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Abstract Networked cyber-physical systems are facing serious security threats from malicious at-

tacks. It is noted that the networked cyber-physical system should take defense measures into account

at the beginning of its construction. From the conservative defensive perspective, this paper proposes

a robust optimal defense resource allocation strategy to reduce the maximum possible losses of the

networked cyber-physical system caused by potential attacks. Then, based on the robust optimal allo-

cation strategy, it can be proved that the topology of the networked cyber-physical system has a great

influence on the loss function. In order to further improve security, the effects of adding redundant

connections are investigated. Furthermore, by taking geographical knowledge into account, a hexag-

onal construction scheme is proposed for providing a geographically-feasible and economically-viable

solution for building networked cyber-physical systems, where the loss function has a cubic decay.

Keywords Cyber-physical system, hexagonal city planning, optimization, resource allocation.

1 Introduction

In recent years, modern control systems have become more and more networked and complex[1].
Especially under the condition that integrating modern sensing, communication, and control
technology is possible, the scale of networked cyber-physical systems (NCPSs) is rapidly ex-
panding and internal interactions are more convenient and frequent[2].

The coordination between physical and cyber resources yields unprecedented capabilities,
therefore, NCPSs have a wide range of applications in many fields, such as water supply[3],
power systems[4, 5], transportation[6], and so on. It is noted that many NCPSs show typical
hierarchical characteristics[7], for example, wastewater is pooled from all over the place to the
sewage plant; the power plant provides electricity to the surrounding areas through a series of
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facilities; and important materials like vaccines are transported to the local supply center from
the producer.

However, while improving efficiency, NCPSs have also been proved to be vulnerable[8, 9],
especially in the presence of various kinds of attacks including Stuxnet worm[10], false data
injection (FDI) attacks[11, 12], denial of service (DoS) attacks[13], and so on. On the one hand,
the combination of cyber parts and physical parts results in the duality of nodes. The node
directly participates in the physical process in reality, which means that cyber attacks can
directly sabotage high-value physical devices and cause a greater scale of damage than before.
On the other hand, facing increasing network complexity, reliability and maintainability are
difficult to be guaranteed, and there are too many nodes to be protected. Therefore, allocating
limited or even insufficient defense resources to deal with malicious attacks has become a serious
challenge[14].

1.1 Related Works

In the literature on the defense resource allocation of NCPSs, most investigations are based
on game theory. A mean field game based method is proposed to deal with the problem
of the attack-defense resource allocation for distributed nodes in mobile Ad hoc networks,
where nodes lack unified planning and this problem eventually leads to a mixed strategy[15]. A
game theoretical method is proposed to allocate the detection resources to adjust the detection
threshold for the collaborative security detection problem based on the importance of different
nodes in [16], and this classic game theoretical method requires perfect information. In [17],
the communication architecture of the power grid is assumed to be tree-like, and a game based
method is used to analyze the defense strategy that the defender should set encryption levels
for nodes and the attack strategy that the attacker sets aggregation levels for nodes. A game
theory based analysis of the DoS attacks against the remote state estimation in cyber-physical
systems is presented in [18], where the attacker and the defender choose respective strategies
to jam the communication channel or to send the data packet at the right time. Resource
allocation for secure communications in wireless powered communication networks is studied
in [19, 20], where it needs to allocate the right ratio of resources to send jamming signals against
the eavesdroppers and other resources for information exchange to maximize the confidential
data rate. However, in this secure communication resource allocation problem, the attacker
(eavesdropper) does not need to make the decision and there is only one node considered,
which results in the unique optimal solution. Fuzzy games are used to solve the problem of the
attack-defense resource allocation in the vehicular network in [21], however, the final result is
still a mixed strategy.

The main reasons why the existing studies cannot be directly applied to security issues of
NCPSs are:

1) Many studies adopt the game theory with perfect information[15–18, 21]. Perfect informa-
tion is that all players know the game structure and the payoff functions, and can instanta-
neously acquire the previous actions of other players. However, the defender does not know the
time and location of the attack, as a result, security issues of NCPSs should be considered at the
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beginning of their construction. This makes perfect information inaccessible to the defender.
2) Nash equilibrium, which is used in almost all game theoretical approaches, usually leads

to mixed strategies[15, 18, 21]. However, the defender cannot timely redeploy physical defense
resources to make the strategy adjustment.

1.2 Contributions

Provided the limitations of existing studies, this paper attempts to solve the problem of
robust defense resource allocation in NCPSs from the following perspectives:

1) The defense resource allocation strategy should be robust. The deployment of the defense
strategy precedes the attack strategy, and the defender does not know the time and other infor-
mation of the attack while the attacker has enough time for reconnaissance before launching the
attack against the NCPS, which makes mixed strategies not suitable. Therefore, the defender
tends to prevent the worst-case scenario.

2) The defense resource allocation strategy should be analyzed in conjunction with the
structure of the NCPS. Then, this paper borrows the distribution of real-world settlements
and designs a feasible network structure based on geographical knowledge to further reduce the
potential damage caused by attacks.

In this paper, NCPS and its vulnerable sections are modeled as a digraph and the nodes,
respectively. The loss function is defined as the sum of the values of end-users who cannot
get service from the center because of the attacks. An assumption that the attack resources
required to cause considerable damage are far lower than the cost of the NCPS construction
is adopted, which is consistent with reality observations that attack security incidents are few
and attacks do not require high costs. Under this assumption, a proportional node destroying
model is proposed to analyze the functional impact caused by various attack-defense resource
allocations. Due to a lack of information about the potential attacks, the defender is believed
to take a conservative posture. Then, the robust optimal defense resource allocation can be
derived by solving a min-max problem.

Furthermore, with more attack resources applied, the probability of the case in which more
than one node is destroyed simultaneously is not negligible, then the interaction between nodes
should be considered and the loss function should be modified. If the upstream node has
already been destroyed, all its downstream nodes cannot work in this case, and then it is not
profitable to attack downstream nodes. In this situation, it can be found that the topology
heavily influences the loss function.

In order to further reduce the loss function of NCPSs, the impact of topology is consid-
ered. Redundancy can reduce the loss function when upstream nodes are destroyed. Adding
redundant connections is not mutually exclusive with many specific defense methods and they
can be utilized simultaneously. Furthermore, considering the construction feasibility of NCPSs,
a hexagonal city planning topology construction scheme based on geography is developed to
provide a novel NCPS construction solution, where the loss function has a cubic decay while
the number of extra redundant connections has only a double increase compared to that under
the typical tree topology.



