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Abstract—With the rapid development of deep neural net-
works, underwater vision plays an increasingly important role
in the underwater robotic operation. However, the scarce under-
water datasets greatly limit the performance of deep learning
on underwater visual tasks, further hindering the applications
of underwater operation. To solve this problem, we propose an
underwater image synthesis method, which can directly convert
the natural light image into the synthetic underwater image
end-to-end. Particularly, a pixel-level self-supervised training
strategy is designed to maximize the structural similarity
between the synthesized and real images, through training
the real underwater images. Finally, extensive experiments
are carried out, and the obtained results demonstrate the
effectiveness and superiority of our methods by quantitative
and qualitative comparisons. The proposed underwater image
synthesis method offers a valuable sight for underwater vision
and manipulating control.
Index Terms—Underwater image synthesis, self-supervised

learning, underwater vision, CNNs.

I. INTRODUCTION
Underwater robots have received increasing attention in

recent years, which are widely applied in underwater explo-
ration and monitoring [1], [2]. As a crucial environmental
perception tool, underwater vision plays an important role in
the whole operation process but also faces huge challenges
due to the special characteristics of the underwater envi-
ronment. Nowadays, deep learning methods achieve great
success in computer vision tasks, e.g., image classification,
object detection, and motion recognition, benefiting from its
excellent learning capabilities of complex functions through
various kinds of neural networks, such as convolutional
neural networks (CNNs) [3]–[5]. This offers a promising
opportunity for underwater computer vision. However, most
deep learning methods require a lot of training data for
excellent generalization performance, which is very difficult
for underwater tasks. Because of the underwater environment
distinctive conditions, shooting underwater costs very high,
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leading to very little labeled underwater visual data. In
addition, the land datasets are not suitable for underwater
visual tasks, due to the large distribution difference between
the land and the underwater datasets. Since the land datasets
are abundant, we can apply them to synthesize underwa-
ter images by eliminating their distribution difference that
will contribute to an effective expansion of the underwater
datasets.
The main purpose of this paper is to propose a CNNs-

based underwater image synthesis method to generate syn-
thetic underwater images by simulating the underwater
physical imaging process. Since the synthesis model is
constructed from the perspective of physical imaging, it
is important to predict the changes of optical signals at
different depths. Therefore, we designed a pixel-level self-
supervised training strategy to evaluate whether the predicted
changes are consistent with the real ones. Benefiting from
this strategy, the training data is easily prepared and the
performance of the model is obviously improved. At last,
abundant experimental results demonstrate the effectiveness
and superiority of our proposed method in both quantitative
and qualitative comparisons with other existing underwater
image generation methods.
The primary contributions of this paper are concluded

into three parts. First, inspired by the underwater physical
imaging process, we propose an underwater image synthesis
method to generate various underwater images. Second,
pixel-level supervision is designed to make sure the au-
thenticity of the synthetic underwater image. Third, a self-
supervised training strategy is proposed for this method to
reduce the difficulty of data preparation and also improve the
training performance.
This paper is organized as follows: In Section II, related

work of predecessors is introduced. The proposed method is
described in Section III. Section IV details the experimental
results of our method and its comparison with other methods.
Finally, conclusions and future work are given in Section V.

II. RELATED WORK

Generally speaking, image generation methods can be
divided into generative adversarial networks (GANs) [6],
autoregressive model [7], variational autoencoder (VAE) [8]
and flow-based generative model [9]. Autoregressive models
are not suitable for generating large images or videos. VAE
generates blurry images. Stream-based generation models
require more time and higher hardware to train. The training
process under GANs is very unstable and prone to mode
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Fig. 1. Architecture of the synthesis model in detail.

collapse. And the problem of mode decline. These technolo-
gies have been applied in the field of the underwater image
process. For example, Li et al. proposed an underwater
image enhancement model based on deep learning, called
Water-GAN [10]. For the problem of underwater image
restoration, Fabbri et al. adopted CycleGAN [11] to generate
real underwater images, whose sample data can realize style
conversion without pairing [12]. Through improving the
Water-GAN method, Wang et al. provided a new underwater
image generation method called UWGAN [13].
In this paper, different from the above GAN-based meth-

ods that usually adopt image-level category supervision, we
design a pixel-level supervision method for the underwater
image synthesis. Meanwhile, unlike Water-GAN and UW-
GAN, we avoid the need to manually obtain the depth map
during the synthesis process, which is difficult to be obtained.

