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Abstract—Copper smelting is a complex industrial process that
involves a lot of long procedures and inter-process connections.
Moreover, there are non-stationary, noisy, and multi-objective
challenges in copper smelting optimization. The traditional
methods of process optimization rely on experience to adjust
repeatedly, which is time-consuming and laborious, as well as
difficult to find the optimal point. Bayesian optimization is an
effective method to discover the optimal point of an expensive
black-box function using few samples. In this paper, Bayesian
optimization is introduced to solve the copper smelting optimiza-
tion problem. The surrogate model is constructed based on noisy
deep Gaussian processes to cope with the non-stationary process
and observational noise of copper smelting. Then, the expected
hypervolume improvement is used as the acquisition function,
considering multiple objectives when selecting the new sampling
point. We conduct experiments on standard test functions and
a simulation model of copper flash smelting. The experimental
results demonstrate that the proposed method performs well in
terms of convergence and diversity.

Index Terms—Bayesian optimization, copper smelting, deep
Gaussian processes, multi-objective optimization

I. INTRODUCTION

Copper smelting is a typical complex industrial process,
characterized by numerous long procedures and inter-process
coupling [1]. There are several problems associated with cop-
per smelting, such as low utilization of resources, high energy
and material consumption, poor quality, and serious environ-
mental pollution. It is important to note that the composition
of raw materials, the equipment condition, and production
process parameters will all have an impact on copper smelting.
Therefore, optimizing the comprehensive production index is
regarded as a challenge.

Copper smelting process involves complex physical and
chemical reactions [2]–[4]. The relationship between the pro-
duction index and the decision variables is nonlinear, uncer-
tain, and complex. Therefore, it’s hard to model the copper
smelting process in an analytical form. In other words, it is a
black box. Due to the lack of objective function and gradient,
traditional optimization methods cannot be used. Since the
input and output of black box contain valuable experience
and knowledge, data-driven optimization is an effective way to
optimize copper smelting process. However, copper smelting
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process is computationally expensive and time-consuming.
Evolutionary algorithms [5]–[7] need to evaluate a large num-
ber of samples, which is infeasible.

Moreover, copper smelting optimization faces the follow-
ing three challenges. First, copper smelting process is non-
stationary. A sudden change in operating conditions can affect
chemical reaction states, such as feeding [8]. Therefore, the
objective function exhibits different characteristics in different
regions. Second, the observational noise needs to be con-
sidered, which often appears in actual production processes.
Last, copper smelting optimization involves multiple com-
peting objective functions. For example, maximizing copper
production while minimizing off-gas emissions [9]. As these
two objectives have different units and are in conflict with each
other, no single solution will satisfy both. Therefore, copper
smelting optimization problem is non-stationary, noisy, and
multi-objective.

Bayesian optimization provides an effective solution to the
above expensive black-box optimization problem [10]–[12].
As a method of optimal decision-making, Bayesian optimiza-
tion uses the Bayesian theory to guide the search for the
optimal value of the objective function. In each iteration, the
surrogate model and the acquisition function are constructed
based on the previously observed data, in preparation for the
next optimization. As a result, the global optimal point can
be found with fewer iterations, greatly improving the search
efficiency. Due to its ability to optimize expensive black-box
models, Bayesian optimization is widely used in various fields.
Similarly, it is suitable to address the high computational cost
of copper smelting optimization.

In this paper, we propose a novel Bayesian optimization
algorithm to solve the decision optimization problem of copper
smelting process. Inspired by deep learning theory [13], we use
deep Gaussian processes [14] as the surrogate model to learn
the complex copper smelting process. Then, Gaussian noise is
added to the surrogate model to simulate the noise inherent in
the actual production process. Finally, we design an acquisition
function to approximate the Pareto front and solve the multi-
objective optimization problem of copper smelting. The main
contributions of this paper are as follows.

1) In order to model the non-stationary process and ob-
servational noise, noisy deep Gaussian processes are
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Fig. 1. The flowchart of copper flash smelting.

adopted, and the multi-layer Gaussian processes better
fit the complex objective function. In the case of mul-
tiple competing objective functions, multiple noisy deep
Gaussian processes are used to model multiple objectives
separately. Then, we calculate the expected hypervolume
improvement and find the Pareto solution.

