
  

  

Abstract—Grasping the target object is an essential requirement 
for the robot to provide better services. It becomes complicated 
especially in cluttered environments, which still remains 
challenging. This paper proposes a novel grasping chain 
generation solution that enables the robot to grasp the target 
after other obstructed objects are moved in a good order. SSD is 
firstly adopted to acquire the information of detectable objects 
and then Euclidean clustering is employed to obtain the 
untrained objects. After that, the minimum bounding box of each 
object is obtained, which is then projected on the plane and 
represented by a smooth differentiable minimum ellipse. On this 
basis, an information density kernel function is designed to 
express the interaction between objects. By abstracting each 
ellipse as a node of the graph whose edge weight is calculated by 
this kernel function, the whole scene is described in a form of 
graph. To simplify the complexity of the scene graph, we use 
spectral clustering algorithm to classify the objects, and the task-
oriented objects graph is constructed according to the objects 
closely related to the target one. As a result, the searching space 
is reduced. With space division of task-oriented objects graph, 
each candidate grasping chain is iteratively extended by using the 
heuristic searching and the best chain with the shortest length is 
determined. The proposed method solves the barrier caused by 
secondary obstruction and its effectiveness is testified by 
experiments. 

I. INTRODUCTION 
Nowadays, more and more tasks rely on the participation of 

robots, and some complex ones even require the manipulation 
of objects, such as delivering [1-2]. For manipulation, grasping 
solution is the most popular form, where visual grasping plays 
a dominant role. 

To realize visual grasping, it firstly needs to detect objects. 
The robustness of traditional detection is usually weak due to 
the variation of illuminations, and deep learning method [3] has 
received much attention, such as two-stage Faster R-CNN [4], 
single-stage YOLO [5] and SSD [6]. Besides, determining 
stable grasps on objects is also important. Generally, the robot 
can execute grasp based on the principal axis of object point 
cloud [7]. According to the result of grasp detection, the robot 
executes grasping operation for the target object. Zhao et al. 
adopted SSD to detect objects and obtained corresponding 
grasping point. A path planning approach based on RRT-
Connect and Bezier curve is employed for grasping the target 
object [8]. However, the environments are simple without 
interference from other objects. In practice, the target object is 
often obstructed in complex environments, and the obstructed 
ones have to be firstly cleared. Wu et al. concerned table 
cleaning, and the moving order of objects is generated to avoid 
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obstruction from other objects by assigning a given priority of 
left, top, and front directions [9]. Notice that the cleaning task 
is not target-oriented and each object has to be grasped. More 
researches focus on target-oriented solutions, where the 
obstructed objects are required to be moved out of the way for 
grasping the target one. Lozano-Pérez et al. presented a 
strategy for integrating task and motion planning based on a 
symbolic search for a sequence of high-level operations 
including pick, move and place [10]. Srivastava et al. provided 
an interface between task and motion planning, which can 
generate a new plan by task planner when the target is 
obstructed in cluttered environments [11]. A problem of 
references [10][11] is that only a clear path to the target object 
is provided and the best order is not considered.  

Chitnis et al. formulated the grasping order problem caused 
by obstructed objects as a plan refinement graph, where its 
nodes contain high-level plans and edges reflect unsatisfied 
preconditions that explain a failed attempt at refinement [12]. 
Krontiris and Bekris proposed to search minimum constraint 
removal paths based on a graph structure in configuration space 
and chose a better sorting order that balances minimizing 
constraints, computational cost and path length [13]. These two 
methods can provide a sorting sequence of the obstructed 
objects, however, the grasping process is susceptible to 
influence from secondary obstruction where an object in this 
sequence may be further obstructed by others. It becomes 
worse with the increasing of the number of objects, and 
searching the best sequence tends to be time-consuming. Also, 
most of existing methods are verified by simulations due to the 
complexity of grasping problem in cluttered environments. 