4 LIU YIFA · CHENG LONG

Finally, the contributions of this paper are stated as follows:
1) A loss function model of the NCPS based on the attack-defense resource allocation is

proposed. By solving a min-max problem, some optimal attack-defense resource allocation
strategies have been obtained under several problem settings.

2) A topological method is proposed to further reduce the loss function. The effects of
adding redundant connections have been investigated.

3) Hexagonal city planning based topology construction is studied to provide a geographically-
feasible and cost-affordable solution for the proposed topological method.

This paper is an extension of the previously published conference paper [22], and the main
differences and improvements in this paper are: This paper explains the rationality of the
assumptions and gives rigorous mathematical proofs of the theorems in more detail. This
paper investigates some common cases of adding redundant connections and compares them
with the proposed method to demonstrate the cost performance of the proposed method.

2 Optimal Resource Allocation Strategies

2.1 Structure of NCPS

NCPSs have to deal with the actual physical process, which requires a series of facilities that
are connected in functional order. Therefore, NCPS and its vulnerable sections are described by
a digraph topology and nodes, respectively. For example, the water supply includes water intake,
water delivery, water quality treatment, and water distribution. The facilities corresponding
to each mission are different, and damage to any section can block the entire process resulting
in the fact that end-users cannot receive service. Therefore, the structure of NCPS contains
heterogeneous nodes, while nodes of the same level are homogeneous because they belong to
the same kind of facilities. For ease of understanding, the illustration in this paper takes the
power system as an example. Figure 1 shows the structure of a 4-level power grid including
generation, transformation, dispatch, and end-user consumption, which is a typical case of
NCPS. The notions used in this paper are defined in Table 1.

(a) (b)

Figure 1 Networked cyber-physical systems with typical topologies:
(a) The line topology; (b) the perfect n-ary tree topology
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Table 1 Notations

The objective is to find optimal defense strategy s∗d to minimize loss function L(sa, s∗d). sdi, sd, sdij , sd i are

different elements of sd.

Q The total number of nodes in the NCPS topology.

|E| The number of edges in the NCPS topology.

M The number of levels in the NCPS topology, namely the types of different facilities in the NCPS,

M > 1.

vuser The value of an end-user, namely the loss that an end-user cannot get service. All end-users

have the same value.

Qi The number of nodes on the i-th level, Q=
∑M

i=1Qi.

pi The probability of node i being destroyed.

vi The local loss function caused by node i stopping working.

ai, di The amount of attack and defense resources allocated to node i, respectively, A =
∑Q

i=1ai, 0≤
ai ≤A, D=

∑Q
i=1di, A<di <D.

A, D The total amount of attack and defense resources of the attacker and the defender, respectively.

Ui The set of upstream nodes of node i.

sa, sd The attack and defense strategies to allocate resources to each node, respectively, sa =

[a1 a2 · · · aQ]T, sd =[d1 d2 · · · dQ]T.

L(sa, sd) The loss function under strategies sa and sd.

aij , dij The amount of attack and defense resources allocated to the j-th node on the i-th level, respec-

tively, aij =a∑ i−1
k=1Qk+j

, dij =d∑ i−1
k=1Qk+j

.

sai, sdi The attack and defense strategies to allocate resources to each node on the i-th level, respectively,

sai =[ai1 · · · aiQi
]T, sa =[saT1 · · · saTM ]T, sdi =[di1 · · · diQi

]T, sd =[sd
T
1 · · · sd

T
M ]T.

vi The local loss function caused by the node on the i-th level stopping working.

ai, di The amount of attack and defense resources allocated to the i-th level, respectively, ai =
∑Qi

j=1aij ,
∑M

i=1ai =A, di =
∑Qi

j=1dij ,
∑M

i=1di =D.

sa, sd The attack and defense strategies to allocate resources to each level, respectively, sa =

[a1 a2 · · · aM ]T, sd =[d1 d2 · · · dM ]T.

pijk The probability of the k-th node in the j-th ring on the i-th level stopping working.

aijk, dijk The amount of attack and defense resources allocated to the k-th node in the j-th ring on the

i-th level, respectively, aijk =a(6i−1)/5+6j+k , dijk =d(6i−1)/5+6j+k .

sa ij , sdij The attack and defense strategies to allocate resources to each node in the j-th ring on the i-th

level, respectively, sa ij =[aij1 aij2 · · · aij6]T, sdij =[dij1 dij2 · · · dij6]T.

Lij The local loss function of the j-th ring on the i-th level under strategies saij and sdij , if the

other parts are intact.

aij , dij The amount of attack and defense resources allocated to the j-th ring on the i-th level, respec-

tively, aij =
∑6

k=1aijk , dij =
∑6

k=1dijk .

sa i, sd i The attack and defense strategies to allocate resources to each ring on the i-th level, respectively,

sa i = [ai1 ai2 · · · ai6i−2 ]T, sd i = [di1 di2 · · · di6i−2 ]T.

Li The local loss function of the i-th level under strategies sa i and sd i, if the other parts are intact.

ε A sufficiently small positive scalar, ε > 0.

1i×j The i × j dimension matrix with all ones.

1i The i dimension vector with all ones.

eij The i-th column of the j × j identity matrix, 1 ≤ i ≤ j.



6 LIU YIFA · CHENG LONG

• Root: Generally speaking, the root is the node without a parent in a graph topology. In
the NCPS, the root usually represents the service source.

• Leaf: A node with no children. The end-users are leaf nodes.

• Level: The root node is on the first level. The nodes on the i-th level indicate the i-th
type facilities.

• Parent: An immediate ancestor, a node from which there is a one-step flow to the con-
cerned node.

• Child: An immediate descendant, the converse notion of parent.

• Sibling nodes: Nodes on the same level under the same parent node.

• Ancestor/upstream node: A node reachable from the concerned node by repeated pro-
cesses from child to parent operation.

• Descendant/downstream node: A node reachable from the concerned node by repeated
processes from parent to child operation.

• Path: A sequence of edges {(i1, i2), (i2, i3), · · · , (ik−1, ik)} is called a directed path from
node i1 to node ik. The direction from the root to the end-user is selected as the positive
direction.

• Loss function: The loss function is defined as the total value of end-users who cannot
get the service from the root. When the attacker launches the attack and damages the
NCPS, the service supply chains of some leaf nodes are cut off and then the actual loss
occurs.