2) The proposed Bayesian optimization framework is ap-
plied to solve the complex copper smelting optimiza-
tion. Using historical data and few generated samples,
the model is iteratively updated to quickly identify the
parameter combination closest to the ideal.

3) The experimental results of the standard test functions
and the simulation model of copper flash smelting show
that the proposed algorithm is efficient and effective.

The rest of the paper is organized as follows. The back-
ground is discussed in Section II. Multi-objective Bayesian
optimization using noisy deep Gaussian processes is described
in Section III. Experiments of standard test functions and the
flash smelting simulation model are provided in Section IV.
Finally, the paper is concluded in Section V.

II. BACKGROUND

A. Bayesian Optimization

Bayesian optimization is a sequential model-based opti-
mization, which is suitable for solving problems with high
computational complexity or long computational time [15].
It consists of two main parts, a surrogate model for mod-
eling the objective function and an acquisition function for
determining the next sampling location. A popular Bayesian
optimization algorithm is Efficient Global Optimization (EGO)
[16], which uses Gaussian process (GP) as the surrogate
model. GP assumes that unknown variables are randomly
drawn from a multivariate normal distribution. For a finite

point set X = [x(1), . . . ,x(n)], the objective function vector
f(X) follows the Gaussian distribution:

f(X) = [f(x(1)), . . . , f(x(n))] ∼ N (µ(X),K(X,X)), (1)

where µ(·) and K(·, ·) are the mean function and the co-
variance function of GP, respectively, and K(·, ·) depends on
multiple hyperparameters Θ.

GP is trained by maximum likelihood estimation to deter-
mine the optimal hyperparameters µ̂ and Θ̂, and then get K̂.
Given the existing observation f(X) = y, the mean f̂(x) and
the variance ŝ(x)2 of the posterior distribution at a new point
x are as follows:

f̂(x) = µ̂+ K̂(x, X) · K̂−1(X,X) · (y − µ̂), (2)

ŝ(x)2 = K̂(x,x)− K̂(x, X) · K̂−1(X,X) · K̂(X,x). (3)

After updating the surrogate model, the acquisition function
will be designed. It is important for the acquisition function
to balance exploration (regions with large variance) and ex-
ploitation (regions with small mean) to select the next most
potential point. Commonly used acquisition functions include
probability of improvement (PI) [17], expected improvement
(EI) [18], and upper confidence bound (UCB) [19]. Based
on PI, EI further considers the improvement amount I(x) =
max{0, ymin − f(x)}. EI is calculated as

EI(x) = (ymin−f̂(x))Φ(
ymin − f̂(x)

ŝ(x)
)+ŝ(x)φ(

ymin − f̂(x)

ŝ(x)
),

(4)
where Φ and φ represent the cumulative distribution function
and probability density function of the standard normal dis-
tribution, respectively, and ymin is the minimum value in the
previous iteration.

B. Copper Flash Smelting

The flowchart of copper flash smelting is shown in Fig. 1,
which includes steam dryer, flash furnace, electric furnace,
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Fig. 2. The specific process of DGMBO. The green part represents the construction of the surrogate model using deep Gaussian processes, while the purple
parts represent the design of the multi-objective acquisition function. During the iteration, the most promising sample is selected based on the current surrogate
model coupled with the acquisition function, and then added to the data container until the convergence is reached.

waste heat boiler, and so on. Powdered copper concentrate
is thoroughly dried in the steam dryer, mixed with air in the
nozzle, then injected into the high temperature (1450-1550 ◦C)
reaction shaft of the flash furnace at high speed (60-70 m/s)
[20]. At this time, copper concentrate is in a suspended state,
so the decomposition, oxidation, and melting processes of
copper sulfide are generally completed in 2-3 seconds. The
molten sulfides and oxides fall into the sedimentation tank of
the flash furnace to collect and continue the reaction to form
matte and slag, as well as to conduct precipitation separation.
Slag is processed in the electric furnace and then discarded.

