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Abstract—The false data injection attack is a typical cyber
attack method which seriously endangers the security of power
systems. Most studies of false data injection attacks regard it as
a one-shot event, including the researches on the development
of attack methods. However, this cannot fully demonstrate the
threats of false data injection attacks. Therefore, this paper takes
the dynamic behavior of the false data injection attack into
account and addresses the constrains of attack resources and
operations in practice. Then based on the optimal control theory,
an optimal dynamic attack strategy is proposed, which signifi-
cantly improves the attack effect on limited energy conditions,
and reduces the possibility of being detected to a certain extent.
When some conditions permit, it can be reinforced with other
stealth attack methods to completely bypass the detection.

Index Terms—smart grid, security, false data injection attack,
optimal control

I. INTRODUCTION

Since the demand for electrical power has soared signifi-
cantly in recent years [1], especially with ecological and envi-
ronmental issues emerging [2], the smart grid was proposed to
overcome the various limitations of traditional power systems
and provide electricity with high quality and quantity [3].
Adopting modern control, sensing, computing, communication
technologies, and new equipment, the smart grid is able to
integrate utilization of renewable energy on a large scale and
use historical data for dynamic optimization of grid operation
to improve efficiency and reliability [4].

However, due to the addition of cyber infrastructures, the
smart grid is more vulnerable to malicious attacks [5], e-
specially false data injection attacks [6]. There are many
smart meters and sensors placed in the field to measure real-
time operating status information, and the measurements are
collected to the control center. Then an estimator is used to
provide the estimation of grid states [7]. If those distributed
meters are attacked and tampered with, the control center is
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to receive false reports and estimate wrong states, which may
cause serious damage to the operation of power systems [8].

The false data usually do not match grid operation, hence,
after false data injection attacks, the residual between estima-
tion and measurement is surging rapidly [9], and then anomaly
detection can find the attacks. However, this is based on the
assumption that a false data injection attack creates an obvious
error. There are several ways to prevent that, and one way is to
inject data consistent with grid operation [10], which is called
the stealth false data injection attack and works effectively.

To combat the stealth false data injection attacks, there
are also specific defense methods: A data verification method
against false data injection was introduced in [11]. Coun-
termeasure for the case where the attacker has structural
knowledge was also proposed in [12]. A two-layer game
theoretical model for analyzing false data injection attacks
against power systems was given in [13]. A list of defense
mechanisms against false data injection attacks focused on
one certain device [14]–[17].

However, many studies treat false data injection attack as a
one-shot event and lack dynamic analysis. From this perspec-
tive, this paper gives another workable approach: continuously
inject false data that cause inconspicuous errors. With noises
already existing in the smart grids and electricity demand
fluctuating, if the attacker chooses to launch a long-periodic
but gradually increasing attack, the residual detection methods
may lose effectiveness.

Furthermore, with limited resources, the challenge for the
attacker is to maintain the long period attack to cause as much
damage as possible. In this paper, an energy based optimal
dynamic stealth attack strategy is proposed, which can cause
maximum damage to the grid with limited energies while
reducing the residual to conceal.

II. PROBLEM FORMULATION

A. System model

In smart grids, distribution test feeders are interfaced to the
local load through converters. Distributed energy resources are
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connected into the main grid network at the points of common
coupling and each one needs to control the voltage to keep its
reference value [18]. Consider a smart grid with n buses, near
the stable operating point Xd, the dynamics of the grid can
be linearized into the following state-space equation [19].

Ẋ(t) = A(X(t)−Xd) +BU(t), (1)

where X(t) = [x1(t) x2(t) · · · xn(t)]T ∈ Rn is the vector
of states (voltage phase angles), xi(t) is the state of the i-th
bus in the grid, and U(t) is the input vector.

Distributed meters, such as phasor measurement units, are
used to measure the system states in different locations. The
measurement based on power flow model can be derived by

Pij =
ViVj
Xij

sin(θi − θj), (2)

where Pij is the active power flow from the i-th bus to the j-th
bus, Xij is the reactance of the transmission line between the
i-th bus and the j-th bus, Vi and θi are the voltage magnitude
and phase angle of the i-th bus, respectively.

This paper mainly focuses on the D-C (i.e. direct current,
but it does not mean a direct current power system) power
flow model, where it is usually assumed that

• the bus voltage magnitudes are already known and close
to unity,

• the voltage phase differences between (any) two buses
are small.

Then (2) can be further simplified into Pij = (θi − θj)/Xij .
Now the states of grid (x1, x2, · · · , xn) can be defined as the
phase angles (θ1, θ2, · · · , θn).