2.2 Risk Function

Assumption A1 Attack resources are quite fewer than defense resources.
In the process of attacking and defending the NCPS, a series of means that both sides can

take are quantified as their respective resources, and then both sides need to reasonably allocate
their limited resources to achieve their goals. Attack resources include but are not limited to
personnel or hackers employed to execute the malicious actions, advanced tools or malware for
launching the attack, and other economic resources. And defense resources include but are not
limited to staff to maintain and operate the NCPS, security tools or software, fix packs, and
other economic resources. For example, for DoS attacks against event-triggered communication,
the available attack duration or hashrate (computing power) that the attacker can block the
communication channel is the attack resource, and additional communication resources beyond
minimum requirements are the defense resources. If the attacker can block the communication
so as to bring delays to the system response, the control center may make wrong decisions or
the actuator may lose control to deliver unexpected performance, resulting in the service supply
being affected.

The cost of building and running an NCPS is far greater than destroying it. It should be
soberly aware that a single attack costing thousands has the possibility to threaten an NCPS
worth billions. From another perspective, though there have been many serious accidents
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alerting humans to the significance of NCPS security, accidents are rare compared with most
NCPSs working properly. It seems that the situation of attacks on the NCPS has not yet become
extremely difficult to be dealt with. A reasonable explanation is that the attack resources are
few while various security measures have been adopted.

Due to the law of diminishing marginal utility, with the more defense resources already
allocated, adding extra defense resources produces fewer effects. By Assumption A1, the attack
resources allocated to a single node are so small that adding more attack resources does not
reduce the value of the unit resource. Therefore, the attack effect can be regarded as a linear
function of quantity. Then, the probability of node i being crashed is modeled by

pi =
ai

di
. (1)

Remark 2.1 The attacks discussed in this paper only affect the area where they occur,
which means that the methods proposed in this paper are mainly applicable to the DoS-type
attacks. And the analysis is not suitable for the attacks triggering chain reactions, like computer
viruses.

2.3 Inheritance Relationship

Assumption A2 Nodes are uncorrelated to each other.
When nodes are destroyed, local loss functions are caused. If the probability of any node

being destroyed is sufficiently low, the loss function is approximated as the sum of the expected
local loss function of each node,

E(L(sa, sd)) =
Q∑

k=1

pkvk =
Q∑

k=1

ak

dk
vk. (2)

It is noted that Assumption A2 only holds in the case where the destroying probability of each
node is so low that the probability of more than two nodes being damaged at the same time
can be ignored. This case is also common in error detection in computer science and reliability
analysis.

It is noted that the improved assumption and corresponding loss model are discussed in
Section 3 where the interactions between nodes and the effect of topology on the loss function
are considered.

2.4 Objective

Assumption A3 The defender should adopt conservative strategies.
The goal of the defender is to take the optimal defense resource allocation strategy to

minimize the loss function, while the attacker is to choose the optimal attack resource allocation
strategy for maximizing the loss function.

The optimal strategy is usually associated with game theory and many studies on defense
resource allocation use game theory to simulate attack-defense scenarios. However, those opti-
mal solutions based on game theory may not be fully applicable to the NCPS. The main reasons
are:
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1) NCPS security issues should be considered at the beginning of or before its construction,
and defense strategies should be optimized before attacks occur. This fact makes the game
theory based approach (treating attackers and defenders in an equal position) unsuitable.

2) Perfect information is that all players know the game structure and the payoff functions
and can instantaneously acquire the previous actions of other players. Perfect information is
widely required in game theory based approaches. In the confrontation of NCPS, the asym-
metrical information puts the defender at a disadvantage position. The attacker can perform
adequate reconnaissance and choose the right time before launching the attack while the de-
fender does not know the time and location of the attack occurrence. This fact makes the game
theory based methods which require the perfect information unsuitable.

3) The confrontation on NCPS is usually not dynamic. The duration of the attack may
be very short when an attack occurs and there is no attack most of the time. These facts
lead to that the defender may not or cannot make timely adjustments before the end of the
attack. Therefore, the game theory based methods which take multiple rounds to reach Nash
equilibrium are not suitable.

Due to the aforementioned analysis, once the defense strategy is deployed, the defender may
not dynamically adjust the defense strategy. Then, the defender can only prevent the worst
case while the attacker can achieve the best damage based on the established defense strategy.
Therefore, the defender should make proper arrangements for defense resources before the
attacks to reduce the maximum possible loss function. To conclude, the defender would adopt
the following robust strategy,

s∗d = argmin
sd

max
sa

E(L(sa, sd)) = argmin
sd

max
sa

Q∑

i=1

ai

di
vi,

s∗a = argmax
sa

E(L(sa, s∗d)).

Then, the loss function under the optimal strategies of both sides is

E(L(s∗a, s∗d)) = min
sd

max
sa

Q∑

i=1

ai

di
vi =

Q∑

i=1

a∗
i

d∗i
vi.

2.5 Optimal Strategy

According to [22], the difference between any two defense strategies can be formulated by
the sum of aciculate variations Eij =ε(eiQ−ejQ), i �= j.

First the restrictions of resources allocated to nodes are relaxed to R
+. Since s∗a and s∗d are

optimal, i.e., E(L(s∗a, s∗d))≥E(L(s∗a+Δij , s
∗
d)), E(L(s∗a, s∗d))≥E(L(s∗a−Δij , s

∗
d)), ∀i, j, i �= j, the

following condition can be derived

εvi/d∗i − εvj/d∗j ≤ 0, −εvi/d∗i + εvj/d∗j ≤ 0.

Therefore, εvi/d∗i −εvj/d∗j = 0, and this conclusion can be verified to hold under restrictions
0 ≤ ai ≤ A and A < di < D as well. Therefore, the optimal defense resource allocation strategy
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satisfies the following condition

d∗i
vi

=
d∗j
vj

, d∗i =
vi

∑Q
k=1 vk

D.

It can be seen that the defense resource allocation should be proportional to the value of the
node. And the corresponding loss function can be calculated as follows

E(L(s∗a, s∗d)) =
A

D

Q∑

k=1

vk. (3)

The optimal attack resource allocation strategy s∗a can be any solution satisfying the basic
restriction, i.e., ∀ai ∈ [0, A]. Therefore, optimal defense strategy s∗d is sufficiently robust to
handle any feasible attack strategies.

2.6 Evaluation of Node’s Value

This subsection determines the value of the node. Since the service supply chain demands a
series of different facilities, and the destruction of any facility can cut off the supply chain, the
value of the i-th node vi is equivalent to the sum of its leaves’ values. The following two typical
topologies are first investigated. It is noted that any directed acyclic graph can be divided into
lines and trees.