The goal of copper flash smelting optimization is to find
a set of process parameters (e.g., raw material composition,
production conditions, operating parameters, etc.) to optimize
production indicators (e.g., matte output, off-gas output, etc.).
Due to the complexity of copper flash smelting, it is primarily
dependent on long-term experience and process knowledge
to make optimal decisions in practice [21]. Since there are
many variables that can affect the production process, this type
of decision is arbitrary and inaccurate, and the optimization
of production indicators cannot be guaranteed. Biswas et
al. increased copper production by optimizing the chemistry
of the smelting process, specifically to minimize slag pro-
duction and copper entrainment in slag [5]. However, since
this strategy is based on process chemistry, it is sometimes
infeasible due to quality restrictions and other operational
issues. Jiang et al. developed an optimal control model for
the matte grade, and applied an improved genetic algorithm
to find the optimal matte grade [6]. Franks et al. established a
model with energy consumption as the objective function and
proposed a global stochastic optimization genetic algorithm to
solve the problem of unreasonable energy distribution [7]. The
above two methods use evolutionary algorithms and require
a large number of samples to be generated, which cannot
get the optimal point instantly. For the first time, we apply
Bayesian optimization to copper smelting optimization, and
try to quickly get the optimal parameters of copper smelting
through few samples.

III. MULTI-OBJECTIVE BAYESIAN OPTIMIZATION USING
DEEP GAUSSIAN PROCESSES

In this paper, a multi-objective Bayesian optimization al-
gorithm based on deep Gaussian processes (DGMBO) is
proposed and applied to copper smelting optimization. The

surrogate model and the acquisition function are specially de-
signed according to the characteristics of the copper smelting
process. First, for the case that the copper smelting process
is non-stationary and noisy, noisy deep Gaussian processes
are used as the surrogate model. Then, for the multi-objective
situation in copper smelting, the expected hypervolume im-
provement is used as the acquisition function. In order to
combine the multi-objective with the deep Gaussian processes
model, multiple deep Gaussian processes are constructed, and
the multi-objective problem is integrated into updating the
surrogate model. The specific process of the algorithm is
presented in Fig. 2.

A. Noisy Deep Gaussian Processes

There is a non-stationary problem in the copper smelting
process. Sudden changes in working conditions will cause
chemical reaction states to change, so the objective func-
tion will exhibit different characteristics in different regions.
However, the classical GP requires the covariance function
to be stationary, i.e., K(x + c,x′ + c) = K(x,x′). So we
use deep Gaussian processes to build the surrogate model to
learn complex functions for copper smelting. Deep Gaussian
processes (DGP) are deep networks in which each layer
is modeled by a Gaussian process. With the flexible deep
structure, DGP is capable of constructing complex models for
complex data, while being able to deal with non-stationary
problems.

In addition, Gaussian noise is added to the last layer of DGP
in order to simulate the noise associated with copper smelting.
The structure of noisy DGP is shown in Fig. 3. For the l-th
layer, the input and output are Hl−1 and Hl, respectively, and
the multi-output GP is f l(·), satisfying Hl=f l(Hl−1). The L-
th layer is the last layer, which is single-output with Gaussian
noise ε ∼ N (0, σ2), i.e., y = fL(HL−1) + ε. Therefore, the
input and output of noisy DGP are related as follows:

y = fL(fL−1(. . . (f2(f1(x))))) + ε. (5)

In order to optimize the parameters of noisy DGP, the
marginal likelihood of all samples needs to be calculated.
Taking the non-observable variables of each layer into account,
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Fig. 3. The structure of noisy deep Gaussian processes. There are multi-
output GPs in the hidden layers and a single output GP with Gaussian noise
in the final layer.

the marginal likelihood is calculated as follows:

p(y|X) =

∫
H1

. . .