In order to solve the challenge from secondary obstruction, 
this paper proposes a novel grasping chain generation solution 
for manipulating robot in cluttered environments. Firstly, a 
scene graph is built, whose nodes and edges are objects and the 
influence between objects labeled as information density, 
respectively. On this basis, spectral clustering [14] is employed 
on this graph to obtain a division result, which is combined 
with target bundling to form a task-oriented searching space for 
grasping sorting. Compared to the original searching space 
with all objects, the generated one becomes smaller. The task-
oriented searching space is divided into multiple regions to 
reduce complexity by searching respective scope. Specially, 
the object is recommended in a heuristic way according to its 
distances to the target and the robot as well as its orientation 
relative to the connection vector from the robot’s center to the 
target. Combining the grasping status of the recommended 
object and the target, the grasping chain is iteratively extended 
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until the target is appended to the end of the chain. The 
generated chain is expected to be shorter in length compared to 
the scheme of sequential traverse. By synthesizing the grasping 
chains from different regions, the best one can be confirmed. 
The hierarchical characteristics of our grasp chain solves the 
problem caused by secondary obstruction.  

II. VISUAL GRASPING IN CLUTTERED ENVIRONMENTS 

A. Overview of the Method 
Fig. 1 presents the overview of visual grasping in cluttered 

environments, which includes object detection, spectral 
clustering and target bundling for removing objects that are 
distant from the target on the scene graph, heuristic searching 
with space division for generating the best grasping chain.  

In the grasping process, the scene sensing is the first step. 
We employ SSD to detect the trained/detectable objects. 
Combining the RGB and depth information, the point clouds 
of the detectable objects are obtained. In Fig. 1, Og, O1 and O2 
belong to the detectable type. With the table plane fitting using 
RANSAC [15] and straight-pass filter, the point clouds of 
undetectable objects (see O3, O4 and O5 in Fig. 1) are then 
obtained by Euclidean clustering [16]. For each detectable or 
undetectable object Oj(j=1,2,…,n), it is processed by PCA [17] 
to get a minimum 3D bounding boxes 𝐵𝐵𝑂𝑂𝑗𝑗 , which is used as the 
representation of the object Oj. For each object, its 3D 
bounding box is projected on a plane and we get its minimum 
circumscribed ellipse for simplifying the calculation. The 
scene graph is then acquired. we further apply spectral 
clustering is employed on the scene graph to present an optimal 
division and combine target-bounding to supplement 
classification results to get task-oriented objects graph Vr. 
Combining the vector 𝐵𝐵𝑣𝑣����⃗  from the center of the robot to the 
target object as well as the relationship of other objects relative 
to 𝐵𝐵𝑣𝑣����⃗ , Vr is divided into two regions Sl and Sr. Further, the 
corresponding grasp chains Gl and Gr of these regions can be 
obtained by heuristic searching. Finally, the best grasping 
chain G* is determined, which provides the grasping sequence 
of moving objects for the robot.  

We denote with the camera coordinate system OcXcYcZc 
whose origin locates at the center of the camera and Zc-axis 
faces forward. ObXbYbZb is labeled as robot base coordinate 
system, where Ob locates in the center of its base, Yb-axis is 
reverse to the moving direction of the robot, and Zb-axis is 
perpendicular to the base in an upward direction. By the 
transformation matrix from OcXcYcZc to ObXbYbZb, the position 
information of objects in ObXbYbZb can be obtained with the 
combination of the camera’s intrinsic matrix.  All the location 
information of objects is transformed under ObXbYbZb, and we 
consider two grasping ways with top grasp (tg) and side grasp 
(sg) according to object size and the relationship relative to its 
neighbors. For the former, the robot’s palm is required to be 
perpendicular to the table plane, and thus the grasping pose can 
be calculated only relying on the principal direction of top 
surface of 𝐵𝐵𝑂𝑂𝑗𝑗 . However, the robot’s palm is not fixed to a 
specific direction in the side grasp, and we need to build a local 
coordinate system OsXsYsZs corresponding to 𝐵𝐵𝑂𝑂𝑗𝑗 . The origin 
Os refers to the vertex on the undersurface of 𝐵𝐵𝑂𝑂𝑗𝑗  with the 
smallest x coordinate in ObXbYbZb, and Xs-axis and Zs-axis are  
along the directions of short edge and the long edge on the 
undersurface of 𝐵𝐵𝑂𝑂𝑗𝑗 , respectively. On this basis, the grasp 
point is chosen at the center of the side surface of 𝐵𝐵𝑂𝑂𝑗𝑗  
intersecting with the plane OsXsYs. Combining transform 
matrix Ms between OsXsYsZs and ObXbYbZb, the 6D grasp pose 
can be obtained. 

B. Graph representation for Scene and Information Density 
Spectral Clustering with Target Bundling 

For the case where there are many objects on the table, it is 
time-consuming to obtain a grasping chain by traversing all the 
objects, when the target object cannot be directly grasped. In 
this case, how to reduce the searching scope is the first problem. 