2.6.1 Line

In this case, Q nodes are in series as shown in Figure 1(a). Any node being destroyed cuts
off the line, and then the leaf node fails. Therefore, v1 =v2 = · · ·=vQ =vuser.

Hence the attacker should focus on the most fragile node while the defense resources should
be evenly distributed to all nodes, i.e., d∗i = D/Q, i = 1, 2, · · · , Q. The robust optimal defense
strategy and the corresponding loss function are derived as follows:

s∗d =
D

Q
1Q, (4)

E(L(s∗a, s∗d)) =
A

D
Qvuser. (5)

2.6.2 Perfect n-Ary Tree

In reality, the NCPS distributes services to end-users in an area and there are many levels
in NCPS. This observation makes the radial structure reasonable, especially the tree topology.
Consider a perfect n-ary tree with M levels shown in Figure 1(b). It can be obtained that
vi =nM−ivuser. Since Qi = ni−1, each level has the same total value nM−1vuser. Therefore, the
defense resources should be evenly distributed to each level,

d∗i =
D

M
, i = 1, 2, · · · , M, s∗d =

D

M
1M .

And the optimal amount of defense resources allocated to the j-th node on the i-th level is
given as follows

d∗ij =
D

Mni−1
, j = 1, 2, · · · , ni−1, s∗di =

D

Mni−1
1ni−1 . (6)
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The corresponding loss function can be obtained that

E(L(s∗a, s∗d)) = MnM−1 A

D
vuser. (7)

3 Improved Loss Function and Corresponding Allocation Strategies

Assumption A4 Nodes are relevant to each other.
Assumption A2 ignores the relationship between any two nodes. However, if there is more

than one node to be destroyed, Assumption A2 may be invalid.
If the parent node can be certainly destroyed, the attacker does not need to attack the child

node. The destroyed node’s value can be added to the loss function only when all upstream
nodes are not destroyed. Therefore, under Assumption A4, the loss function can be improved
as

E(L(sa, sd)) =
Q∑

k=1

[

pkvk

∏

j∈Uk

(1 − pj)
]

=
Q∑

k=1

[
ak

dk
vk

∏

j∈Uk

(

1 − aj

dj

)]

. (8)

By improved loss function (8), with more attack resources deployed to the upstream node,
it is less profitable to attack downstream nodes.

Remark 3.1 It is noted that (2) is always not less than (8) under the same resource
allocation. Improved loss function (8) degenerates into (2) if there is no path between any two
attacked nodes.

3.1 Line

According to (8), the improved loss function for the line topology can be expressed as follows

E(L(sa, sd))
vuser

= p1 + p2(1−p1) + · · · + pQ

Q−1∏

j=1

(1−pj) = 1 −
Q∏

k=1

(1−pk). (9)

In the line topology, because all nodes are critical, every node is a potential attack target.
Theorem 3.1 In the line topology, the optimal defense strategy is to evenly distribute

defense resources to all nodes (levels), while the attacker should allocate all attack resources to
any one node (level), i.e.,

s∗a = {AeiQ, i = 1, 2, · · · , Q}, s∗d =
D

Q
1Q, (10)

and the corresponding loss function is

E(L(s∗a, s∗d)) =
A

D
Qvuser. (11)

Proof See the proof of Theorem 3.1 in Appendix A.
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3.2 Perfect n-Ary Tree

Theorem 3.2 In the perfect n-ary tree topology, the optimal defense strategy is to evenly
distribute the defense resources to all levels, i.e.,

d∗ij =
D

Mni−1
, j = 1, 2, · · · , ni−1, s∗di =

D

Mni−1
1ni−1 ,

while the optimal attack strategies are those avoiding the existence of paths between the attacked
nodes, and the corresponding loss function is

E(L(s∗a, s∗d)) =
A

D
MnM−1vuser. (12)

Proof See the proof of Theorem 3.2 in Appendix B.

4 Topological Method for Reducing Losses

According to (8), the loss function depends not only on the resource allocation of both sides,
but also on the structure of NCPSs. If the topology can be properly modified, the robustness
of the NCPS in regard to the attack can be improved. Therefore, this section makes an effort
on modifying the connection topology to further reduce the loss function.

In the typical radial structure, including line and tree topology, if any node is destroyed,
the leaf fails and the functionality of the NCPS is affected. As shown in Figure 2, the node can
reach the root from another way if backup paths exist. Even if any non-root node is destroyed,
the service can still be provided from the root to end-users[23].

Damaged node

Failed  leaf

Figure 2 Node failure situations without and with redundant connections

To reduce the loss function as much as possible, an intuitive method is to add a sufficient
number of connections. And doing so can definitely achieve desired results. In this section, an
extreme case is studied. That is: Every node is connected to all nodes on the previous level as
shown in Figure 3.

Consider an NCPS with M levels and the total value of all end-users is QMvuser. Under
this extreme case, the only way to cause damage is to cut off all nodes on one level and the loss
function is obtained as follows

E(L(sa, sd)) =
[

1 −
M∏

i=1

(

1 −
Qi∏

j=1

aij

dij

)]

QMvuser.
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Figure 3 Fully connected NCPS: Link every facility to all its up-
stream and downstream facilities

The allocation of resources can be divided into the following two sub-problems.

Resource Allocation within One Level
Theorem 3.3 In a fully connected topology, for any level, the attacker and the defender

should distribute their resources evenly to each node on that level, respectively, i.e.,

a∗ij =
ai

Qi
, s∗a i =

ai

Qi
1Qi , d∗ij =

di

Qi
, s∗di =

di

Qi
1Qi . (13)

Proof See the proof of Theorem 3.3 in Appendix C.
Under those strategies, the probability of the i-th level being destroyed can be calculated

as follows
Qi∏

j=1

a∗ij
d∗ij

=
Qi∏

j=1

ai/Qi

di/Qi
= (ai/di)Qi .

Resource Allocation to Different Levels
Theorem 3.4 In a fully connected topology, the attacker should allocate all attack resources

to any and only one level, while the optimal defense strategy is to distribute the defense resources
in such a way that the loss function keeps invariant under all possible attack strategies, i.e.,

s∗a = {AeiM , i = 1, 2, · · · , M}, s∗a i =
ai

Qi
1Qi , (14)

M∑

j=1

(
d∗i
A

) Qi
Qj

=
D

A
, i = 1, 2, · · · , M. (15)

Proof See the proof of Theorem 3.4 in Appendix D.

