
A High Speed Robot Vision System
with GigE Vision Extension

Wenhao He, Kui Yuan, Han Xiao and Zhengdong Xu
Institute of Automation

Chinese Academy of Sciences
Beijing 100083, China

{wenhao.he, kui.yuan, han.xiao & zhendong.xu}@.ia.ac.cn

 Abstract - High speed image and video processing is
becoming increasingly important in many applications, especially
in robotics. To boost the computing speed of traditional robot
vision system, a FPGA and DSP based robot vision system is
developed. Considering about the high throughput image
acquisition is the premise of high speed processing, a GigE vision
interface is also extended. The configuration and some important
characteristics of this robot vision system, which can not only
capture images rapidly but can also process images using
different algorithms in real-time, are described in this paper.
Experiment results are also given to show that the newly
developed vision system is much faster and more suitable for
robot vision applications.
 Index Terms – High Speed, GigE Vision, FPGA.

I. INTRODUCTION

 Vision sensor can provide more information for a mobile
robot about the environment than most of other sensors, and
then it is attracting more and more attentions [1]. Traditional
robot vision systems are usually composed of an image
grabber and a single-CPU-based computer, such as PC, IPC,
notebook computer, etc. [2]. These kinds of vision system
always process the image data using the single CPU through
software. Due to the great amount of data, the speed of vision
system is limited, and the whole function of robot is affected.
Therefore, using a single processor and sequential software are
not recommended for robot vision system and other real-time
vision applications.

With advances in the VLSI technology, FPGA
implementation vision system has become an attractive
alternative [3,4]. Assigning complex computation tasks to
hardware and exploiting the parallelism and pipelining in
algorithms yield significant speedup in running times. In this
paper, an intelligent image card based on FPGA and DSP and
a robot vision system using this intelligent image card is
introduced. Considering about the high throughput image
acquisition is the premise of high speed processing, a high
speed GigE vision interface is also extended in this card. The
intelligent card can not only capture images rapidly but also
can do the high speed of image processing. So that the speed
of robot vision system using this intelligent card can be boost
greatly comparing to the traditional robot vision system.

The rest of this paper is organized as follows. Section 2
describes the design of the intelligent image card. The high
speed camera interface –GigE Vision and its implementation
on FPGA will be discussed in section 3. Section 4 presents
algorithms realized on FPGA. In section 5, experiments and

discussion is described. Finally, conclusions and future work
are given in section 6.

II. DESIGN OF THE INTELLIGENT IMAGE CARD

 For developing a high speed robot vision system, we
have developed an intelligent image card. The main functions
of this intelligent image card are as follows: (i) image
capturing; (ii) implementation of image processing algorithms
according to the command from host computer; (iii)
communication with host computer.

The block diagram of the intelligent image card is shown
in Fig. 1.

FPGA

Nios II
CPU

JTAG/
UART

GigE Vision
Controller

10/100/1000M
MAC

Image Processing
Components

External
DDR SDRAM

External
FLASH

10/100/1000M
Ethernet

Avalon Bus

Robot
Host Controller

Digital
Camera Signal

Testing
PC

 DSP

EMIF

HPI

Fig. 1 Block diagram of hardware implementation

 The image capturing module consists of a 10/100/1000M
Triple Speed Ethernet (TSE) and a GigE Vision Controller.
Digital camera data packets is inputted via TSE interface and
be decoded by GigE Vision Controller. The main task of
FPGA is to implement image capturing module and the image
data pre-processing algorithm which need large mount of
computation according to the command from the host
computer. The Altera EP3C40F484 chip is chosen as FPGA
processor for its low cost, high performance application,
which has a high quality-to-price ratio. There are 40K Logic
Elements, 1Mbit Embedded Memory, and 18Bit x 18Bit
Embedded Multipliers in this FPGA chip [5]. With these
hardware resources, a SOPC (System on Programmable Chip)

452978-1-4244-8115-6/11/$26.00 ©2011 IEEE

Proceedings of the 2011 IEEE
International Conference on Mechatronics and Automation

August 7 - 10, Beijing, China

system is designed. The SOPC system is composed of a Nios
II processor, a 10/100/1000M trip speed Ethernet MAC, a
GigE Vision Controller, a JTAG/UART serial port and User
Customized Image Processing Components. All these SOPC
modules are integrated by Avalon Bus. A DSP chip
TMS320DM642 (from TI) is also used to deal with high-level
image processing algorithm and to control the timing of this
intelligent image card. The external DDR SDRAM module
provides program running space for Nios II CPU and the
buffer to save image data temporally for Image Processing
Components module. The program of Nios II and DSP is
stored in External FLASH module. The interface ports module
includes a serial UART port, which can download the
configuration data into FPGA or return the testing result to PC
via JTAG/UART unit, and a HPI port, which can
communicate with Robot Host Controller.