∫
HL

p (y, H1, . . . ,HL|X) dH1. . . dHL

=

∫
{H1,...,HL}

p(y|HL−1)

(
L−1∏
l=2

p(Hl|Hl−1)

)
p(H1|X)d{H1, . . . ,HL},

(6)
with the conditional probability being calculated using Gaus-
sian distribution:

p(Hl|Hl−1) = N (µ(Hl−1),K(Hl−1, Hl−1)). (7)

However, due to the inversion operation of multiple covari-
ance matrices in (6), the integration is difficult to calculate
directly. We minimize the Kullback-Leibler (KL) divergence
between the variational posterior and the true posterior to
overcome this difficulty [22]. DGP is trained by maximizing
the lower bound on the marginal likelihood:

L =

n∑
i=1

Eq(y(i))[log p(g(i)|y(i))]−
L∑
l=1

KL[q(Ul)||p(Ul)], (8)

where g(i) and y(i) are the actual observed value and the
predicted value of the i-th sample. Zl = [z

(1)
l , · · · z(d)l ]T is

the set of inducing variables introduced in the l-th layer, and
Ul = f l(Zl). Hence, the true posteriors of latent variables
Hl and Ul are approximated by variational posteriors q(Hl)
and q(Ul). The first and second terms of (8) can optimize
the prediction and the posterior distribution, respectively. The
hyperparameters to be optimized include the GP parameters
Θl, the inducing variables Zl, and the variational distribution
parameters q(Ul), l = 1, . . . , L. They are optimized by using
adaptive moment estimation (Adam) [23] on the loss function
in (8).

B. Multi-Objective Acquisition Function

Copper smelting optimization involves multiple objective
functions, aiming to seek a compromise solution between
matte production and off-gas emission. It is necessary to
design a multi-objective acquisition function for DGP, so that
the joint optimization of multiple objectives is considered
when selecting the next evaluation point. We construct two
DGP models based on the two objectives of copper smelting.
Through the DGP training method described previously, the
parameters of two DGPs can be determined, and the posterior
distribution of each point can be derived.

In order to extend Beyesian optimization to a multi-
objective case, we calculate the expected improvement of the
hypervolume indicator. The hypervolume indicator (HV) is
defined as the m-dimensional Lebesgue measure λm of the

dominated subspace limited from above by the reference point
r, where m is the number of objective functions [24]. Here,
HV measures the size of the dominated subspace of two DGP
objective functions, and it is defined as follows:

HV(Y ) = λm({z ∈ Rm | ∃y ∈ Y : y ≺ z ∧ z ≺ r}), (9)

where ≺ represents the Pareto dominance order, y ≺ z ⇔
(∀i ∈ {1, . . . ,m}, yi ≤ zi) and y 6= z, and Y represents the
current Pareto-front approximation set.

For a new solution y ∈ Rm, the hypervolume improvement
(HVI) of adding it to the above Pareto-front approximation set
is as follows:

HVI(Y,y) = HV(Y ∪ {y})−HV(Y ). (10)

Considering the prediction uncertainty (variance) of DGP, it
is necessary to measure how much the expected hypervolume
improvement (EHVI) can be achieved by a new solution. As-
suming that there is no correlation between random variables
from two DGPs. Given the mean µ and standard deviation σ
of the predicted multivariate distribution, and the Pareto-front
approximation set Y , the EHVI is defined as

EHVI(µ,σ, Y,y) =

∫
Rm

HVI(Y,y) · ξµ,σ(y)dy, (11)

where ξ is the probability density function of the multivariate
independent normal distribution.

However, due to the need to calculate the volume of a non-
rectangular polytope, the time complexity of EHVI is high,
which seriously affects the Bayesian optimization efficiency.
We implement the box decomposition algorithm [25] to ac-
celerate the computation. Decompose the region into disjoint
axis-aligned hyperrectangles, then calculate each volume and
sum over all. Finally, using piecewise integration, EHVI is
calculated as follows:

EHVI =

n+1∑
i=1

(y
(i−1)
1 −y(i)1 ) · Φ(

y
(i)
1 − µ1

σ1
) ·Ψ(y

(i)
2 , y

(i)
2 , µ2, σ2)

+

n+1∑
i=1

(Ψ(y
(i−1)
1 , y

(i−1)
1 , µ1, σ1)−Ψ(y

(i−1)
1 , y

(i)
1 , µ1, σ1))

·Ψ(y
(i)
2 , y

(i)
2 , µ2, σ2),

(12)
where Ψ is a defined function with Ψ(a, b, µ, σ) :=

∫ b
−∞(a−

z) 1
σφ( z−µσ )dz, Φ and φ represent the cumulative distribution

function and probability density function of the standard
normal distribution, respectively. The subscripts 1 and 2 of
y, µ, σ correspond to the prediction of different DGPs.