Firstly, we proposed to represent the grasping scene by the 
scene graph G(V, E), where each node vj in V refers to an object, 
and E reflects the connection relationship between the objects. 
Due to the fact that different objects possess different 
orientations with varying lengths and heights, the 
representation of the edges E is complex. For each object Oj, j 
=1,2,…n, it is described by minimum circumscribed ellipse 𝐸𝐸𝑗𝑗𝑒𝑒 
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Fig. 1. The overview of visual grasping in cluttered environments. ObXbYbZb, OcXcYcZc and OsXsYsZs refer to the robot base coordinate system, the camera coordinate 
system and local coordinate system on a specific object, respectively. Og is the target object, and Vr is termed as the task-oriented objects graph. 𝐵𝐵𝑣𝑣����⃗  and 𝑉𝑉𝑟𝑟𝑎𝑎�����⃗  reflect 
the vectors from the center of the robot to Og and from the center of the robot to the object Oa, respectively. Sl and Sr are the results of space division and their 
corresponding grasping chains are Gl and Gr, respectively. G* describes the best grasping chain. 



  

of the quadrangle Rj based on the projection of 𝐵𝐵𝑂𝑂𝑗𝑗  on the table. 
In the following, the connection relationships between objects 
are determined. There does not exist a connection between 
objects Ok and Ot when the following condition is satisfied. 

∃ 𝑞𝑞|𝑞𝑞=1,2,…,𝑛𝑛,𝑞𝑞≠𝑘𝑘,𝑡𝑡  →  (𝑥𝑥,𝑦𝑦) ∈ 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧(𝑃𝑃𝑘𝑘 , 𝑃𝑃𝑡𝑡)                      

  𝑠𝑠. 𝑡𝑡.  �
𝐴𝐴𝑙𝑙𝑥𝑥 + 𝐵𝐵𝑙𝑙𝑦𝑦 + 𝐶𝐶𝑙𝑙 = 0

 𝐴𝐴𝑞𝑞𝑥𝑥2 + 𝐵𝐵𝑞𝑞𝑥𝑥𝑥𝑥 + 𝐶𝐶𝑞𝑞𝑦𝑦2 + 𝐷𝐷𝑞𝑞𝑥𝑥 + 𝐸𝐸𝑞𝑞𝑦𝑦 + 𝐹𝐹𝑞𝑞 = 0   (1) 

where 𝑃𝑃𝑘𝑘(𝑥𝑥𝑘𝑘𝑘𝑘 ,𝑦𝑦𝑘𝑘𝑘𝑘)  and 𝑃𝑃𝑡𝑡(𝑥𝑥𝑡𝑡𝑡𝑡 ,𝑦𝑦𝑡𝑡𝑡𝑡)  are the centers of the 
objects Ok and Ot, k, t=1,2,…n, respectively. Al, Bl and Cl are 
the parameters of the line l connecting 𝑃𝑃𝑘𝑘 and 𝑃𝑃𝑡𝑡. Aq, Bq, Cq, Dq, 
Eq and Fq refer to the parameters of the represented ellipse 𝐸𝐸𝑞𝑞𝑒𝑒 
attached to other objects. In other words, if the line segment 
connecting the centers of two objects does not interact with 
ellipses corresponding to other objects, it is considered that 
there is an edge between these two objects in the graph. 

For the edges E, its each edge corresponds to a weight 
termed as information density. Take the weight wkt between the 
objects Ok and Ot as an example. It is calculated based on 
information density kernel function of a single object, which is 
given by: 

𝑤𝑤𝑘𝑘 =                                                                                           

�
𝐶𝐶𝑘𝑘 (𝑥𝑥,𝑦𝑦) 𝑖𝑖𝑖𝑖 𝐸𝐸𝑘𝑘𝑒𝑒

1

1+𝑒𝑒−ℎ𝑘𝑘
2 exp �−�𝐴𝐴𝑘𝑘𝑥𝑥

2+𝐵𝐵𝑘𝑘𝑥𝑥𝑥𝑥+𝐶𝐶𝑘𝑘𝑦𝑦2+𝐷𝐷𝑘𝑘𝑥𝑥+𝐸𝐸𝑘𝑘𝑦𝑦+𝐹𝐹𝑘𝑘
𝜎𝜎∗𝑒𝑒𝑘𝑘

� 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒 (2) 

where 𝑤𝑤𝑘𝑘 is relevant to the object Ok. 𝑒𝑒𝑘𝑘 = 1 + exp (𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑘𝑘
𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

). hk 
is the height of 𝐵𝐵𝑂𝑂𝑘𝑘  and σ is a given value, which is generally 
set to a smaller value as a big σ leads to that the spectral 
clustering results are prone to errors. Lstk and Lrstk describe the 
lengths of Rk’s long side and short side, respectively. 