The working procedure of the intelligent image card is as
follows:

(i)The Nios II CPU initializes all SOPC units, starts a
communication task to wait DSP command.

(ii)The DSP sends out image data acquisition command
to FPGA via EMIF port.

(iii)The image capturing module, which is managed by
Nios II CPU, receives net packets via triple speed Ethernet
port, decodes the data packets and extracts out the image data
by GigE Vision Controller, and then sends the image data to
Image Processing Components module.

(iv)The Image Processing Components module receive
the raw image data, process the data with image processing
algorithm (such as filter, edge detect, etc.) which implemented
by hardware, and then send the processing result back to
communication task.

(v)The communication task sends the results to Robot
Host Controller through the HPI port and restarts the data
acquisition and processing again.

III. GIGE VISION AND ITS IMPLEMENTATION ON FPGA

 The bandwidth of image capturing channel is the premise
of a high speed vision system. To get high bandwidth of image
capturing, a high speed GigE vision interface is also extended
in this card. In this section we will discuss this vision
extension and its implementation on FPGA.

A. Introduction of GigE Vision
 The GigE Vision is a new standard developed by a
committee of the Automated Imaging Association (AIA), for
high performance machine vision system [6,7,8]. The GigE
Vision standard is based on the User Datagram Protocol
(UDP). Instead of establishing a host-to-host connection as
with TCP, UDP uses ports to allow application-to-application
connections. While this makes UDP less reliable than TCP, it
increases high speed image transfer which is really required
for high speed vision applications. To overcome the
unreliability of UDP, some extra protocols have been added to
GigE Vision. These two protocols introduced by the GigE
Vision standards committee are GigE the Vision Control
Protocol (GVCP) and the GigE Vision Streaming protocol
(GVSP). The GVCP defines how to control and configure

compliant devices (such as cameras), specifies stream
channels, and provides mechanisms for cameras to send image
and control data to the central processing units. The main task
of GVCP is to add some mechanisms to UDP to guarantee the
reliability of image transmission. The GVSP is another
application layer protocol that allows an application to receive
image data, image information, and other information from a
device. GVSP provides mechanisms to guarantee the
reliability of packet transmission (through GVCP) and to
minimize the flow control required due to the unreliability of
UDP [6].

B. GigE Vision for high speed robot vision system
GigE Vision offers many features which make it quite

suitable for an image capturing interface in high speed robot
vision systems. The main feature is its high bandwidth of data
transmission. The actual bandwidth of GigE Vision interface
can speed up to 800Mbps, and has the potential for even
higher bandwidths with 10 Gigabit Ethernet[9]. Therefore
GigE Vision provides enough bandwidth to transmit video in
fast frame way which is an important issue for high speed
vision systems. The reduced costs and simplified installation
is another excellent feature of GigE Vision. Using Power over
Ethernet, the connection of camera and the vision system only
needs one network cable without extra data grabber hardware.
This means the GigE vision system occupies less space which
is important for robot system. Due to the reasons outlined in
this section, it is the authors’ believe that GigE vision is a
suitable interface for high speed robot vision systems.

C. Implementation of GigE Vision
As mentioned above, the GigE Vision standard consists

of two protocols: GVCP and GVSP. If we implement these
two protocols wholly by hardware, the entire project will
require more logic resources and lack of flexibility. If we
implement them with software, which run by Nios II, the
speed of data transmission will be cut down greatly, and the
image capturing rate will be lower than 2 frames per second.
Therefore a hardware and software co-processing architecture
implementation is proposed as follows.

For each UDP data packet consists of source and
destination port numbers, the GigE Vision Controller module
judges which protocol the incoming data packet belonged to
by its packet port number. If the incoming data packet is a
GVCP packet, a NicheStack net service software task, which
launched by Nios II softcore CPU, will be used to decode the
packet. If the incoming data packet is a GVSP packet, the
packet will be decoded by hardware for that GVSP packet
comprises much more data to be decoded than GVCP packet.
This architecture, using the hardware to process mass data
GVSP packet and software task to process GVCP control
packet, can not only guarantee the speed of whole data
transmission but also improve system flexibility. The data
flow of GigE Vision Controller module is shown as Fig.2.

