
Rethinking Bipartite Graph Matching in Realtime Multi-object Tracking

Zhuojun Zou1,2, Jie Hao1,3,∗ and Lin Shu1,3
1Institute of Automation, Chinese Academy of Sciences, Beijing, China

2School of Articial Intelligence, University of Chinese Academy of Sciences, Beijing, China
3Guangdong Institute of Articial Intelligence and Advanced Computing, Guangzhou, China

Email: {zouzhuojun2018, jie.hao, lin.shu}@ia.ac.cn

Abstract—Data association is a crucial part for tracking-by-
detection framework. Although many works about constructing
the matching cost between trajectories and detections have been
proposed in the community, few researchers pay attention to
how to improve the efficiency of bipartite graph matching in
realtime multi-object tracking. In this paper, we start with
the optimal solution of integer linear programming, explore
the best application of bipartite graph matching in tracking
task and evaluate the rationality of cost matrix simultaneously.
Frist, we analyze the defects of bipartite graph matching
process in some multi-object tracking methods, and establish
a criteria of similarity measure between trajectories and
detections. Then we design two weight matrices for multi-object
tracking by applying our criteria. Besides, a novel tracking
process is proposed to handle visual-information-free scenario.
Our method improves the accuracy of the graph-matching-
based approach at very fast running speed (3000+ FPS).
Comprehensive experiments performed on MOT benchmarks
demonstrate that the proposed approach achieves the state-
of-the-art performance in methods without visual information.
Moreover, the efficient matching process can also be assembled
on approaches with appearance information to replace cascade
matching.

Keywords-Bipartite Graph Matching, Multi-object Tracking,
Tracking-by-detection

I. INTRODUCTION

Multiple object tracking (MOT) is one of the most chal-

lenging problems in computer vision due to its wide range

of applications, such as autonomous vehicle[1], [2], intelli-

gent video surveillance[3], [4] and smart environments and

ambient technologies[5], [6]. In recent years Tracking-by-

Detection paradigm has become a popular tool for MOT[7],

which divides the tracking process into two major parts:

a detector generates object candidates for each frame at

first, and then a tracker connects those detection results into
multiple trajectories. As shown in Fig. 1, tracker is a crucial

part of multi-object tracking approach whose main task is

to (1) design matching matrix between historical trajectories

and candidates, and (2) utilize matching algorithm to connect

trajectories with detections according to the matrix.

Although the construction method of matching matrix

changes rapidly with the improvement of computer perfor-

∗Corresponding Author.
The authors declare that there is no conflict of interest regarding the

publication of this paper.

Figure 1. Illustration of the Tracking-by-Detection framework.

mance and the evolution of artificial neural network struc-

ture, applying bipartite graph matching as data association

method is popular and enduring[8], [9], [10]. A classic

method to apply this paradigm is SORT[8], which is favored

by the industry for its simple structure and extremely fast

tracking speed. Following this study, DeepSORT[11] intro-

duced visual information into matrix design and proposed

a cascade process for their multi-level matching weights,

thus improves the accuracy of SORT and achieves better

results with the development of deep neural network[12].

We notice that both SORT and DeepSORT contain a post-

process to filter matchings, and weaken the optimality of

assignment problem solution. Inspired by this, we redesign

the matching cost of SORT by introducing a criteria called

optimal bipartite graph matching(OBGM) condition, which

can be applied to any graph matching based multi-object

tracker. Similarly, we also constructed a weight matrix

according to the OBGM condition for DeepSORT.

II. RELATED WORK

Multi-Object Tracking There are mainly two kinds

of approaches: detection-free models[13], [14], [15] and

Tracking-by-Detection(TbD) models[10], [9], [11]. The for-

mers construct an end-to-end structure by appending a task-

specific branch to traditional detection network. With little

help from detection datasets, the main disadvantage of this

paradigm is the need for an enormous number of tracking

annotation. Besides, the specific branch is limited to tracking

scene, for example, the model proposed in [13] can only

predict people and cars’ movement, not other categories.