Remark 4.1 Levels with more nodes can have more redundant connections. Therefore,
those levels occupy fewer defense resources by (15).
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The following subsections are to give some special topologies which can lead to an ap-
proximate solution to (15), and the corresponding loss function reduction can be viewed more
clearly.

4.1 Fully Connected Tree

This section studies a special topology, the perfect n-ary tree with the addition of all possible
connections, which is shown in Figure 4(a). Qi = ni−1, i = 1, 2, · · · , M .

(a) (b)

Figure 4 Modified NCPS structures after adding all possible connec-
tions: (a) Fully connected tree; (b) fully connected forest

By (15), for the M -th level, d∗M satisfies that

M∑

j=1

(
d∗M
A

)nM−j

=
D

A
. (16)

Since d∗M > A and n≥ 2, (d∗M/A)nM−1
is significantly greater than the other terms on the left

hand, and the solution to (16) can be approximated by

d∗M ≈ A1− 1
nM−1 D

1
nM−1 . (17)

By substituting (17) into (32), it can be obtained that

d∗i ≈ A1− 1
ni−1 D

1
ni−1 , i = 2, 3, · · · , M, d∗1 = D−

M∑

i=2

d∗i ≈ D. (18)

Therefore, under the case of the “fully connected tree”, the optimal attack strategy is

s∗a = {AeiM , i = 1, 2, · · · , M}, s∗a i =
ai

ni−1
1ni−1 .

The approximate optimal defense strategy and the corresponding loss function are

s∗di ≈ A1− 1
ni−1 D

1
ni−1 1

ni−1 1ni−1 , (19)

E(L(s∗a, s∗d)) ≈
A

D
nM−1vuser. (20)
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The loss function has been reduced to 1/M of that of (12) by adding redundant connections.
As to the cost, the fully connected tree requires the following number of connections

|E|FC tree = (n2M−1 − n)/(n2−1) ≈ n2M−3 ≈ nM−2|E|tree.

The root in a fully connected tree is an isolated node and becomes the most fragile section.
Too many resources have to be invested to defend the root (by (18), d∗1 ≈ D).

4.2 Fully Connected Forest

If there are many “roots” in an area to backup each other, the reliability of the entire
networked system can be greatly improved. This subsection considers the case that there are
multiple service providers or goods producers, namely the nodes on the first level.

Combining n perfect n-ary trees leads to the topology with n roots. This topology is
shown in Figure 4(b). The total amounts of attack and defense resources become nA and nD,
respectively. Similar to the above analysis, the optimal attack resource strategy is given as
follows

s∗a = {nAeiM , i = 1, 2, · · · , M}, s∗a i =
ai

ni−1
1ni . (21)

Similarly, the approximate optimal defense strategy and the corresponding loss function are

s∗di ≈ A1− 1
ni−1 D

1
ni−1 1

ni−1 1ni ,

E(L(s∗a, s∗d)) ≈
(

A

D

)n

nMvuser. (22)

By (22), the loss function can be significantly reduced compared with that of (20). However,
the cost of redundant connections has reached the following unacceptable level

|E|FC forest =
n2M+1 − n3

n2 − 1
≈ n2M−1 ≈ nM−1|E|forest. (23)

5 Geographical Knowledge Based NCPS Construction

Section 4 discusses the impact of different topologies on the loss function, however, the
construction planning of NCPSs cannot be guided by only topology information[23]. The reasons
are:

1) Topology ignores location information, which cannot describe the geographical distribu-
tion. Service should go through a series of different facilities. All facilities are physically
present in reality and site selection should be considered seriously.

2) Topology ignores the capacity of the actual facility. In the previous topological analysis,
to cut off a node, the attacker must destroy all of its parent nodes, which means that every
node must have sufficient capacity of supplying all its child nodes. The most extreme case
is that one node has the capacity for the entire system, which is unnecessary and almost
impossible. Hence, the additional capacity requirements for facilities must be considered
in the construction of the NCPS.
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3) Edges in the topology cannot fully express the function of the service supply chain in
reality. Although the facilities may be sabotaged by attacks, connections between those
facilities are intact or easy to bridge. As long as there is a full set of facilities with
adequate capacity on the path, the supply chain can be completed. Therefore, redundant
connections can be added between nodes on the same level such that when one node is
damaged, its siblings can undertake part of this node’s responsibility.

This section is to develop a geographically-feasible solution for NCPS construction by con-
sidering the function, capacity, and geographical distribution of facilities.

“Central Place Theory” is a geographical theory to explain the number, size, and location
of human settlements in a residential system[24]. Based on this theory, hexagonal city planning
was proposed to solve the problem of providing services to surrounding areas, which is a cost-
effective and efficient land use pattern in geography. Since the NCPS aims at providing services
or goods to the end-users, its construction can follow the hexagonal planning principle.

5.1 Hexagonal City Group

Based on the hexagonal planning principle, a geographically feasible topology construction
scheme is proposed for the NCPS as shown in Figure 5(a). The main difference between this
topology and a perfect 6-ary tree is that every non-root node is connected to its two adjacent
siblings so that six children form a ring.

A ring on the 4th level consisting

of nodes 44,45,46,47,48,49

(a) (b)

Figure 5 An NCPS construction under the hexagonal city group structure:
(a) Hexagonal city groups; (b) groups of six hexagonal city groups

From Figure 6, if the capacity of each facility is twice its basic demand, as long as less
than three nodes are destroyed, the adjacent nodes can share the functions of the destroyed
nodes, and then the normal operation of the NCPS can be maintained. At least three nodes
are destroyed and the destroyed nodes are adjacent, the descendant of the middle node can be
affected.
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Parent node

Child node

Damaged child node

where electric current 

cannot be transformed

× This line is artificially 

cut off, because damaged

nodes cannot dispatch 

Child of child node

Figure 6 Operation conditions of NCPS under different scenarios: (a) Normal
operation; (b) two nodes damaged; (c) three adjacent nodes damaged

Assume the hexagonal structure has M levels. The probability of the service cannot pass
through a non-root node is approximately equivalent to the probability that this node and two
adjacent siblings are destroyed, namely the probability of the k-th node in the j-th ring on the
i-th level stopping working can be calculated as follows

pijk =
aij[(k+4) mod 6+1]

dij[(k+4) mod 6+1]

aijk

dijk

aij[k mod 6+1]

dij[k mod 6+1]
.

The local loss function caused by one node on the i-th level stopping working can be expressed as
vi = 6M−ivuser. Because the probability of four or more nodes being simultaneously destroyed
is much smaller than that of three nodes under Assumption A1, the expected loss function of
the j-th ring on the i-th level (i = 2, · · · , M ; j = 1, · · · , 6i−2) is

E(Lij(saij , sdij)) =
6∑

k=1

pijkvi.