453

Fig. 2 Data flow of GigE Vision Controller

IV. IMPLEMENTATION OF IMAGE PROCESSING
ALGORITHMS BY FPGA

 Image processing algorithms, such as noise filtering, edge
detection, Hough transformation, are computationally
expensive and can not be executed easily in real-time by a
single processor using software. Recent advances in
semiconductor technology have now made it possible to
implement a complex algorithm on a FPGA chip. Therefore,
using FPGA to realize the image processing algorithm is a
good choice for robot vision system since it has the
characteristics of concurrency and completes the computing
work by hardware instead of software. In this section, two
examples will be given to show how an image processing
algorithm is implemented by FPGA.

A. Implementation of Gaussian filter
 1) Algorithm design

 Filters based on Gaussian functions are of particular
important because their shapes are easily specified, and
suppress the noise in the image effectively[10]. In 2-D space,
a circularly symmetric Gaussian has the form of

2 2()
22

2

1(,)
2

x y

G x y e σ

πσ

− +

= (1)

Where � is the standard deviation of the distribution.
Since the image data are stored as a collection of discrete

pixels, a discrete approximation to the Gaussian function is
required to perform the convolution. Theoretically, the
Gaussian distribution is nonzero everywhere, which would
require an infinitely large convolution kernel, but in practice it
is nearly zero in the position where it is more than about three
standard deviations away from the mean, and so convolution

kernel is truncated. Fig. 3 shows a 5×5 digital approximated
convolution kernel.

Multiplication requires large hardware resource and
longer execution time. So the coefficients in the convolution
kernel are selected to be in the form of power of 2. Thus the
operations can be performed in hardware by bit shifting,
saving hardware resource and reduce delay time.

2 1 1 1 2

1 1 2 0 1 2 1

1 0 1 0 1

1 1 2 0 1 2 1

2 1 1 1 2

2 2 2 2 2
2 2 2 2 2 2 2

1
2 2 2 2 2

16
2 2 2 2 2 2 2
2 2 2 2 2

− − − − −

− − − − − −

− −

− − − − − −

− − − − −

� �
� �+ +� �
� �
� �

+ +� �
� �� �

Fig. 3 Gaussian operator for smoothing

2) Hardware implementation
Fig. 4 shows the implementation of Gaussian filter in

FPGA. Four FIFO row buffers and a 5x5 moving window
Gaussian operator is used. Four FIFO buffers with the depth
of one row pixels of image are employed to access all the
pixels in the 5x5 window at the same time. Since the design is
pipelined, the Gaussian filter starts once the 4 FIFO buffers
are full. That is, the output is produced after a latency of
fourth width of image plus four cycles. Since the Gaussian
filter operation is the sum of product of each pixel and
corresponding mask coefficient, an architecture of 5x5 moving
window operator is adopted. Using this architecture,
multiplication and accumulation of convolution operation can
be completed within one clock cycle. Although multiplication
usually requires large hardware resource and long execution
time, it can be realized easily in the FPGA just by a bit
shifting operation with the coefficients, as shown in Fig. 3.

Fig. 4 Hardware implementation of Gaussian filter

B. Implementation of Canny edge detector
1) Algorithm design
Edge detection is another fundamental operation in image

454

processing applications [11,12]. Canny proposed a new
approach to edge detection that is optimal for step edges
contaminated by white nose. The algorithm can be shown as
following computation [13]:

Suppose G(x,y) is a 2D Gaussian and I(x,y) is the image,
we get smoothed image H(x,y) as

(,) (,) (,)H x y G x y I x y= ∗ (2)
Define direction n as perpendicular to the edge direction,

a robust estimate of it can be obtained based on the smoothed
gradient direction is available. The normal to the edge n is
estimated as

/
| / |

H nn
H n

∂ ∂=
∂ ∂

 (3)

The edge location is then at the local maximum of first
derivative of H(x,y) in the direction n, that is the zero-crossing
point of second derivative of H(x,y).

2 2/ 0H n∂ ∂ = (4)
This equation illustrates how to find local maxima in the

direction perpendicular to the edge. This operation is often
referred to as non-maximal suppression (NMS).

After NMS operating, the data obtained usually contains
some spurious responses. This is called the ‘streaking’
problem and is quite common in the edge detection problem.
These streaking can be eliminated by using a threshold with
hysteresis.