III. THE UNDERWATER IMAGE SYNTHESIS METHOD
A. Overview
The overview of the proposed underwater image synthe-

sis method is detailed in this subsection. Considering the
degradation of underwater vision is closely related to the
distance between the target and the camera, we adopt the
depth information to guide natural light image conversion
data distribution to generate underwater images. Fig. 1 shows
the whole process of the image synthesis, the core of which
can be modeled as follows:

syn = G(image, depth, z), (1)

where syn is the final synthetic data, G denotes the synthesis
model, image is a natural light image, depth represents
its corresponding depth map, and z is the automatically
generated noise vector.
As shown in Fig. 1, based on the input depth information

(a depth map), the synthesis model predicts attenuation of

the optical signals when transmitted underwater. After fully
obtained, the prediction results are applied to natural light
images to generate underwater ones. Generally, underwater
image formation is governed by

Uc = fcm(Ac +Bc), (2)

where Uc is an underwater image captured by a camera, Ac

denotes image signal after being attenuated, Bc represents
the scattering, fcm denotes the camera model, and c ∈
{R,G,B} means the color channel.
Especially, the whole synthesis model consists of three

main stages, named attenuation, scattering, and camera mod-
els, see the dotted part in Fig. 1. Notice that this way is to be
operated on each pixel of the input image Therefore, it can
be ensured that the image does not change the basic structure
of the scene itself. In the following, we will introduce each
stage in detail.

B. Attenuation
The first stage is attenuation which occurs when photons

are absorbed or diffracted by water molecules or other par-
ticles in the water. The attenuation function can be modeled
as [14]

Ac = Ice
−βA

c
D, (3)

where Ic is an unattenuated image and D denotes the
distance between the camera and the object along the line of
sight in the scene. βA

c be calculated by:

βA
c = ln

[ ∫ λ2

λ1

Sc(λ)ρ(λ)E(d, λ)e−β(λ)Ddλ∫ λ2

λ1

Sc(λ)ρ(λ)E(d, λ)e−β(λ)(D+ΔD)dλ

]
/ΔD,

(4)
where [λ1, λ2] is the range of visible light,Here, ρ is the
reflectance, E(d, λ) refers to the ambient light at depth d,



Fig. 2. The scattering model.

Sc is the spectral response of the camera, and β is the beam
attenuation coefficients of the water body.
According to the previous attenuation principle, we can

get a simplified form as follows:

G1 = Ice
−ηcD, (5)

where G1 is the output of the first stage and ηc is the
attenuation correlation coefficient estimated by the network.
Here, we limit ηc to be larger than 0 to make sure that the
light in this stage is attenuated but not increased, and the
coefficient remains in the physical range.

C. Scattering
The second stage of the synthesis model is scattering. The

reason for scattering is that when passing through the water
column, the photons interact with small particles in the water
column, thus part of the light power deviates from the main
propagation direction. The scattering process is modeled as
[14]

Bc = B∞

c (1− e−βB

c
D), (6)

where B∞

c is veiling light. Here, B∞

c and βB
c can separately

be calculated by:

B∞

c =

∫ λ2

λ1

Sc(λ)B
∞(λ)dλ, (7)

βB
c = ln

[
1−

∫ λ2

λ1

B∞(λ)Sc(λ)(1 − e−β(λ)D)dλ∫ λ2

λ1

B∞(λ)Sc(λ)dλ

]
/D,

(8)
where

B∞(λ) = [b(λ)E(d, λ)]/β(λ). (9)

In this stage, CNNs are adopted to fit the scattering
process, as shown in Fig. 2. Particularly, in order to make
sure the range correlation be captured, a 48× 64 depth map
and a 100-length noise vector (equivalent to V) are input.
Then, a single-mask is obtained, by multiplying the noise
vector by the depth map. Based on this, we further make
three copies of it and input them into three convolution
layers to get the correlation of each channel. Here, both
Batch Normalization (BN) [15] and LReLU are employed
in these convolution layers. Finally, the additional scattering
signals are obtained by connecting the outputs of these three
channels.
Thus, we get the output of the second stage.