Fig. 2 visualizes the information density function, where Fig. 
2 (a) and Fig. 2 (b) corresponds to 3D view and vertical view. 
It can be seen that the information density function takes into 
account the orientation and position of the object, and the 
influence of an object is reflected continuously.  

 
(a)                                             (b) 

Fig. 2. The visualization description of the information density kernel function. 
(a) 3D view. (b) The vertical view. 

The information density function of an object reflects its 
influence on the environment. The influence of the object Ok 
on the object Ot is labeled as wt/k, which is computed by 
substituting the center coordinate of Ot into wk. On this basis, 
the weight wkt is calculated as follows. 

𝑤𝑤𝑘𝑘𝑘𝑘 = 𝑤𝑤𝑡𝑡/𝑘𝑘 ∗ 𝑤𝑤𝑘𝑘/𝑡𝑡                                (3) 

where wk/t refers to the influence of the object Ot on the object 
Ok. According to (3), we get the adjacent matrix W=[wkt]n×n. By 
adding every row of W, the degree matrix D of the scene graph 
G(V, E) is obtained, where the degree dk of each node is equal 

to ∑ 𝑤𝑤𝑘𝑘𝑘𝑘𝑛𝑛
𝑡𝑡=1 , k=1,2,…n. Then, Laplacian matrix is acquired by 

L=D-W. Note that L, D and W are symmetric matrixes [18]. 
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We denote with f the arbitrary eigenvector of L and one can 
get the following expression. 

𝑓𝑓𝑇𝑇𝐿𝐿𝐿𝐿 = 𝑓𝑓𝑇𝑇𝐷𝐷𝐷𝐷 − 𝑓𝑓𝑇𝑇𝑊𝑊𝑊𝑊                                           

      = ∑ 𝑑𝑑𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝑓𝑓𝑖𝑖2 − ∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑓𝑓𝑖𝑖𝑓𝑓𝑗𝑗𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1                  

= 1
2
∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑛𝑛

𝑗𝑗=1
𝑛𝑛
𝑖𝑖=1 (𝑓𝑓𝑖𝑖 − 𝑓𝑓𝑗𝑗)2                    (5) 

In this paper, G(V, E) is divided into k1 subgraphs without 
connection and the vertex set of each subgraph is expressed as 
A1, A2,…, Ak1. Thus, 𝐴𝐴1 ∪ 𝐴𝐴2 ∪ ⋯∪ 𝐴𝐴𝑘𝑘1 = 𝑉𝑉 . For any two 
vertex sets 𝐴𝐴  and 𝐵𝐵 , where 𝐴𝐴 ∩ 𝐵𝐵 = ∅ , the weights of the 
graph cut between A and B are defined as 𝑊𝑊(𝐴𝐴,𝐵𝐵) =
∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖∈𝐴𝐴,𝑗𝑗∈𝐵𝐵 . Therefore, considering the whole G(V, E) with a 
more accurate cut result, the graph cuts can be solved by 
1
2
∑ 𝑊𝑊(𝐴𝐴𝑝𝑝,𝐴𝐴𝑝𝑝−)

𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴𝑝𝑝)
𝑘𝑘1
𝑝𝑝=1 , where 𝐴𝐴𝑝𝑝− is the complement of 𝐴𝐴𝑝𝑝 and vol(Ap) 

refers to the sum of the nodes’ degrees belonging to Ap. The 
optimizing result of graph cuts is shown as follows. 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 1
2
∑ 𝑊𝑊�𝐴𝐴𝑝𝑝,𝐴𝐴𝑝𝑝−�

𝑣𝑣𝑣𝑣𝑣𝑣�𝐴𝐴𝑝𝑝�
𝑘𝑘1
𝑝𝑝=1                                                         

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 1
2
∑ �∑ ∑ 𝑤𝑤𝑚𝑚𝑚𝑚𝑛𝑛

𝑢𝑢=1
𝑛𝑛
𝑚𝑚=1 �ℎ𝑚𝑚𝑚𝑚 − ℎ𝑢𝑢𝑢𝑢�

2�𝑘𝑘1
𝑝𝑝=1     

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∑ ℎ𝑝𝑝𝑇𝑇
𝑘𝑘1
𝑝𝑝=1 𝐿𝐿ℎ𝑝𝑝                                                  

= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐻𝐻𝑇𝑇𝐿𝐿𝐿𝐿)                                                      
= 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝐹𝐹𝑇𝑇𝐷𝐷−12𝐿𝐿𝐷𝐷−12𝐹𝐹�

�𝐻𝐻=𝐷𝐷−1/2𝐹𝐹
                   (6) 

where ℎ𝑖𝑖𝑖𝑖 = �
1

�𝑣𝑣𝑣𝑣𝑣𝑣(𝐴𝐴𝑝𝑝)
𝑣𝑣𝑖𝑖 ∈ 𝐴𝐴𝑝𝑝

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒
. 

Then, spectral clustering is executed using (6) with k1=2. We 
denote with the nearest object to the robot Onr, and the objects 
involved in the grasping process are screened by analyzing the 
category relationship corresponding to Og and Onr. 

Fig. 3 illustrates the results of spectral clustering, and the 
cases where Onr and Og are in the same category or in different 
ones are shown in Fig. 3(a) and Fig. 3(b), respectively. We 
label the category near to the robot as Vr, which includes the 
nodes of interest for grasping. It is noted that the clustering 
results do not take the robot position into account. Therefore, 
the target object is required to be absorbed into the category Vr. 
Furthermore, the target object is often obstructed by adjacent 
objects, and thus its neighboring objects should be also bundled. 
When the target object is in the category Vr, as shown in Fig. 
3(a), the nodes within a certain distance dth to the target object 
are added into Vr; otherwise (see Fig. 3(b)), the target node as 
well as its neighboring nodes shall be placed into Vr.  
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(a)                                             (b) 

Fig. 3. The results of spectral clustering. (a) Onr and Og are in the same category. 
(b) Onr and Og are in different categories. 

C. Heuristic Searching for Grasping Chain 
With the aforementioned task-oriented objects graph Vr 

whose object number is nr, the heuristic searching is employed 
for generating a grasping chain whose end is Og (see Fig. 4). In 
this solution, we label as 𝑉𝑉𝑔𝑔𝑎𝑎�����⃗  and 𝑉𝑉𝑟𝑟𝑎𝑎�����⃗  the vectors from the center 
of the target Og to the object Oa and from the center of the robot 
to Oa, respectively, where a=1,2,…,nr. Also, the vector from 
the center of the robot to Og is defined as benchmark vector 𝐵𝐵𝑣𝑣����⃗ , 
and thus we have the acute angle 𝜃𝜃𝑎𝑎  between 𝐵𝐵𝑣𝑣����⃗  and 𝑉𝑉𝑟𝑟𝑎𝑎�����⃗ . 
According to the distance |𝑉𝑉𝑔𝑔𝑎𝑎�����⃗ |, the objects in Vr are sorted in 
an ascending order to form an initial object list 𝑑𝑑𝑔𝑔. Then, two 
metrics of the distance |𝑉𝑉𝑟𝑟𝑎𝑎�����⃗ | and the angle difference ∆𝜃𝜃𝑎𝑎𝑎𝑎+1 of 
adjacent objects 𝑂𝑂𝑎𝑎𝑠𝑠  and  𝑂𝑂𝑎𝑎+1𝑠𝑠  relative to 𝐵𝐵𝑣𝑣����⃗  are applied to 
choose a candidate object 𝑂𝑂𝑠𝑠���. The detailed selection process is 
depicted by a function 𝑆𝑆(𝑂𝑂𝑎𝑎𝑠𝑠,𝑂𝑂𝑎𝑎+1𝑠𝑠 ) in Algorithm 1, where 𝑑𝑑𝑡𝑡ℎ

𝑔𝑔  
and 𝑑𝑑𝑡𝑡ℎ

𝑝𝑝  are distance thresholds, and 𝜃𝜃𝑡𝑡ℎ is an angle threshold. 
𝐼𝐼𝐼𝐼𝑠𝑠(∗) is used to extract a specific object corresponding to ∗. 