Similarly, the measurement equation can be formalized as

Z(t) = HX(t) + E(t),

where Z(t) = [z1(t) z2(t) · · · zm(t)]T ∈ Rm, m >
n is the measurement vector, zi(t) is the measurement
of the i-th meter, E(t) = [e1(t) e2(t) · · · em(t)]T =
σ

1
2 d[b1(t) b2(t) · · · bm(t)]T /dt is the vector of measure-

ment noises, b1, b2, · · · , bm are mutually independent standard
Brownian motion and σ ∈ Rm×m is a positive definite matrix.

As it is hard to directly get the states X (measuring high
voltage power line phase angle is not a simple thing), the
control center uses the measurement Z to estimate the states,
namely X̂ as the state estimation.

In order to minimize the mean square measurement error

j = lim
△t

1

△t

∫ t+△t

τ=t

[Z(τ)−HX̂(τ)]T dτ

∫ t+△t

τ=t

[Z(τ)−HX̂(τ)]dτ

= lim
△t

1

△t

∫ t+△t

τ=t

[X̂(τ)− (HTH)−1HTZ(τ)]T dτHTH

×
∫ t+△t

τ=t

[X̂(τ)− (HTH)−1HTZ(τ)]dτ + lim
△t

1

△t

×
∫ t+△t

τ=t

ZT (τ)dτ [I −H(HTH)−1HT ]

∫ t+△t

τ=t

Z(τ)dτ,

the (best) state estimation X̂ can be obtained as

X̂(t) = (HTH)−1HTZ(t). (3)

And the according residual is

r(t) = Z(t)−HX̂(t)

= HX(t) + E(t)−H(HTH)−1HT (HX(t) + E(t))

= [I −H(HTH)−1HT ]E(t),

where I is the identity matrix.
The purpose of the control is to maintain the states at the

stable point Xd, and note that the control center can only use
measured and estimated information, so the feedback control
law is designed as

U(t) = −K(X̂(t)−Xd). (4)

Applying controller (4) into system (1) leads to the following
closed-loop system

Ẋ(t) = A(X(t)−Xd)−BK(X̂(t)−Xd)

= A(X(t)−Xd)−BK((HTH)−1HTZ(t)−Xd)

= (A−BK)(X(t)−Xd)−BK(HTH)−1HTE(t).

B. False Data Injection Attacks Against State Estimation
When the attacker launches a stealth false data injection

attack on the meters, their measurements are tampered with,

Za(t) = Z(t) +DT (t)

= HX(t) + E(t) +DT (t),

where Za(t) is the measurement vector after tampering, which
is sent to the control center instead, DT (t) is the false data
added into the original measurements, in which T (t) ∈ R
is the magnitude of malicious attack and D ∈ Rm is the
attack direction. The attack direction D may be limited. In the
actual manipulation, the attacker carries out attacks by hacking
distributed meters in the field, hence, it is hard to choose the
attack direction at will. In this paper, D is assumed to be given
fixed.

Remark 1: The duration of the continuous attack is much
smaller than the cycle of variations in power demands,
therefore, it can be considered that the stable point remains
unchanged during the attack.

Replace the original measurement Z with the maliciously
tampered one in (3), the estimation of states and residual after
false data injection attacks are

X̂a(t) = (HTH)−1HTZa(t)

= (HTH)−1HT (HX(t) + E(t) +DT (t)), (5)

r[k] = Za(t)−HX̂a(t)

= (I −H(HTH)−1HT )(E[k] +DT [k]).

Then applying (5) into (4), and together with system model
(1), the dynamic behavior of the system after being attacked
can be written as follow

Ẋ(t) = A(X(t)−Xd)−BK(X̂a(t)−Xd)

= A(X(t)−Xd)−BK[(HTH)−1HT (HX(t)

+E(t) +DT (t))−Xd]

= (A−BK)(X(t)−Xd)−BK(HTH)−1HTE(t)

−BK(HTH)−1HTDT (t).
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C. Attack Strategy Optimization with Energy Constraints

The target of the attacker is to cause as many messes
as possible: that is deviating the power system away from
the operation point. The objective function is given as J =
(X−Xd)

TF (X−Xd), where F ∈ Rn×n is a positive definite
matrix. Besides, limited by attack resources, the attacker
cannot carry out attacks at any level. It needs to deploy the
resources rationally to best achieve its goal. Therefore, the
optimization problem is formulated as follows{

max J = (X(tf )−Xd)
TF (X(tf )−Xd),

s.t.
∫ tf
t0
T 2dt =M,

where t0 and tf are the initial and termination time, respec-
tively, F is the weight matrix, and M ∈ R is the total attack
resources quantified by energy.