G2 = G1 +Bc. (10)

D. Camera Model
In order to restore real images, the influence of the camera

on the images is considered in the developed synthesis
model. The inverse operation of Rohlfing’s algorithm (virtual
light correction model) is adopted to add vignetting [16]. E-
specially, Rohlfing’s algorithm uses a sixth-order polynomial
gain function G, which can be given by

G(r) = 1 + ar2 + br4 + cr6, (11)

where

r =

√
(x− xc)2 + (y − yc)2√

x2
c + y2c

. (12)

Here, (x, y) and (xc, yc) is the pixel in the image and the
image center. r is in the range of [0, 1]. To ensure that G is
strictly increasing, the parameter satisfies the condition Cp:

Cp = (c ≥ 0 ∧ 4b2 − 12ac < 0). (13)

The inverse operation of Rohlfing’s algorithm is adopted
in this stage, where a, b, and c are the model parameters
estimated by the network. Further, assume that the sensor
response function of the camera is linear, we can get

G3 = fcm(G2) = kG2/G(r), (14)

where k is an exposure constant (usually proportional to the
shutter speed of the camera), which is also estimated by the
network.

E. Self-Supervised Training Strategy
The designed synthesis model in this work employs a

neural network to predict the attenuation of the optical
signal at different depths from the perspective of physical
imaging. Therefore, each pixel of the image needs to be
evaluated whether its predicted attenuation meets the real
attenuation. In our approach, the data required have three
parts: natural light images, depth information, and real un-
derwater images. Natural light images are usually captured
by monocular cameras, therefore, depth information can
not be directly obtained and real underwater images are
not easy to be available. Given this, we first collect real
underwater image datasets and then use an underwater image
restoration method to obtain image depth information and
natural light images. As shown in Fig. 1, we design a depth
estimation network in our strategy, which can predict its
corresponding depth information only through monocular
images. Once processing the real underwater image data,
the restored underwater image and depth information can
be obtained. Based on this, we use the restored underwater
images as natural light images, the depth information as the
input of the designed model, and the original underwater
images as the label of the restored images for supervision.
In the whole process, only underwater images are required
and no additional labels are needed in the training, which
reduces the difficulty of obtaining training data.
The similarity between the synthetic underwater image and

the real underwater image is adopted as an evaluation crite-
rion. Table I tabulates the specific loss function. Specially,



TABLE I
LOSS FUNCTIONS FOR UNDERWATER IMAGE SYNTHESIS

Item Mathematical formula

L1 loss LL1(X) = 1

N

∑
x∈X

|G(x)− T (x)|

L2 loss LL2(X) = 1

N

∑
x∈X

(G(x) − T (x))2

SSIM loss LSSIM(X) = 1

N

∑
x∈X

1− SSIM(x)

L1 + L2 LL1+L2(X) = αLL2(X) + (1 − α)LL1(X)

L1 + SSIM LL1+SSIM(X) = αLSSIM (X) + (1− α)LL1(X)

L2 + SSIM LL2+SSIM(X) = αLSSIM (X) + (1− α)LL2(X)

G(x) is a synthetic image, T (x) is a real image, α is set to
0.8. Structural similarity (SSIM) is designed based on the
comparison of brightness, contrast, and structure between
samples x1 and x2, as shown in the following formulas.

l(x1, x2) =
2μx1

μx2
+ c1

μ2
x1

+ μ2
x2

+ c1
, (15)

c(x1, x2) =
2σx1

σx2
+ c2

σ2
x1

+ σ2
x2

+ c2
, (16)

s(x1, x2) =
σx1x2

+ c3
σx1

σx2
+ c3

, (17)

where μx1
, μx2

are the means of x1 and x2, respectively.
σ2
x1
, σ2

x2
are the variances of x1 and x2, respectively. σx1x2

is the covariance of x1 and x2. c1 and c2 are two constants
whose values are (k1L)2 and (k2L)

2, respectively. L is the
pixel value range 2B − 1. k1 and k2 take the default values
0.01 and 0.03, respectively. c3 = c2/2. The SSIM can be
calculated by the following formula.