2) Hardware implementation
As mentioned above, the Canny edge detector can be

carried out in the following three steps [14]:
(a) Image smoothing;
(b) Gradient calculation and Directional Non Maximum

Suppression;
(c) Thresholding with hysteresis.
The implementation of Gaussian smoothing has been

introduced in the previous section. We will introduce the
hardware implementation of step b and step c.

Hardware implementation of step b:
This stage implements the calculation of gradient and

then directional non-maximum Suppression operation. Since
the actual images are always discrete, we define the direction
n in (3) as vertical, horizontal, left-diagonal and right-diagonal
of the 3x3 adjacent window of current pixel. The first-
derivative of each direction is then calculated by (5).

() ()3 3 3 3{-1,+1} (,)X XE H i j= × (5)
Using a {-1,+1} operator to the adjacent pixels along

each direction, we get EV, EH, EDL and EDR, the results of
(5) in vertical, horizontal, left-diagonal and right-diagonal
directions. The magnitude of gradient of current pixel is the
maximum of |EH|, |EV|, |EDR|, |EDL|, and the direction of
gradient is one of the four directions corresponding to the
maximum of |EH|, |EV|, |EDR|, |EDL|.

()() { }, max , , ,H V DR DLgrads H i j E E E E= (6)

{ }()max , , ,H V DR DLArg E E E Eθ = (7)

Since 3x3 convolutions are used to calculate the

gradients, neighboring 8 pixels are required. In order to access
8 neighboring pixels in a single clock cycle, two FIFO buffers
are employed to store the output pixels of the previous stage.

Once the direction of the gradient is known, the pixel that
has no local maximum gradient magnitude is eliminated. The
comparison is made between the current pixel and its
neighbors, along the direction of the gradient. For a 3x3
window is needed during the comparison, 2 FIFO buffers of
width of the image are also employed before the comparison.
This operating is referred to as directional non-maximal
suppression. The pipelined design of this stage is shown in
Fig. 5.

W
indow
5x5

C
onvolution

C
om

paring

W
indow
3x3

N
on-M

axim
um

Suppression

Magnitude

EH

EDR

EV

EDL

Direction

Output
input

Fig. 5 Pipelined Directional NMS

Hardware implementation of step c:
Since the output of the non maximum suppression stage

contains some spurious edges resulted from noises, the
method of thresholding with hysteresis is used.

Two thresholds (high threshold Thh and low threshold
Thl) are employed. Suppose f is the image obtained from the
non maximum suppression stage. If the gradient magnitude of
f(i,j) is above Thh,, set f1(i,j) to 1, else set f1(i,j) to 0. The
image f1 thus represents the strong edge image. If the gradient
magnitude of f(i,j) is between Thh and Thl, set f2(i,j) to 1, else
set f2(i,j) to 0. The image f2 thus represents the weak edge
image.

To get the connection between the weak edge pixel and
the strong edge pixel, a 3x3 window is used. If any of the
neighbors is a strong edge pixel, the center weak edge pixel is
then considered as a strong edge pixel, else it is considered as
background pixel. The resultant image is an image with
optimal edges. The pipelined design of this stage is shown in
Fig. 6.

C
om

parer
1

C
om

parer
2

W
indow
3x3

O
r G

ate

O
r G

ate

Thh

Thl

grads

Edge
Image

f1

f2

f1(i,j)

 f1(i-1,j-1)

 f1(i-1,j)

 f1(i-1,j+1)

 f1(i,j-1)

 f1(i,j+1)

 f1(i+1,j-1)

 f1(i+1,j)

 f1(i+1,j+1)

FIFO
 f2(i,j)

Fig. 6 Pipelined thresholding with hysteresis

455

IV. PERFORMANCE COMPARISON WITH PC BASED
ROBOT VISION SYSTEM

To confirm the performance of the newly developed
robot vision system, we have compared some of the main
performances of a PC based robot system with the newly
developed robot vision system. The configuration of the two
systems is as follows:

The PC based robot vision system consists of an IPC
board with a Pentium-M 1.6GHz CPU and 256MB memory, a
PCI bus image grabber, and an analog CCD camera. The
implementation of the image processing algorithms uses the
optimized function of Open CV.

Our newly developed robot vision system consists of an
intelligent image card with GigE vision extension described in
section 2 and section 3, and a GigE vision digital camera. The
system picture is shown in Fig. 7. The implementation of the
image processing algorithms is done by the FPGA on the
intelligent image card.