713

2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)

978-1-6654-8290-5/22/$31.00 ©2022 IEEE
DOI 10.1109/CACML55074.2022.00124

20
22

 A
sia

 C
on

fe
re

nc
e

on
 A

lg
or

ith
m

s,
 C

om
pu

tin
g

an
d

M
ac

hi
ne

 L
ea

rn
in

g
(C

AC
M

L)
 |

 9
78

-1
-6

65
4-

82
90

-5
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CA

CM
L5

50
74

.2
02

2.
00

12
4

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 08,2023 at 14:39:57 UTC from IEEE Xplore. Restrictions apply.

On the contrary, TbD models enable trackers to take full

use of the detection results, and the performance of TbD

models are not lose to that of detection-free models on

varies benchmarks[16], [17]. In TbD paradigm, the detector

is trained on large-scale detection datasets which completely

separate from training process of the tracker. The low

coupling of the two modules makes it convenient for the

detector and tracker to combine freely according to diverse

application requirements.

Data association in MOT Network flow based models[18],

[19] obtain the global data association solution by modeling

the whole video sequence as a graph and introducing a

virtual source point and sink point, but are inappropriate for

real-time requirements. Multiple Hypothesis Trackers[20],

[21] build a hypothesis tree to enumerate combinations of

associations and maximize the a-posteriori probability by

path search, and have the problem of high computational

complexity. Bipartite graph matching is widely used in filter

based trackers[8], [11], which constructs continuous tracking

results by obtaining the optimal matchings of trajectories

and detections frame by frame, and a careful design of the

matching cost is necessary. Betke and Wu[22] and Luo et.

al.[23] reviewed the data association methods in multi-object

tracking task.

Bipartite graph matching in SORT process Simple

online and realtime tracking(SORT)[8] implements proba-

bilistic inference as a Kalman filter and data association

as bipartite graph matching. The method takes Intersection-

over-Union(IoU) as the similarity measure of trajectories

and detections, and achieve considerable accuracy with high

frame rate. Following this study, DeepSORT[11] introduced

appearance features and proposed a cascade matching strat-

egy to improve SORT by reducing the number of identity

switches. Besides in a recent research, a method named

SmartSORT[24] was constructed to learn the cost matrix

of bipartite graph based on DeepSORT. Although many

methods improved data association in multi-object tracking

from the perspective of matrix construction, the matching

efficiency drew limit attention. In this paper, we focus on

the effectiveness of bipartite graph matching in realtime

multi-object tracking, and not only successfully improves

the performance of data association but also verifies the

correctness of matching matrix by utilizing the properties

of optimal solution.

III. PROPOSED METHODS

In this section, we first introduce the optimal bipartite

graph matching in Sec. III-A, then propose an efficient

matching approach based on SORT framework in Sec.

III-B including a redesigned weight matrix following the

optimization criteria mentioned in Sec. III-A and a handling

algorithm for real-time multi-object tracking, and finally

construct a matching process in DeepSORT framework in

Sec. III-C.

A. Optimal Bipartite Graph Matching

The association of trajectory set T (indices T =
{1, . . . , N}) and detection set D(indices D = {1, . . . ,M})
can be described as a complete bipartite graph matching

problem which aims to maximize a Integer Linear Pro-

gram(ILP).

Let [wij] be the matching weight matrix. In SORT[8]

tracking process, to ensure tracking quality, an additional

gate function bij related to wij is multiplied by the optimal

solution of bipartite graph matching to filter matchings. The

final result is defined as

zs =
∑
i∈T

∑
j∈D

bijwijx
s
ij (1)

with {
wij = iouij (2)

bij = 1[iouij ≥ t(1)] (3)

where xs is defined as:

xs = argmax
x

∑
i∈T

∑
j∈D

wijxij

s.t.