SSIM(x1, x2) = [l(x1, x2)
αc(x1, x2)

βs(x1, x2)
γ ]. (18)

Take α, β, and γ as 1, SSIM(x1, x2) can be represented as

SSIM(x1, x2) =
(2μx1

μx2
+ c1)(2σx1x2

+ c2)

(μ2
x1

+ μ2
x2

+ c1)(σ2
x1

+ σ2
x2

+ c2)
.

(19)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Dataset Generation
To obtain synthetic natural light images (restored underwa-

ter images), the sea-thru method [17] is employed to restore
the underwater dataset. Meanwhile, a monocular depth esti-
mation method is used to obtain depth maps. There are two
kinds of images in the real underwater image dataset. The
one is the images containing underwater creatures, and the
other contains underwater coral reefs and rocks. Particularly,
there are 1643 images processed, where 1449 images are
used for model training, and 194 images are used for model
evaluation. Because sea-thru uses physical methods to restore
image data, there is no need to train it. Besides, we also
collected some real natural light images to test the model.

B. Implementation Details

In the experiments, the model developed in this work is
trained for 200 epochs with a learning rate of 0.002 on the
Titan X (Pascal) GPU. The Adam optimizer is adopted and
the batchsize is set to 32. In order to reduce the amount of
calculation and improve the generalization ability, the input
image size is set to 48×64×3. The output image size is set
to 480×640×3 after three upsampling. The scale parameter
max depth of the depth map is set to 6.

C. Experimental Results and Discussion

To evaluate the performance, we quantitatively and qual-
itatively compared our method with several other typical
underwater image synthesis algorithms, including Water-
GAN, UWGAN, CycleGAN.
For images without ground truth, we use non-reference

metrics UICM, UISM, UIConM, and UIQM [18] to eval-
uate the qualities. Especially, UICM measures the color
attributes of underwater images, UISM evaluates the clarity
of underwater images, UIConM evaluates the contrast of
underwater images, and UIQM is a comprehensive evaluation
of underwater image quality. Generally, the image which is
more consistent with human visual perception has a higher
UIQM score.
Table II shows the measurement results of the non-

reference metrics based on Water-GAN, UWGAN, Cycle-
GAN, and our method in the different loss functions. Par-
ticularly, blue represents the best value and red indicates the
worst. It is easy to find that Water-GAN obtained the worst
results in terms of color effect and clarity. UWGAN has
the best color effects but the worst contrast, which leads to
the worst overall situation. CycleGAN has the best contrast.
Comparatively, our method using L1+SSIM loss achieves
the best clarity. Further, all our methods in different loss
functions achieve higher UIQM scores than the other three
methods, indicating that our method can generate underwater
images with higher quality to a certain extent.
In general, non-reference metrics can only evaluate the

quality of underwater images, but cannot indicate whether
the generated images look like real underwater images.
Therefore, we further employed some full-reference metrics,
like PSNR, SSIM, MSE, and MAE [19], to evaluate the
synthetic underwater images which have ground truth.
The evaluation results are tabulated in Table III. Similarly,

blue represents the best value and red indicates the worst one.
Generally, MSE and PSNR show the best performances in
evaluating the quality of noisy images, while SSIM performs
better in terms of structural content. When the image is closer
to the reference image in content, it tends to have a higher
PSNR score, a lower MSE score, and a lower MAE score.
When the image is closer to the reference image in terms of
structure and texture, it tends to have a higher SSIM score.
The experimental results show that the images generated by
our method with L2 + SSIM loss achieve the best results
among the four metrics. In contrast, CycleGAN achieves
satisfactory results but Water-GAN reached the worst one.