Algorithm 1. The selection function 𝑆𝑆(𝑂𝑂𝑎𝑎𝑠𝑠,𝑂𝑂𝑎𝑎+1𝑠𝑠 ) 
Input: adjacent objects 𝑂𝑂𝑎𝑎𝑠𝑠 and 𝑂𝑂𝑎𝑎+1𝑠𝑠  in 𝑑𝑑𝑔𝑔, Og 
Output: the candidate object 𝑂𝑂𝑠𝑠��� 
1   compute the vectors 𝐵𝐵𝑣𝑣����⃗ , 𝑉𝑉𝑔𝑔𝑎𝑎�����⃗ , 𝑉𝑉𝑔𝑔𝑎𝑎+1���������⃗ , 𝑉𝑉𝑟𝑟𝑎𝑎�����⃗ , 𝑉𝑉𝑟𝑟𝑎𝑎+1���������⃗ ; 
2   obtain the acute angles 𝜃𝜃𝑎𝑎𝑠𝑠, 𝜃𝜃𝑎𝑎+1𝑠𝑠 ; 
3   ∆𝑑𝑑𝑔𝑔 = �𝑉𝑉𝑔𝑔𝑎𝑎+1���������⃗ � − |𝑉𝑉𝑔𝑔𝑎𝑎�����⃗ |; 
4   ∆𝜃𝜃𝑎𝑎𝑎𝑎+1 = 𝜃𝜃𝑎𝑎+1𝑠𝑠 − 𝜃𝜃𝑎𝑎𝑠𝑠; 
5   If ∆𝑑𝑑𝑔𝑔 ≤ 𝑑𝑑𝑡𝑡ℎ

𝑔𝑔  then 

6      𝑂𝑂𝑠𝑠��� ← 𝐼𝐼𝐼𝐼𝑠𝑠 �𝑚𝑚𝑚𝑚𝑚𝑚 �|𝑉𝑉𝑟𝑟𝑎𝑎�����⃗ |, |𝑉𝑉𝑟𝑟𝑎𝑎+1���������⃗ |��; 

7   else if 𝑑𝑑𝑡𝑡ℎ
𝑔𝑔 < ∆𝑑𝑑𝑔𝑔 < 𝑑𝑑𝑡𝑡ℎ

𝑝𝑝  && ∆𝜃𝜃𝑎𝑎𝑎𝑎+1 ≤ 𝜃𝜃𝑡𝑡ℎ then 

8      𝑂𝑂𝑠𝑠��� ← 𝐼𝐼𝐼𝐼𝑠𝑠(𝑚𝑚𝑚𝑚𝑚𝑚 �|𝑉𝑉𝑟𝑟𝑎𝑎�����⃗ |, |𝑉𝑉𝑟𝑟𝑎𝑎+1���������⃗ |�); 
9   else if 𝑑𝑑𝑡𝑡ℎ

𝑔𝑔 < ∆𝑑𝑑𝑔𝑔 < 𝑑𝑑𝑡𝑡ℎ
𝑝𝑝  && ∆𝜃𝜃𝑎𝑎𝑎𝑎+1 > 𝜃𝜃𝑡𝑡ℎ then 

10     𝑂𝑂𝑠𝑠��� ← 𝐼𝐼𝐼𝐼𝑠𝑠(max(𝜃𝜃𝑎𝑎𝑠𝑠,𝜃𝜃𝑎𝑎+1𝑠𝑠 )); 
11  else if ∆𝑑𝑑𝑔𝑔 > 𝑑𝑑𝑡𝑡ℎ

𝑝𝑝  then 

12     𝑂𝑂𝑠𝑠��� ← 𝐼𝐼𝑑𝑑𝑠𝑠 �𝑚𝑚𝑚𝑚𝑚𝑚 �|𝑉𝑉𝑔𝑔𝑎𝑎�����⃗ |, �𝑉𝑉𝑔𝑔𝑎𝑎+1���������⃗ ���; 

13  return 𝑂𝑂𝑠𝑠��� 

If the object 𝑂𝑂𝑠𝑠��� cannot be grasped, the robot will search the 
next object in the list 𝑑𝑑𝑔𝑔. Otherwise, this object shall be added 
into the grasping chain, and the graspable status of Og is judged 
after the point cloud of 𝑂𝑂𝑠𝑠���  is removed. When it cannot be 
grasped, a new round judgement starts until Og can be grasped 
or all the objects have been traversed. Algorithm 2 presents 
pseudo-code to generate the grasping chain, where 𝐹𝐹𝑐𝑐𝑐𝑐(𝑂𝑂𝑠𝑠���) is 
used to judge whether the object 𝑂𝑂𝑠𝑠��� can be grasped. 