III. MAIN RESULTS

A. Preprocessing

In (6), it is hard to handle an integral equation constraint,
so let S(t) =

∫ t
t0
T 2dτ be the energy consumed, and then

S(t0) = 0, S(tf ) =M .
In particular, compared with the false data, the measurement

noise plays a minor role. As the noise is with zero mean,
E(
∫
Xdt|E≡0

A=0
) = E(

∫
Xdt|A=0). So, in this section, the

minor effect of noise is ignored.
To guarantee the attack magnitude T to be continuous, its

derivative is taken as the input, i.e. Ṫ = u. Denote Y =
X − Xd, and together with attacked system (6), the optimal
attack strategy problem can be transformed into the following
form

min −J = Y (tf )
T (−F )Y (tf ),

s.t. Ẏ (t) = (A−BK)Y −BK(HTH)−1HTDT (t),

Ṫ (t) = u(t),

S(t0) = 0, S(tf ) =M.

B. Hamilton Function and Terminal Conditions

Consider the following standard optimal control problem

min −J =

Y (tf )

S(tf )

T (tf )


T −F 0 0

0 0 0

0 0 0


Y (tf )

S(tf )

T (tf )

 ,
s.t.

[
Y (t0)

S(t0)

]
−

[
Y0

0

]
= 0,

d

dt

Y (t)

S(t)

T (t)

−
A−BK 0 −BK(HTH)−1HTD

0 0 T (t)

0 0 0


Y (t)

S(t)

T (t)

−
00
1

u(t) = 0,

S(tf )−M = 0,

where Y0 is the initial state deviation, i.e. Y0 = X(t0)−Xd.

Denote

Θ(Y (t), S(t), T (t), t) =

Y (t)
S(t)
T (t)

T −F 0 0
0 0 0
0 0 0

Y (t)
S(t)
T (t)


as the (terminal) payoff in quadratic form, and construct the
Hamiltonian

H([Y (t) S(t) T (t)]T , u(t), [λ1(t) λ2(t) · · · λn+2(t)]
T )

= ΛTn (t)[(A−BK)Y (t)−BK(HTH)−1HTDT (t)]

+λn+1T
2(t) + λn+2(t)u(t),

where Λn(t) = [λ1(t) λ2(t) · · · λn(t)]
T , λi(t), i =

1, 2, · · · , n+2 are the Lagrange multipliers (costate variables).
It follows that Hamilton’s equation:

Λ̇Tn (t) = −
∂H

∂Y
= −ΛTn (t)(A−BK)

λ̇n+1(t) = −
∂H

∂S
= 0

λ̇n+2(t) = −
∂H

∂T
= ΛTn(t)BK(HTH)−1HTD−2λn+1(t)T (t)

Ẏ (t) =
∂H

∂ΛTn
= (A−BK)Y (t)−BK(HTH)−1HTDT (t)

Ṡ(t) =
∂H

∂λn+1
= T 2(t)

Ṫ (t) =
∂H

∂λn+2
= u(t)

∂H

∂u
≡ 0 = λn+2(t)

H ≡ 0 = ΛTn (t)[(A−BK)Y (t)−BK(HTH)−1HTDT (t)]

+λn+1(t)T
2(t) + λn+2(t)u(t).

(6)
And the transversality conditions are

ΛTn (tf ) = −
∂Θ

∂Y
|tf = 2Y T (tf )F

λn+1(tf ) = −
∂Θ

∂S
|tf − µ

∂(S(tf )−M)

∂S
= −µ

λn+2(tf ) = −
∂Θ

∂T
|tf = 0

S(tf ) =M

Y (t0) = Y0

S(t0) = 0

T (t0) = 0,

(7)

where µ is an undetermined constant.

C. Solution

From (6) and (7), it can be easily obtained that{
λn+1(t) ≡ −µ
λn+2(t) ≡ 0,
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here the attack magnitude can be get

λ̇n+2(t) = 0 = ΛTn (t)BK(HTH)−1HTD + 2µT (t)

T (t) = − 1

2µ
ΛTn (t)BK(HTH)−1HTD. (8)

Then substituting (8) into system dynamics leads to the
following closed-loop system

Ẏ (t) = (A−BK)Y (t)

+
1

2µ
BK(HTH)−1HTDΛTn (t)BK(HTH)−1HTD.