(a)

(b)

Fig. 3. Qualitative comparison on the underwater dataset. (a) The overall results. (b) The details.

Fig. 4. Qualitative comparison on the real natural light images.

With L2+SSIM loss, the proposed method performs best
in quantitative analysis. Further, we adopted the underwater
image dataset and natural light image dataset to carry out
qualitative analysis with Water-GAN, UWGAN, and Cycle-
GAN. Fig. 3(a) shows the experimental results of the real
underwater images. Especially, the first two rows list the real
underwater images and underwater restored images, respec-
tively. The third row is the predicted depth information, and
the rest of the rows show the results of different methods.

Careful observation reveals that the images generated by
CycleGAN and our method look closer to the reference
images, while the other methods show some drawbacks,
for example, the images generated by UWGAN tend to
be yellow, and the four corners of the image generated
by Water-GAN are black, which affects the image quality.
Recalling the CycleGAN method, we further compare its
performance with our method’s in detail. As shown in
Fig. 3(b), the images generated by CycleGAN have linear



TABLE II
THE RESULTS OF NON-REFERENCE METRICS MEASUREMENT

Method UICM UISM UIConM UIQM

Others
Water-GAN 1.383 7.138 0.215 2.587
UWGAN 6.028 7.160 0.187 2.437
CycleGAN 3.240 6.364 0.324 2.500

Ours

L1 loss 3.597 7.298 0.246 2.686
L2 loss 3.433 7.307 0.256 2.714
SSIM loss 3.175 7.276 0.308 3.025
L1 + L2 3.562 7.268 0.254 2.700
L1 + SSIM 3.462 7.327 0.240 2.705
L2 + SSIM 3.222 7.272 0.279 2.817

TABLE III
THE RESULTS OF FULL-REFERENCE METRICS MEASUREMENT

Method PSNR SSIM MSE MAE

Others
Water-GAN 11.757 0.692 0.068 0.214
UWGAN 14.753 0.800 0.035 0.160
CycleGAN 18.458 0.768 0.015 0.104

Ours

L1 loss 17.941 0.853 0.016 0.106
L2 loss 18.206 0.864 0.015 0.104
SSIM loss 15.928 0.862 0.026 0.132
L1 + L2 17.898 0.853 0.016 0.107
L1 + SSIM 18.077 0.864 0.016 0.106
L2 + SSIM 18.546 0.881 0.014 0.100

noise in the vertical direction, and locally produce black
blocky areas, which indicates that the CycleGAN method
performs poorly in terms of details. Our method achieves
better results in detail, and each position of the image has
smoother transitions and better fidelity.
The following experiment focuses on generating under-

water images from the natural light ones. Fig. 4 gives the
results. Obviously, the images generated by Water-GAN and
UWGAN are not like underwater images. The reason is
that category supervision is adopted in these two methods,
which can not guarantee each pixel learns the appropriate
parameters of the generation model. As for the CycleGAN,
the generated images are more like underwater images in
color, but having some obvious noises. The reason for this
phenomenon is that CycleGAN does not use depth informa-
tion, so the color changes of each position on the image are
consistent, which causes a certain degree of changes in the
underlying structure of the image. The images synthesized
by our method are most like underwater images. The results
of qualitative analysis and quantitative analysis also reach an
agreement.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an underwater image
synthesis method based on the self-supervision approach.
First, we construct an underwater image synthesis model to
generate underwater images by simulating the propagation of
light in the water. Meanwhile, the effects of camera shooting
on the images are also considered in this model. Second,
a pixel-level self-supervised training strategy is designed to
predict the corresponding depth information only relying on
monocular images. Moreover, it can maximize the structural
similarity between the synthesized images and the real ones.

Finally, various comparison experiments are carried to quan-
titatively and qualitatively analyze the performance of many
methods. The obtained results validate the effectiveness and
robustness of our proposed method.
In the future, we will construct a large underwater image

dataset with diverse objects and then carry out the underwater
object detection based on the constructed dataset.
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