Algorithm 2. A grasping chain generation  
Input: task-oriented objects graph Vr 
Output: a grasping chain 𝐺𝐺 
1   compute the list 𝑑𝑑𝑔𝑔 of Vr according to |𝑉𝑉𝑔𝑔𝑎𝑎�����⃗ |; 
2   nsr=nr-1; 
3   b=1; 
4   while (b<nsr) then  
5      𝑂𝑂𝑠𝑠��� ← 𝑆𝑆(𝑂𝑂𝑏𝑏𝑠𝑠,𝑂𝑂𝑏𝑏+1𝑠𝑠 ); 
6      if 𝐹𝐹𝑐𝑐𝑐𝑐(𝑂𝑂𝑠𝑠���) is True then 
7         remove the point cloud of 𝑂𝑂𝑠𝑠��� from Vr; 
8         add 𝑂𝑂𝑠𝑠��� into 𝐺𝐺; 
9         nsr=nsr-1; 
10        if 𝐹𝐹𝑐𝑐𝑐𝑐(𝑂𝑂𝑔𝑔) is True then 
11          add 𝑂𝑂𝑔𝑔 into 𝐺𝐺; 
12          return 𝐺𝐺; 
13        else then 
14          update Vr as well as the list 𝑑𝑑𝑔𝑔; 
15        end if 
16     else then  
17        b=b+1; 
18     end if 
19  end 

An illustration of grasping chain is presented in the bottom 
section of Fig. 4, where there are four objects O1, O2, O3 and 
Onr besides Og. In the first round, the objects is sorted and 
stored in 𝑑𝑑𝑔𝑔: 𝑂𝑂1 → 𝑂𝑂𝑛𝑛𝑛𝑛 → 𝑂𝑂3 → 𝑂𝑂2. According to Algorithm 
1, the object O2 is chosen as the candidate one 𝑂𝑂𝑠𝑠���. As it can be 
grasped by the robot, and thus O2 is added into the grasping 
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Fig. 4. Heuristic searching for generating the grasping chain. 



  

chain. Accordingly, its point cloud is removed. Due to that the 
target Og cannot be grasped, the robot starts to execute the 
second round. The object O3 is chosen. O3 and Og are both in 
the graspable state and they are added into the grasping chain. 
Eventually, the grasping chain 𝑂𝑂1 → 𝑂𝑂3 → 𝑂𝑂𝑔𝑔 is obtained. 

With the complexity of environments, the space division is 
considered where Vr is disassembled into left and right regions 
noted as Sl and Sr, respectively. The cross-product is calculated 
between 𝐵𝐵𝑣𝑣����⃗  and the vector from the center of the robot to an 
object in Vr. When the cross-product result in z-axis is positive, 
it belongs to left region Sl. The negative and zero state in z-axis 
means that it locates at right region Sr. Algorithm 2 is 
separately executed in each region, and we acquire 
corresponding results. It is worth noting that a chain to Og 
cannot be guaranteed reachable for a region. In this case, the 
objects in other regions have to be searched. Based on the 
outputted chains 𝐺𝐺𝑙𝑙 and 𝐺𝐺𝑟𝑟 , the best one 𝐺𝐺∗ is determined by: 

𝐺𝐺∗ = argmin
𝐺𝐺∈{𝐺𝐺𝑙𝑙,𝐺𝐺𝑟𝑟}

𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺)                                (7) 

where 𝑙𝑙𝑙𝑙𝑙𝑙(𝐺𝐺) represents the length of the grasping chain 𝐺𝐺.    
Finally, the robot moves the objects according to the best result 
𝐺𝐺∗. During the operation process, the robot grasps the object 
and put it in some position which is calculated by an elliptical 
cone potential field method [19]. Then, the grasping task of the 
target object in cluttered environments is fulfilled. 