⎧⎨
⎩

∑
j∈D xij ≤ 1 ∀ i ∈ T∑
i∈T xij ≤ 1 ∀ j ∈ D

xij ∈ {0, 1} ∀ i ∈ T ∀ j ∈ D
(4)

where boolean variable xij denotes whether wij is se-

lected or not. Moreover for i ∈ T , j ∈ D, iouij is given
by

iouij =
Intersection(Ti, Dj)

Union(Ti, Dj)
(5)

This metric synthetically describes the similarity of the

shape and position of two bounding boxes.

The major drawback of Eq. 1 is the harmful effect of

abandoned xsij selected by bij , weakening the optimality of
assignment problem solution, and zs must be less than or

equal to the result of directly solving ILP with bij constraint,
which can be formulated as follow:

z = max
∑
i∈T

∑
j∈D

bijwijxij

s.t.

⎧⎨
⎩

∑
j∈D xij ≤ 1 ∀ i ∈ T∑
i∈T xij ≤ 1 ∀ j ∈ D

xij ∈ {0, 1} ∀ i ∈ T ∀ j ∈ D
(6)

Fig. 2 shows a case that zs < z.
Let the solution corresponding to z in Eq. 6 be x∗,

according to the above facts, we propose a optimization

criteria named optimal bipartite graph matching condition

that judges whether the weight matrix is set reasonably.

Theorem 1: Optimal Bipartite Graph Matching condi-
tion: For a measure f(·) positively correlated with tracking
effect, the cost matrix wij must be inappropriately defined

when f(xs) is obviously greater than f(x∗).

714

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 08,2023 at 14:39:57 UTC from IEEE Xplore. Restrictions apply.

Figure 2. SORT matching (Eq. 1)and optimal matching(Eq. 6) obtain
different solutions under the same weight matrix and filter setting. (a) The
application of bipartite graph matching in online multi-object tracking. The
weight matrix can be synthesized from multiple information sources, such
as distance, visual similarity and so on, the higher is the better. (b) The
process of getting zs: filtering matching pairs to get the final result after
solving the optimal matching. (c) The process of optimal matching. The
method multiplies weight matrix(wij) by gate function (bij = 1[wij ≥
0.5]) to generate optimal value z. It is worth noting that zs ≤ z always
holds.

Replacing zs with z will improve the performance defi-
nitely for a model with well-defined weight matrix wij and

gate function bij . In order to make full use of the power of
assignment problem solver such as [25], [26], wij needs to

accurately reflect the relative value of matchings.

B. Efficient matching based on SORT framework

In our experiments, we observed the worse performance

by replacing zs with z when wij = iouij . This illus-

trates that iouij is a weak representation of the association
between trajectories and detections according to OBGM

condition. Thereby, we extend the weight matrix in SORT

framework. For a tracking-by-detection process without vi-

sual information, the following weight setting is used:

wij = 3
1[hitsi−lossi≥t(2)] × 31[scorej≥t(3)] × iouij (7)

The proposed wij includes three parts: the quality

of tracker(31[hitsi−lossi≥t(2)]), detection(31[scorej≥t(3)]) and

matching(iouij). Beyond that, our gating function bij is set
as Eq. 3.

In Algo. 1, we developed an online multi-object tracking

process with optimal bipartite graph matching solution.

To analyze the k-th frame in a video sequence, the

algorithm takes historical trajectory set Tk−1 and current

detection set Dk as inputs, and outputs tracking result set

Rk as well as updated trajectory set Tk. T0 is initialized as
∅ ,while Dk is provided by detector.

Algorithm 1: Realtime Multi-object Tracking with

Optimal Solution of Bipartite Graph Matching

Input: Detections D = {d1, . . . , dM};
Trajectories T = {t1, . . . , tN}.