Fig. 7 Picture of our newly developed robot vision system

Experiments of capturing moving table tennis ball have

been carried out to compare the image processing ability of
the PC based robot vision system and our newly developed
robot vision system. The ball is dropped from a certain
altitude, and the two vision systems capture and process
continuously. Fig. 8 show the capturing results and processing
results of the two vision systems at three different time points
during the ball falling. Table 1 gives the capturing speed and
the processing time consumption of each vision system.

TABLE I

PROCESSING TIME OF TWO ROBOT VISION SYSTEMS
 PC-based

Vision system
(Image size:
 720x572x8bit)

Our vision system
(Image size:
800x600x8bit)

Capturing Speed 30 fps 200 fps

5X5 Gaussian 33 ms 1.3 ms
Canny edge
 detect

90 ms 2.5ms

Time 1 Time 2 Time 3

Capturing results
of

PC based system

Capturing results
of

our system

Canny edge detecting
results of

PC based system

Canny edge detecting
results of

our system

Fig. 8 Capturing and Canny edge detecting
results of the two vision systems

It can be seen clearly that our newly developed robot

vision system is much faster than the traditional PC based
robot vision system and has smaller image trailing when
dealing with fast moving objects, which means that it is
possible that this kind of FPGA and DSP based vision system
can meet the needs of fast capturing and real-time processing
for a mobile robot system.

V. CONCLUSION

In this paper, a high speed robot vision system with GigE
vision interface is described. Compared with traditional PC
based robot vision system, this new robot vision system has
the characteristics of high capturing speed, real-time
processing and small size. Therefore, this new robot vision
system is more suitable for compact high performance mobile
robots.

ACKNOWLEDGMENT

 This work was supported in part by the National 863
Project (2009AA043902-2) and Key Laboratory of
Measurement and Control of CSE(School of Automation,
Southeast University).

REFERENCES
[1] Peng Lu, Kui Yuan and Wei Zou. A High Performance Low Power

Consumption Robot Vision System. Third International Conference on
Natural Computation, 2007, pp. 171–175.

[2] Xing Zhang, M.H. Lee. A Developmental Robot Vision System. Systems.
IEEE International Conference on Man and Cybernetics, 2006, pp.2024-
2029.

[3] Hamid GholamHosseini and Shuying Hu, A High Speed Vision System
for Robots Using FPGA Technology. 15th International conference on
Mechatronics and Machine Vision in Practice, 2008, pp. 81–84.

[4] Seunghun Jin, Junguk Cho, Xuan Dai Pham and etc., FPGA Design and

456

Implementation of a Real-Time Stereo Vision System, IEEE Transactions
on Circuits and Systems for Video Technology, Vol.20, 2010, pp. 15-26.

[5] Altera Corporation, “Cyclone III Device Handbook, Volume 1 (Book
style),” Available: http://www.altera.com.

[6] Basler Vision Technologies , “The Elements of GigE Vision”,
whitepaper, http://www.baslerweb.com/.

[7] Basler Vision Technologies, “GigE Vision – CPU load and latency”,
whitepaper, http://www.baslerweb.com/.

[8] “Can GigE Vision deliver on its promise”, Technical white paper,
January 2008, http://www.sony-vision.com/

[9] E. Norouznezhad, A. Bigdeli, A. Postula and B. C. Lovell. A high
resolution smart camera with GigE vision extension for surveillance
applications. IEEE International Conference on Distributed Smart
Cameras, 2008, pp.1-8.

[10] V. Muthukumar and V. R. Daggu, “Image Processing Algorithms on
Reconfigurable Architecture using Handel-C,” in Proceedings of the
EUROMICRO Systems on Digital System Design 2004, pp. 218-226.

[11] F. M. Alzahrani and T. Chen, “"A Real-Time Edge Detector: Algorithm
and VLSI Architecture," Real Time Image, 1997, pp. 363-378.

[12] Song Yang, Siew-Kei Lam and Srikanthan. An efficient edge and corner
detector. International Conference on Control Automation Robotics &
Vision, 2010, pp.1628-1631.

[13] Wenhao He and Kui Yuan, An Improved Canny Edge Detector and its
Realization on FPGA, 7th World Congress on Intelligent Control and
Automation, 2008, pp. 6561-6564.

[14] Daggu Venkateshwar Rao, Muthukumar Venkatesan, “An efficient
reconfigurable architecture and implementation of edge detection
algorithm using Handle-C,” Information Technology: Coding and
Computing, International Conference, vol.2, 2004, pp. 843-847.

457

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