EXPERIMENT 
The experiments are carried out to testify the effectiveness 

of the presented visual grasping method. A service robot with 
a 6-DOF (degree of freedom) Kinova manipulator is used to 
perform grasping tasks in the executable working space, and 
Kinect V2 is utilized for scene sensing. Objects are detected by 
SSD with 2D red bounding boxes, and the point clouds of all 
the objects are acquired according to PCL (point cloud library). 
The robot analyzes the scene by spectral clustering to get task-
oriented objects graph, and then obtains the grasping chain by 
heuristic searching for robotic grasping. In the following 
experiments, apples and cups are detectable objects, and other 
objects belong to undetectable type.  

(a) (b) (c)

(d) (e) (f)  
Fig. 6. The video snapshots of the experiment 1. 

  The scene of the experiment 1 is shown in Fig. 5(a), where 
there are seven objects and the cup is considered as the target 
object. Fig. 5(b) denotes the depth image, and Figs. 5(c) and 
6(d) present the detection result and the point clouds of all 
objects, respectively. According to Fig. 5(d), the information 
density kernel function is used and the result of spectral 
clustering is obtained. Combining the target bounding on the 
scene graph G(V, E) , the task-oriented objects graph Vr is 
obtained, as illustrated in Fig. 5(e), where Og, O1 and O2 are 
included in it. Vr is divided into two regions. For the right 
region with O1 and O2, a grasping chain of 𝑂𝑂1 → 𝑂𝑂𝑔𝑔  is 
generated using Algorithm 2. Due to that there is no object in 
the left region, it has to resort to the right region. The same 
grasping chain is obtained and it is also the best one. On this 
basis, the manipulator executes the grasping and the video 
snapshots are given in Fig. 6. The curves of joint angles during 
grasping are depicted in Fig. 7. The robot firstly moves the box 
away and put it on a new position (-0.19, -0.45) according to 
potential fields with elliptical cone [19]. Afterwards, the target 
cup is successfully grasped in the form of side grasp.  
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Fig. 7. The curves of joint angles of the experiment 1. 

Experiment 2 considers a more complex scenario with 9 
objects, where the red apple is the target object. Because the 
target object is classified into the category away from the robot, 
the target bundling becomes active, and the target one and other 
three objects O1, O3 and O4 are absorbed into the other category. 
The task-oriented objects graph Vr is then constructed, as 
shown in Fig. 8(e). The objects O2, O5, O6 and O8 are in the left 
region, and O1, O3 and O4 belong to the right region. Based on 
heuristic searching, the robot gets the left chain 𝑂𝑂6 → 𝑂𝑂5 →
𝑂𝑂2 → 𝑂𝑂8 → 𝑂𝑂4 → 𝑂𝑂1 → 𝑂𝑂𝑔𝑔 and the right chain 𝑂𝑂4 → 𝑂𝑂1 → 𝑂𝑂𝑔𝑔. 
Obviously, the right chain shall be chosen because of its shorter 
length. The video snapshots of the experiment 2 are shown in 
Fig. 9. The robot firstly grasps O4 and puts it at (-0.28, -0.39) 
according to [19], and moves O1 to the position (-0.17, -0.43) 
in the same way. Finally, the target apple is grasped and the 
task is smoothly completed.  
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Fig. 5. The results of experiment 1. (a) RGB image of grasping scene. (b) depth image. (c) detection result. (d) point clouds of objects. (e) task-oriented 
objects graph Vr and the grasping chain. 



  

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)  
Fig. 9. The video snapshots of the experiment 2. 

III. CONCLUSION 
In this paper, a visual grasping method with spectral 

clustering and heuristic searching for robot in cluttered 
environments is proposed. The task-oriented objects graph is 
obtained based on spectral clustering and target bundling, and 
it is disassembled into multiple regions for simplifying 
complexity of searching. Heuristic searching is used to 
recommend an object, and the grasping chain can be generated 
in an iterative way according to the grasping status of the 
recommended one and the target. Eventually, the best chain is 
acquired, which provides the robot a decent path to clear the 
obstructed objects in the pursuit of the target object. The 
proposed method has been validated by experiments.  
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Fig. 8. The results of experiment 2. (a) RGB image of grasping scene. (b) depth image. (c) detection result. (d) point clouds of objects. (e)  grasping chain. 


	I. INTRODUCTION
	II. Visual Grasping in Cluttered Environments
	A. Overview of the Method
	B. Graph representation for Scene and Information Density Spectral Clustering with Target Bundling
	C. Heuristic Searching for Grasping Chain

	Experiment
	III. Conclusion
	References