And then the loss function of the entire NCPS can be expressed by the sum of local loss functions
of all rings as follows

E(L(sa, sd)) = p1v1 + (1−p1)E(L21)

+
6∑

i=1

(1−p1)(1−p21i)E(L3i)

+
6∑

i=1

6∑

j=1

(1−p1)(1−p21i)(1−p3ij)E(L4[6(i−1)+j])

+ · · ·

+
6∑

i=1

· · ·
6∑

z=1

(1−p1)(1−p21i) · · · (1−p[M−1][6M−4(i−1)+··· ]z)

E(LM [6M−3(i−1)+···+z]).

After obtaining the loss function, the optimal attack-defense resource allocation strategies
can be calculated. Similar to the analysis in Section 4, the resource allocation problem can be
divided into the following three sub-problems.
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Resource Allocation within a Ring
Theorem 5.1 Within any ring of the hexagonal structure, the defender and the attacker

should evenly distribute their respective resources to each node on that ring, i.e.,

a∗ijk =
aij

6
, s∗aij =

aij

6
16, d∗ijk =

dij

6
, s∗dij =

dij

6
16.

And the corresponding local loss function of this ring is

E(Lij(s∗aij , s
∗
dij)) = 6M−i+1

(
aij

dij

)3

vuser.

Proof See the proof of Theorem 5.1 in Appendix E.

Resource Allocation to Different Rings on the Same Level
Theorem 5.2 Within any level of the hexagonal structure, the defender should distribute

resources evenly to each ring on that level, while the attacker should allocate all attack resources
to any and only one ring on that level, i.e.,

a∗ijk =
aij

6
, s∗ai = {aiel6i−2 , l = 1, 2, · · · , 6i−2},

d∗ijk =
di

6i−1
, s∗di =

di

6i−2
1i−2

6 .

And the local loss function of the i-th (i > 2) level is

E(Li(s∗ai, s
∗
di)) = 6M+2i−5

(
ai

di

)3

vuser. (24)

Proof See the proof of Theorem 5.2 in Appendix F.

Resource Allocation to Different Levels
Theorem 5.3 For different levels of the hexagonal structure, the attacker should allocate

all attack resources to any and only one level, while the defense resources should be distributed
in such a way that the loss function keeps constant under any attack strategy, i.e.,

sa = {Aek, k = 1, 2, · · · , M}, (25)

6M−1 A

d1
vuser = 6M−1

(
A

d2

)3

vuser = · · · = 6M+2i−5

(
A

di

)3

vuser

= · · · = 63M−5

(
A

dM

)3

vuser. (26)

Proof See the proof of Theorem 5.3 in Appendix G.
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By considering the above three cases and the fact that the total amount of defense resources
is

∑M
i=1 di = D, the approximate solution to (26) is

d∗1 ≈ D, d∗i ≈ 6
2i−4

3 A
2
3 D

1
3 , i = 2, 3, · · · , M.

And the final optimal defense-attack resource allocation strategies are

a∗ijk =
a∗ij
6

, s∗ai = {a∗i el6i−2 , l = 1, 2, · · · , 6i−2}, s∗a = {AeiM , i = 1, 2, · · · , M},
d∗1 ≈ D, d∗ijk ≈ 6−

i+1
3 A

2
3 D

1
3 , i = 2, 3, · · · , M,

d∗1 ≈ D, d∗i = 6
2i−4

3 A
2
3 D

1
3 , i = 2, 3, · · · , M.

And the corresponding loss function is

E((s∗a, s∗d)) ≈
A

D
6M−1vuser.

From the above discussion, it can be seen that the topology of the hexagonal city group
can approximately reach the same expected loss function as the one of the fully connected tree
defined by (20), while the total number of required connections is

|E|Hexagonal city group = 2(6M − 6)/5 = 2|E|6-ary tree,

which is only twice that of the classical 6-ary tree topology.

5.2 Groups of Hexagonal City Groups

Similar to Subsection 4.2, since the root node has no substitute, it becomes the most fragile
section, and thus too many defense resources have to be placed on the root. If there are more
nodes on the first level to form a ring as Figure 5(b), the loss function could further decrease.

Consider a group of 6 city groups, and the total amounts of the attack resources and defense
resources are set to 6A and 6D, respectively. In this case, the first level is made of one ring
and satisfies the loss function defined by (24). By adding the local loss functions of all levels,
the total loss function can be derived as follows

E(L(sa, sd)) =
M∑

i=1

6M+2i−5

(
ai

di

)3

vuser. (27)

Based on (27), the optimal amount of defense resources allocated to each level satisfies the
following conditions

6M−3

(
6A

d∗1

)3

= · · · = 6M+2i−5

(
6A

d∗i

)3

= · · · = 63M−5

(
6A

d∗M

)3

.

Notice the fact that
∑M

i=1 di
∗ = 6D, it can be solved that

d∗i =
6

2i
3 − 6

2i−2
3

6
2M
3 − 1

6D.
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According to Theorems 5.1, 5.2, and 5.3, to maximize the loss function, the attacker should
choose any one ring on any level and evenly distribute the attack resources to each node on
that ring. That is:

a∗ijk =
a∗ij
6

, s∗ai = {a∗i el6i−1 , l = 1, 2, · · · , 6i−1},

s∗a = {6AeiM , i = 1, 2, · · · , M}, d∗ijk =
6

2i
3 − 6

2i−2
3

6
2M
3 − 1

1
6i

(6D).

Then, the corresponding loss function is obtained as follows

E(L(s∗a, s∗d)) = 6M−7

(
6

2M
3 − 1

6
2
3 − 1

)3(
A

D

)3

vuser. (28)

From (28), the loss function under this complete hexagonal city planning has a “cubic-level”
reduction while the required number of connections is only twice that of the forest topology,

|E|Group of hexagonal cities = 12(6M − 6)/5 + 6 ≈ 2|E|6-ary forest.

6 Numerical Studies

This section gives some numerical studies regarding the loss function under different topolo-
gies to verify the theoretical analysis.

6.1 Single Root Case

Consider a centralized NCPS (only one root node) with M levels and 6M−1 users in total.
Each non-leaf node in the system has 6 children. The reduced loss function and required
connections under different topologies are shown in Table 2. From Table 2, the loss function
of the fully connected tree topology can be reduced to 1/M of that of the original topology,
however, the number of edges required for such a structure is unacceptable. Hexagonal city
group planning can achieve a loss reduction similar to the one of a fully connected tree while
the number of connections is twice as high as that of the original tree topology.