C. DGMBO Algorithm

Therefore, DGMBO calculates the EHVI based on two DGP
surrogate models and then selects the point with the largest
EHVI. After adding the true values of this point to the data set,
the surrogate models will be updated, which is an optimization
loop. Repeat the above processes until the stopping criterion
is reached. The main method is summarized as Algorithm 1.



Algorithm 1: DGMBO
Input: Number of initial samplings n0, number of

added points n1, black-box functions g
Output: Pareto-front approximation set Y

1 Initialize by Sobol sampling (x(1), . . . ,x(n0));
2 Evaluate initial points and store them in

D = ((x(1), g(x(1))), . . . , (x(n0), g(x(n0))));
3 Calculate the non-dominated subset Y ;
4 i = 0;
5 while i ≤ n1 do
6 Train noisy DGP models F1, . . . , Fm based on D;
7 Calculate EHVI based on F1, . . . , Fm;
8 Maximize EHVI to find the promising point x∗;
9 Update D by D = D ∪ (x∗, g(x∗));

10 Update Y by the non-dominated subset of D;
11 i = i+ 1;
12 end
13 return Y

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the performance of the proposed algorithm
is verified from two aspects, standard test functions and the
simulation model of copper flash smelting. The comparison
algorithm is multi-objective Bayesian optimization based on
GP [26], referred to as GMBO.

A. Experimental Setup

We use the process simulation software SysCAD [27] to
establish the simulation model of copper flash smelting, and
write the interface between Python and SysCAD. Data collec-
tion and operation of the simulation model can be realized
through programming automation, so as to enable real-time
Bayesian optimization of the simulation model of copper flash
smelting. Each experiment begins with 5×d initial samplings
obtained through Sobol sampling [28], and the number of
iteratively added points is 10 × d, where d is the number of
decision variables. The training of DGP is based on the Adam
optimizer, with the learning rate of 0.01, the batch size of 100,
and 200 epochs.

B. Evaluation Indicator

The hypervolume (HV) metric [24] is used to evaluate
the performance of algorithms. HV represents the hypercube
volume formed by the reference point and the Pareto front
obtained by the algorithm. The greater the HV value, the
closer the obtained solution set is to the true Pareto front in
terms of convergence and diversity. Convergence indicates a
good approximation between the obtained solution set and the
true Pareto front, while diversity indicates an even and wide
distribution of individuals in the obtained solution set. HV is
defined as follows:

HV(Y ) = λm(
⋃
y∈Y

[y, r]), (13)
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Fig. 4. Convergence curves of log hypervolume difference on (a) DTLZ1, (b)
DTLZ2.

where Y is the solution set obtained by the algorithm, y is
one solution in the solution set, r is the reference point, and
λm represents the m-dimensional Lebesgue measure.

C. Evaluation on Standard Test Functions

To validate the effectiveness of the proposed algorithm, the
standard multi-objective optimization test functions DTLZ1
and DTLZ2 [29] are used for experiments, which exist multiple
local optima. For each test function, the number of objective
functions is 2, the number of decision variables is 10, and the
domain of definition is 0 ≤ xi ≤ 1, i = 1, · · · 10. Standard test
functions contain the true Pareto front, allowing an accurate
and efficient evaluation of different algorithms. We calculate
the log hypervolume difference between the true Pareto front
and the obtained Pareto front. The smaller the log hypervolume
difference, the better the corresponding algorithm.

