grant No. XDA27000000.

Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on April 19,2022 at 02:51:49 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. Volodymyr, K. Koray, S. David, R. Andrei A, V. Joel, B. Marc G,
G. Alex, R. Martin, F. Andreas K, and O. Georg, “Human-level control
through deep reinforcement learning,” Nature, vol. 518, no. 7540, p.
529, 2015.

[2] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration
via bootstrapped DQN,” in Advances in Neural Information Processing

Systems, 2016, pp. 4026–4034.

[3] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas, “Dueling network architectures for deep reinforcement
learning,” in International Conference on Machine Learning, 2015, pp.
1995–2003.

[4] J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and P. Moritz, “Trust
region policy optimization,” in International Conference on Machine

Learning, 2015, pp. 1889–1897.

[5] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[6] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Harley, T. Lillicrap,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International Conference on Machine Learning,
2016, pp. 1928–1937.

[7] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and
N. de Freitas, “Sample efficient actor-critic with experience replay,” in
International Conference on Learning Representations, 2017, pp. 1–8.

[8] H. Tang, R. Houthooft, D. Foote, A. Stooke, X. Chen, Y. Duan,
J. Schulman, F. DeTurck, and P. Abbeel, “Exploration: A study of
count-based exploration for deep rein-forcement learning,” in Advances

in Neural Information Processing Systems, 2017, pp. 2753–2762.

[9] Y. Aytar, T. Pfaff, D. Budden, T. L. Paine, Z. Wang, and N. de Freitas,
“Playing hard exploration games by watching youtube,” in Advances in

Neural Information Processing Systems, 2018, pp. 2935–2945.

[10] T. Salimans and R. Chen, “Learning montezuma’s revenge from a single
demonstration,” arXiv preprint arXiv:1812.03381, 2018.

[11] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, I. Osband, G. Dulac-Arnold,
J. Agapiou, J. Z. Leibo, and A. Gruslys, “Deep Q-learning from
demonstrations,” in AAAI Conference on Artificial Intelligence, 2018,
pp. 3223–3230.

[12] B. Kang, Z. Jie, and J. Feng, “Policy optimization with demonstrations,”
in International Conference on Machine Learning, 2018, pp. 2474–2483.

[13] H. Kim, J. Kim, Y. Jeong, S. Levine, and H. O. Son, “EMI: Exploration
with mutual information,” in International Conference on Machine

Learning, 2019, pp. 3360–3369.

[14] R. M. Ryan and E. L. Deci, “Intrinsic and extrinsic motivations: Classic
definitions and new directions,” Contemporary educational psychology,
vol. 25, no. 1, pp. 54–67, 2000.

[15] P. J. Silvia, “Curiosity and motivation,” The Oxford handbook of human

motivation, pp. 157–166, 2012.

[16] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in International Conference

on Machine Learning, 2017, pp. 2778–2787.

[17] N. Savinov, A. Raichuk, D. Vincent, R. Marinier, M. Pollefeys, T. Lil-
licrap, and S. Gelly, “Episodic curiosity through reachability,” in Inter-

national Conference on Learning Representations, 2019, pp. 1–8.

[18] K. Gregor, D. J. Rezende, and D. Wierstra, “Variational intrinsic
control,” 2017, pp. 1–8.

[19] M. G. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and
R. Munos, “Unifying count-based exploration and intrinsic motivation,”
in Advances in Neural Information Processing Systems, 2016, pp. 1471–
1479.

[20] C. Stanton and J. Clune, “Deep curiosity search: Intra-life exploration
improves performance on challenging deep reinforcement learning prob-
lems,” arXiv preprint arXiv:1806.00553, 2018.

[21] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in International Conference on Machine Learning, 2004,
pp. 1–8.

[22] U. Syed and R. E. Schapire, “A game-theoretic approach to apprentice-
ship learning,” in Advances in Neural Information Processing Systems,
2008, pp. 1449–1456.

[23] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
Advances in Neural Information Processing Systems, 2016, pp. 4565–
4573.

[24] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in International

Conference on Artificial Intelligence and Statistics, 2011, pp. 627–635.
[25] S. Ross and J. A. Bagnell, “Reinforcement and imitation learning via

interactive no-regret learning,” arXiv preprint arXiv:1406.5979, 2014.
[26] K.-W. Chang, A. Krishnamurthy, A. Agarwal, H. Daume III, and

J. Langford, “Learning to search better than your teacher,” in Inter-

national Conference on Machine Learning, 2015, pp. 2058–2066.
[27] W. Sun, A. Venkatraman, G. J. Gordon, B. Boots, and J. A. Bagnell,

“Deeply aggrevated: Differentiable imitation learning for sequential
prediction,” in International Conference on Machine Learning, 2017,
pp. 3309–3318.

[28] Y. Burda, H. Edwards, A. Storkey, and O. Klimov, “Exploration by
random network distillation,” in International Conference on Learning

Representations, 2019, pp. 1–8.
[29] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune, “First

return, then explore,” Nature, vol. 590, no. 7847, pp. 580–586, 2021.
[30] J. Xing, L. Liu, and H. Ai, “Background subtraction through multiple

life span modeling,” in International Conference on Image Processing,
2011, pp. 2953–2956.

[31] J. Choi, Y. Guo, M. Moczulski, J. Oh, M. N. Neal Wu, and H. Lee,
“Contingency-aware exploration in reinforcement learning,” in Interna-

tional Conference on Learning Representations, 2019, pp. 1–8.
[32] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,

J. Schulman, S. Sidor, , and Y. Wu, “OpenAI baselines,” 2017.
[Online]. Available: https://github.com/openai/baselines

[33] J. Oh, Y. Guo, S. Singh, and H. Lee, “Self-imitation learning,” in
International Conference on Machine Learning, 2018, pp. 3875–3884.

[34] G. Ostrovski, M. G. Bellemare, A. van den Oord, and R. Munos,
“Count-based exploration with neural density models,” in International

Conference on Machine Learning, 2017, pp. 2721–2730.

Authorized licensed use limited to: University of Chinese Academy of SciencesCAS. Downloaded on April 19,2022 at 02:51:49 UTC from IEEE Xplore. Restrictions apply.