Table 2 Comparison under different topologies with single root

Topology Leaves Edges E(L(s∗a, s∗d)) Added Edges Reduced Loss Function

Perfect 6-ary Tree 6M−1 6
5
(6M−1−1) M6M−1 A

D
vuser 0 0

Fully Connected Tree 6M−1 6
35

(62M−2−1) 6M−1 A
D

vuser O(62M−3) (M−1)6M−1 A
D

vuser

Hexagonal City Group 6M−1 12
5

(6M−1−1) 6M−1 A
D

vuser
6
5
(6M−1 − 1) (M−1)6M−1 A

D
vuser

6.2 Multiple “Roots” Case

In this case, it is assumed that there are 6 NCPSs originally. Then, there are 6 root nodes
and 6M users in total. The loss functions under different topologies are discussed in Table 3.
From this table, the hexagonal city group topology obtains a better performance at an affordable
cost. The loss function has a cubic-level decay.

In the experiment, the value of each end-user is set to 1, and the total attack and defense
resources are set to 60 and 60000, respectively. Figure 7 shows the results of the configuration
on three types of NCPS topologies.
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Table 3 Comparison of different topologies with six “roots”

Topology Leaves Edges E(L(s∗a, s∗d)) Added Edges

Forest 6M 6
5
(6M −6) M6M A

D
vuser 0

Fully Connected Forest 6M 216
35

(62M−2−1) 6M ( A
D

)6vuser O(62M−1)

Groups of Hexagonal City Groups 6M 12
5

(6M −6)+6 6M−7(
6

2M
3 −1

6
2
3 −1

)3(
A

D
)3vuser

6
5
(6M −6)+6
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Figure 7 Performance comparison of different topologies: (a) Edge
number; (b) loss function

In particular, let the power grid as a typical NCPS. Assume each power grid has 5 levels
(power plant, step-up, primary step-down, secondary step-down, distribution station), and the
total value of all users is 7776. Then, under the original topology (6 independent 6-ary trees),
there are 9324 edges, and the expected loss function is 38.88. Under the fully connected forest
topology, the expected loss function is 7.776 × 10−15, however, the number of added edges is
10356300 and each facility should have the capacity of supporting the entire grid. Under the
hexagonal city planning, the expected loss function is 1.3665×10−4 while the number of added
edges is only 9330 and the capacity of each facility is only required to be twice the basic demand.

To summarize, the hexagonal city planning scheme developed in this paper does not have to
add too many additional connections, while this scheme can reduce the loss function effectively.
It can improve not only the security of the NCPS but also the efficiency of infrastructure
investment in the NCPS.

7 Conclusion

The operation of the NCPS requires the coordination of various facilities, and the failure
of any section or facility can cut off the service supply. Therefore, concentrated attacks can
create better destructive effects. Inversely, the defender has to guarantee the security of every
facility. Redundancy can help to maintain the normal operation of the NCPS by utilizing the
assistance of other facilities after some facilities are destroyed.

When it comes to redundant connections, feasibility, price, and capacity should be taken
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into consideration. To this end, this paper develops a hexagonal city planning scheme. In this
scheme, any vulnerable section has a “backup” in an emergency. By taking this approach, the
loss function of the networked system has a cubic-level decay while the number of edges and
the capacities of facilities are only required to be twice those used in the classical system with
the tree topology. In addition, the hexagonal city planning theory is based on the settlements’
physical distribution. Therefore, the proposed method for the NCPS is highly geographically-
feasible.
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Appendix A: The Proof of Theorem 3.1

When the defender takes defense strategy (4), i.e., di = D/Q, the attacker can choose any
node as the target,

sa = {AeiQ, i = 1, 2, · · · , Q}. (29)

And the loss function defined by (8) can be calculated as E(L(sa, sd)) =QAvuser/D, which is
equal to (5). If the attacker chooses more than one node as the target, i.e., ai > 0, aj > 0, (9)
becomes

1 −
(

1−Q
ai

D

)(

1−Q
aj

D

) Q∏

k=1,k �=i,j

(

1−Q
ak

D

)

= 1 −
(

1−Q
ai

D
−Q

aj

D
+Q2 aiaj

D2

) Q∏

k=1,k �=i,j

(

1−Q
ak

D

)

< 1 −
(

1−Q
ai+aj

D

)(

1−Q
0
D

) Q∏

k=1,k �=i,j

(

1−Q
ak

D

)

.
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By repeating this operation, it can be concluded that the attack strategy defined by (29) can
lead to greater loss function than any other attack strategy. Due to Remark 3.1, the loss function
is no greater than (5). Therefore, attack strategy (29) is optimal under defense strategy (4).

If the defender takes a defense strategy other than (4), there exists a node j such that
dj < D/Q. Then, if all attack resources are allocated to node j, the loss function is greater
than (5). Therefore, defense strategy (4) is robust optimal as well.

By the above analysis, under the line topology, the optimal strategies of both sides and the
corresponding loss function are summarized as follows

s∗a = {AeiQ, i = 1, 2, · · · , Q}, s∗d =
D

Q
1Q, E(L(s∗a, s∗d)) =

A

D
Qvuser.

Although the loss function model is changed, the attacker can centralize resources to avoid
loss reduction. Conversely, the defender should take the same strategy as (4).

Appendix B: The Proof of Theorem 3.2

When the defender takes defense strategy (6), denote L as the loss function that can be
achieved. Denote L∗ = MnM−1Avuser/D, which is equivalent to the loss function in (7). Ac-
cording to Remark 3.1, L≤L∗. From different attack target selections shown in Figure 8, it can
be seen that the existence of a path can be always avoided by the attacker. Therefore, maximal
loss function L∗ can be still obtained in a tree topology. And all nodes are threatened as that
in Subsection 2.6.2.

(a) (b) (c) (d)

Figure 8 Cases of target selections in a tree topology

If the defender adopts a defense strategy other than (6), there exists at least one node whose
allocated defense resources are less than those in (6). If all attack resources are allocated to
this node, the loss function becomes greater than (7). Therefore, defense strategy (6) is robust
optimal. To conclude, the robust optimal defense strategy under the improved loss function is

d∗ij =
D

Mni−1
, j = 1, 2, · · · , ni−1, s∗di =

D

Mni−1
1ni−1 .