Fig. 4 shows the log hypervolume difference varying with
iteration. It can be seen that the log hypervolume difference
of DGMBO decreases faster and is ultimately smaller. Conse-
quently, the optimal solution obtained by DGMBO is closer to
the true Pareto front. This is due to the fact that DGMBO can



TABLE I
THE REPRESENTATION AND LIMIT OF DECISION VARIABLES.

Variable Representation Unit Lower limit Upper limit

x1 Air input to the reaction shaft of the flash furnace t/h 40 50
x2 Copper concentrate input to the reaction shaft of the flash furnace t/h 80 90
x3 Heating oil input for energy t/h 0 2
x4 Electrode input to the electric furnace t/h 0 2
x5 Air input to the electric furnace t/h 0 2
x6 Boiled feed water input to the waste heat bolier t/h 20 30
x7 Mass percentage of C10H8 in heating oil % 30 50
x8 The temperature of the steam dryer ◦C 110 130
x9 Required moisture percentage after drying % 0.1 1
x10 The pressure of waste heat boiler kPa 101.33 130
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Fig. 5. Optimization performance on copper flash smelting.

TABLE II
THE FINAL RESULTS OF GMBO AND DGMBO.

Initialization GMBO DGMBO

Matte production (t/h) 22.72 24.50 24.88
Off-gas output (m3/h) 103085.06 105246.62 102126.99

learn complex functions using DGP as the surrogate model.
Then, a more effective sampling point can be found in each
iteration, and the surrogate model can be updated to approach
the true optimum gradually.

D. Application to Copper Flash Smelting Optimization

To further verify DGMBO in the actual process, the ex-
periment is conducted on the simulation model of copper
flash smelting. The optimization problem for copper flash
smelting includes 10 decision variables, denoted as x =
(x1, x2, . . . , xn), n = 10, and the details are shown in Table I.
Copper output Q(x) and off-gas output C(x) are two objective
functions, resulting in a balance between copper production
and environmental pollution. To simulate the noise of the
actual process, we add Gaussian noise ε ∼ N (0, 0.32) to each

objective function. The problem can be expressed as follows:

J ∼ {maxQ(x),minC(x)},
s.t. xi ∈ [xi,min, xi,max], i = 1, · · · , n.

(14)

Fig. 5 shows the log hypervolume varying with iteration for
different algorithms. An algorithm with a larger log hyper-
volume value has better convergence and diversity. DGMBO
is slightly behind DGMBO at the beginning of the iteration.
After several iterations, DGMBO is consistently higher and
rises faster. It indicates that with the addition of new points,
DGP gradually gains advantages in coping with non-stationary
problems, and the model is approaching the truth. As a result,
the final HV value of DGMBO is higher, indicating good
convergence and diversity of the corresponding solution set.

Table II shows the final optimization results of the two
algorithms on the copper flash smelting model. While GMBO
increases matte production, it also leads to an increase in off-
gas emissions, resulting in environmental pollution. Compared
to GMBO, DGMBO significantly improves matte production
as well as reduces off-gas emissions. It indicates that DGMBO
is more suitable for dealing with the non-stationary copper
smelting, and it can balance multiple objectives with better
results in terms of economy and environment.

V. CONCLUSION

Copper smelting optimization is a non-stationary, noisy, and
multi-objective problem. As a solution, we apply Bayesian
optimization to the complex copper smelting optimization, and
make adaptive adjustments in conjunction with specific appli-
cation scenarios. Firstly, in view of the non-stationary nature
and inherent observation noise of the copper smelting process,
noisy deep Gaussian process is adopted for modeling to fit the
objective function better. Secondly, for the case of multiple
competing objective functions, multiple noisy deep Gaussian
processes are used to model multiple objective functions,
respectively. Then the acquisition function is designed based
on expected hypervolume improvement to find the Pareto
solution. Finally, experiments are conducted on standard test
functions and the simulation model of copper flash smelting,
which shows that the proposed algorithm can greatly improve
the optimization efficiency and lead to better solutions. Over-
all, DGMBO can effectively solve the non-stationary, noisy



and multi-objective problem of copper smelting optimization,
and quickly identify the optimal solution under the limited
number of evaluations.
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