Further, it can be obtained that the following state-costate
equations


Λ̇n(t)= −(A−BK)TΛn(t)

Ẏ (t) = (A−BK)Y (t) +
1

2µ
BK(HTH)−1HTD

[BK(HTH)−1HTD]TΛn(t),

(9)

and its trajectory can be calculated as

Λn(t)= exp(−(A−BK)T (t− t0))Λn(t0)
Y (t) = exp((A−BK)(t− t0))Y (t0)

+
1

2µ

∫ t
t0
exp((A−BK)(t− τ))BK

(HTH)−1HTD[BK(HTH)−1HTD]T

exp(−(A−BK)T (τ − t0))Λn(t0)dτ.

(10)

By the property of the Hamiltonian that H ≡ 0 when
terminal time tf is free, together with (8), the following
condition holds

−µ{− 1

2µ
ΛTn (t)BK(HTH)−1HTD}2 + ΛTn (t)(A−BK)Y (t)

+ΛTn (t)BK(HTH)−1HTD
1

2µ
ΛTn (t)BK(HTH)−1HTD = 0

[ΛTn (t)BK(HTH)−1HTD]
2
= −4µΛTn (t)(A−BK)Y (t).(11)

Note the terminal condition ΛTn (tf ) = 2Y T (tf )F and
S(tf ) =M ,

∫ tf

t0

[− 1

2µ
ΛTn (t)BK(HTH)−1HTD]2dt =M, (12)

Λn(tf ) = 2FTY (tf ).

Finally, combining constrains (11), (12), (13) and system
trajectory (10), the necessary condition of optimal attack
strategy can be derived as follows



ΛTn (t0) exp(−(A−BK)(t− t0))BK(HTH)−1HTD

[BK(HTH)−1HTD]
T
exp(−(A−BK)T (t− t0))Λn(t0)

= −4µΛTn (t0) exp(−(A−BK)(t− t0))BK(HTH)−1HT

D(A−BK) exp((A−BK)(t− t0)){Y (t0) +
1

2µ

∫ t
t0

exp(−(A−BK)(τ − t0))BK(HTH)−1HTD[BK

(HTH)−1HTD]T exp(−(A−BK)T (τ − t0))Λn(t0)dτ},∫ tf
t0

ΛTn (t0) exp((−A−AT+BK+KTBT )(t− t0))Λn(t0)
= 4µ2M,

{exp(−(A−BK)T (tf − t0))−
1

µ
FT exp((A−BK)

(tf − t0))
∫ tf
t0

exp(−(A−BK)(τ − t0))BK(HTH)−1

HTD[BK(HTH)−1HTD]
T
exp(−(A−BK)T

(τ − t0))dτ}Λn(t0) = exp((A−BK)(tf − t0))Y (t0),

(13)
where Λn(t0), µ, tf are unknown parameters. Finally, the
optimal attack magnitude is

T (t) = − 1

2µ
ΛTn (t)BK(HTH)−1HTD.

IV. NUMERICAL RESULTS

In this section, some numerical experiments are taken to
validate the attack strategy proposed in this paper.

In the experiments, the following two indicators are used:
1) With limited energy, how much damage the attack can

cause to the power system.
2) How many residuals will be generated during the attack,

which is related to the possibility of the attack being
detected.

Bus 1 Bus 4

Bus 2 Bus 3

V1

 θ1

V4

 θ4

V3

 θ3

V2

 θ2

Fig. 1. A 4-bus microgrid system illustration.

Consider the microgrid system with 4 buses in Fig. 1. The
base power SB is 100MW and the base voltage UB is 230kV.
θ1 is set to reference, which is always 0. The states when the
system is operating stably are as follows

V d =


vd1
vd2
vd3
vd4

 =


230
18.45
13.8
16.5

 (kV ), θd =


θd1
θd2
θd3
θd4

 =


0

11.497
6.682
2.217

 (◦).

It is assumed that the control objective is to keep the voltage
phases to be the reference value θd and the voltage magnitudes
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have already reached the operating value and are fixed. And
the system state is defined as the deviation of the phase angles
from the reference values, i.e. X = [x1 x2 x3 x4] = π(θ −
θd)/180 (rad).

Then the linearized differential equation for the power
system is described as the following continuous-time state-
space model

˙
x2
ω2

x3
ω3

x4
ω4

 = A


x2
ω2

x3
ω3

x4
ω4

+


0 0 0

2.0723 0 0
0 0 0
0 4.4063 0
0 0 0
0 0 0.561


Tm1

Tm2

Tm3

 ,

where A =
0 1 0 0 0 0

−5.4592 −4.1446 2.3385 0 3.1207 0
0 0 0 1 0 0

5.2010 0 −10.7226 −8.8126 5.5106 0
0 0 0 0 0 1

0.952 0 0.7494 0 −1.7014 −1.122

 .