Besides, the optimal attack strategies are those having no path between the attacked nodes.
And the corresponding loss function is

E(L(s∗a, s∗d)) =
A

D
MnM−1vuser.
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Appendix C: The Proof of Theorem 3.3

The probability of all nodes on the i-th level being destroyed is
∏Qi

j=1(aij/dij) = (
∏Qi

j=1 aij)
/(

∏Qi

j=1 dij). By the inequality of arithmetic and geometric means (AM-GM), to maximize
profits for both sides, aij should be equal to each other and dij should be all same as well. Then,
optimal attack-defense resource allocation strategies for the i-th level are given as follows:

a∗ij =
ai

Qi
, s∗a i =

ai

Qi
1Qi , d∗ij =

di

Qi
, s∗di =

di

Qi
1Qi .

Appendix D: The Proof of Theorem 3.4

By adopting strategies (13), the expectation of the loss function can be expressed as follows

E(L(s∗a, s∗d)) = min
sd

max
sa

[

1 −
M∏

i=1

(

1−
(

ai

di

)Qi
)]

QMvuser. (30)

Similar to Remark 3.1, when a level is destroyed, it is not profitable to attack any other level,
which means that the attacker should allocate all attack resources to one level. Then, it is
reasonable to assume that the attacker takes the following optimal attack strategy

sa = {AeiM , i = 1, 2, · · · , M}. (31)

From the defender side, defense resource allocation is first designed to ensure that the loss
function keeps invariant under all possible attack strategies. By substituting (31) into (30) and
making the loss functions the same, it can be obtained that

(
A

d1

)Q1

QMvuser =
(

A

d2

)Q2

QMvuser = · · · =
(

A

dM

)QM

QMvuser. (32)

Notice the fact that
∑M

i=1 di =D. The defense resource allocation strategy can be obtained by
the following equation

M∑

j=1

(
di

A
)

Qi
Qj =

D

A
. (33)

If the defender takes a strategy other than (33), there exists such a level whose allocated
defense resources are less than those satisfying (33). If all attack resources are allocated to
attack this level, the loss function becomes greater. Hence, the robust optimal defense strategy
is (33).

If the attacker does not take the strategy defined by (31), it is assumed to divide the attack
resources into two parts: αA and (1−α)A, 0<α<1 and these two parts are applied to attack
the i-th and j-th levels. Then, the loss function becomes

[

1 −
(

1−
(

αA

di

)Qi
)(

1−
(

(1−α)A
dj

)Qj
)]

QMvuser

<

[

αQi

(
A

di

)Qi

+ (1−α)Qj

(
A

dj

)Qj
]

QMvuser

<

[

α

(
A

di

)Qi

+ (1−α)
(

A

di

)Qi
]

QMvuser =
(

A

di

)Qi

QMvuser. (34)
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By continuing this operation, it can be proved that the division of the attack resources leads to
a reduction in the loss function. Therefore, under condition (33), the attack resource allocation
strategy defined by (31) is optimal.

Appendix E: The Proof of Theorem 5.1

Assume the defender takes the following strategy for all nodes on the j-th ring of the i-th
level

dijk =
dij

6
, k = 1, 2, · · · , 6, sdij =

dij

6
16. (35)

Then, the local loss function of that ring can be calculated as

E(Lij(saij , sdij))=
6∑

k=1

pijkvi =
6M−i+3vuser

d3
ij

[aij6aij1aij2 + aij1aij2aij3+· · ·+aij5aij6aij1].(36)

The attacker would like to maximize local loss function Lij of that ring, which leads to the
following optimization problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max
aijk∈R

+,
k=1,2,··· ,6

aij6aij1aij2 + aij1aij2aij3 + · · · + aij5aij6aij1

s.t.
6∑

j=1

aijk = aij .

(37)

By the AM-GM inequality, the maximum value of the objective function is a3
ij/62, and the

optimal aijk should satisfy that

aijk =
aij

6
, saij =

aij

6
16. (38)

If the defender does not take strategy (35), by the similar analysis in Theorem 3.1, it can
be proved that the loss function becomes greater under the optimal attack strategy defined
by (38). Therefore, (35) is the optimal defense resource allocation strategy.

To summarize, the optimal attack-defense strategies for the j-th ring on the i-th level are

a∗ijk =
aij

6
, s∗aij =

aij

6
16,

d∗ijk =
dij

6
, s∗dij =

dij

6
16.

And the corresponding local loss function of this ring is

E(Lij(s∗aij , s
∗
dij)) = 6M−i+1

(
aij

dij

)3

vuser.

Appendix F: The Proof of Theorem 5.2

Assume the defender distributes resources evenly to each ring on the same level. Because
there are 6i−2 rings on the i-th level (i=2, · · · , M), the defender’s strategy is

dij =
di

6i−2
, j = 1, 2, · · · , 6i−2, sdi =

di

6i−2
16i−2 . (39)
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By using the same technique as the one in (34), it can be proved that attacking more than one
ring decreases the loss function. Therefore, the attacker should choose the following strategy

saij = {aiek6i−2 , k = 1, 2, · · · , 6i−2}. (40)

If the defender takes the defense strategy other than (39), there exists a ring j such that
dij <di/6i−2. Then, if the attacker allocates all the attack resources (allocated to this level) to
the j-th ring, the loss function becomes greater. Therefore, the strategy defined by (39) is an
optimal choice for the defender under the attack strategy defined by (40).

Therefore, the optimal strategies for both sides at the i-th level are given as follows

a∗ijk =
aij

6
, s∗ai = {aiel6i−2 , l = 1, 2, · · · , 6i−2},

d∗ijk =
di

6i−1
, s∗di =

di

6i−2
1i−2

6 .

And the local loss function of the i-th (i > 2) level is

E(Li(s∗ai, s
∗
di)) = 6M+2i−5

(
ai

di

)3

vuser.

Appendix G: The Proof of Theorem 5.3

The previous analysis in Section 4 has concluded that the attacker should gather resources
together on one level

sa = {Aek, k = 1, 2, · · · , M}.
By the similar proof of Theorem 3.4, the defender should balance the defense resources into
every level to avoid leaving any weak section (the expected loss function is the same for each
level). Therefore, the robust optimal defense resource allocation strategy satisfies the following
equations

6M−1 A

d1
vuser = 6M−1

(
A

d2

)3

vuser = · · · = 6M+2i−5

(
A

di

)3

vuser = · · · = 63M−5

(
A

dM

)3

vuser,

where the first term is the loss function in the case that the root node is attacked.
By using the same technique in (34), it can also be proved that attacking more than one

level leads to a loss function reduction. Therefore, (25) is the optimal attack resource allocation
strategy.