The output feed-back control law is designed as
[Tm1 Tm2 Tm3]

T = −KX̂ , where

K =

−0.5621 0 1.1285 0 1.5059 0
1.1804 0 1.9728 0 1.2506 0
1.6970 0 1.3358 0 −2.4718 0


The measurement is based on the bus and branch active

power flows as (2),

P =
[
P12 P13 P14 P34

]T
= h(

[
θ2 θ3 θ4

]T
).

At the stable operating point, denote H = ∂h(X)/∂X|X=Xd

as the measurement matrix and the measurement vector is
selected as Z = [z1 z2 z3 z4]

T = [P12−P d12 P13−P d13 P14−
P d14 P34−P d34]T +E. Then the measurement equation can be
derived by

Z = HX + E

=


−24.8601 0 0

0 −17.9574 0
0 0 −123.3828

2.0172 −2.0172 0


x2x3
x4

+ E,

where dE ∼ N4

(
0, diag(1.29, 2.03, 2.49, 1.43)dt

)
is the mea-

surement noise vector, whose elements are independent white
noises with zero-mean. Then the estimation can be obtained
as [x̂2 x̂3 x̂4]T = (HTH)−1HTZ, X̂ = [x̂2 x̂3 x̂4]

T ⊗ [1 0]T ,
where ⊗ is the Kronecker operator.

A. Optimal Attack Performance under Non-concealed Scenario

Assume that the attacker can only compromise the meter
between bus 1 and bus 2, i.e. D = [1 0 0 0]T . Under the
traditional attack strategy, the attacker would like to consume
all energy with a constant attack magnitude in a short period
of time to ensure the success of this attack, that is the
concentrated attack strategy.

The following part shows the effects of the two attack
strategies, namely one-shot concentrated attack strategy and
the energy based optimal attack strategy, respectively. Detailed
parameters of both attacks are presented in Table I.

TABLE I
DESIGN PARAMETERS OF ATTACK STRATEGIES

Module Design Parameters

System assessment
F =

167.2703 0 0
0 175.5506 0
0 0 30.4878


J = (θ − θd)TF (θ − θd)

Concentrated attack strategy
M = 5

tf = 0.5s

T (t) =
√
10, t ∈ [0, tf ]

Optimal attack strategy M = 5

Figure 2 shows the results of the system states under
different attacks. It can be seen from Fig. 2(a) that the optimal
attack strategy can achieve better attack effect and cause
more loss than the concentrated attack strategy. In Fig. 2(b),
adopting a concentrated attack may significantly increase the
residual, which makes the attack easier to be detected, while
under the optimal attack, the residual changes more gradually
and the maximum value is also reduced.
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Fig. 2. The optimal dynamic attack can achieve a better attack effect and
reduce the residual compared to the traditional concentrated attack: (a) the
attack effect; (b) the norm of residual between measurement and estimate.

However, the logic of attack cannot be fully described by the
figure. It should be indicated that the purpose of the optimal
attack strategy is to enhance the impact of the attack, and
it is not oriented towards reducing the residual, although it
has a lower residual in Fig. 2. The reduction in residual is
mainly due to the longer period of sustained attack. From this
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perspective, the optimal attack is still successful, but it can
also be further optimized to limit the attack magnitude in the
design.

B. The Optimal Stealth False Data Injection Attack

Besides, the optimal attack strategy proposed in this paper
does not conflict with the classic stealth false data injection
attacks, so they can be used simultaneously, that is to choose a
appropriate attack direction D = Hc, ∀c ∈ Rn [20], thereby
greatly increasing the threat. That is the energy based optimal
dynamic stealth false data injection attack.

In this case, the attack direction is selected as D =
[0 0 1 0]T . This optimal stealth attack produces much fewer
residuals as shown in Fig. 3, however, the attack effect is also
decreasing sharply in this microgrid. Therefore, to better attack
the grid, more energies are still required.
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Fig. 3. The optimal stealth attack causes fewer residuals: (a) the attack effect;
(b) the norm of residual between measurement and estimate.

V. CONCLUSION

This paper analyzes the utility and advantages of continuous
false data injection attacks, and then considering resource
constraints, proposes an energy based optimal dynamic stealth
false data injection attack strategy. With this method, the
attacker can allocate and utilize resources more efficiently to
cause greater harm to the power system, while it can bypass
the attack detection more easily and improve fault tolerance
of the attack.

In the future work, we would like to take the capability
and the tolerance for abnormalities of detection methods
into consideration. To extend our results, more constraints in
practice will be added into the problem, so as to design a more

general dynamic optimal attack strategy. Most importantly, we
also plan to investigate the possibility of developing special
detection techniques to defend against false data injection
attacks.
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