1 Initialize the result set R ← ∅.
2 Compute predictions T ← {predict(t)|t ∈ T}
3 Compute weight matrix W = [bijwij]
4 Compute matches M ←optimal matching(W,T,D)
5 Update trajectory t with d in T , ∀ (t, d) ∈ M
6 T ← T ∪{new trajectory(d)|d ∈ D\{d|(t, d) ∈ M})
7 R ← {t | t ∈ T, max scoret ≥ σ, hitst ≥ Lc}
8 T ← T \

{
t
∣∣ t ∈ T, losst > Lmax

}
9 T ← T \

{t |t ∈ T, losst > Lmin, not occ(t, {d|(t, d) ∈ M})}
10 return R, T

In line 2, we apply the Kalman filter proposed in [8] to

predict the size and coordinate of the bounding boxes. In

line 8-9, the existent time of mismatched trajectories are

extended from Lmin to Lmax when the predicted region

is occluded by other matched detections. Concretely, we

formulate occ(t, {d1, d2, ...}) as:

1

[
Intersection(t, Union(d1, d2, ...))

Area(t)
> p

]
(8)

In practical applications, p is set to 80%. There is a likeli-
hood that an object is absent intermittently for the occlusion

caused by non-detected objects in realistic scenarios, which

needs further analysis according to appearance features.

However, the cases requiring visual aids are beyond the

scope of the current discussion.

C. Efficient matching based on DeepSORT framework

DeepSORT[11] adopts a cascade matching method: It

gives priority to those trajectories with younger age to match,

and carries the detections without matching in this turn to the

next and matches them with elder trajectories, and iterates

the above process within the age range. SORT matching is

applied in each iteration: filtering operation is performed

after bipartite graph matching as shown in Fig. 2.

Firstly, we adjust SORT matching to our optimal match-

ing, then we append the primary weight to the original

cost matrix in the form of multiplication, and optimize the

process of cascade matching to one-step matching. On this

premise, we construct minimum weight matching matrix to

retain the characteristic of DeepSORT, which is defined as

follow:

wij = exp(−lossi)× scorej × exp(−cij) (9)

where cij is a hybrid feature combined with object’s appear-
ance and position factors defined in [11]. Likewise, Eq. 9

is composed of three parts as a application of the design

715

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 08,2023 at 14:39:57 UTC from IEEE Xplore. Restrictions apply.

Table I
E SORT PARAMETERS IN MOT CHALLENGE.

Dataset Detector t(1) t(2) t(3) Lc Lmin Lmax

MOT16 FRCNN(POI) 0.2 2 0.6 1 1 3
MOT17 DPM 0.4 2 0.5 3 1 10
MOT17 SDP 0.2 1 0.6 1 1 8
MOT17 FRCNN 0.2 1 0.8 3 1 1
MOT20 FRCNN 0.4 3 0 1 10 20

Table II
COMPARISON OF EVALUATION METRICS WITH OTHER APPROACHES ON

MOT16, MOT17 AND MOT20 VALIDATION SETS. * INDICATES

OFFLINE TRACKERS. THE RUNNING SPEEDS OF E SORT (·|·)
REPRESENT PYTHON AND C++ APPLICATIONS RESPECTIVELY.

Method MOTA↑MOTP↑ MT↑ ML↓ IDS↓ FM↓ FPS↑
MOT16

POI[27] 66.1 79.5 34.0 20.8 805 3093 10
DeepSORT[11] 61.4 79.1 32.8 18.2 781 2008 74
SmartSORT[24] 60.4 78.9 28.9 21.2 1135 2230 28
SORT[8] 59.8 79.6 25.4 22.7 1423 1835 423
E SORT 61.1 79.2 34.7 19.6 1382 1464 363|3533
E DeepSORT 61.4 79.1 33.6 17.8 803 2002 77

MOT17
Tracktor++[15] 56.3 78.8 21.1 35.3 1897 3753 1.5
GMPHDOGM[31] 49.9 77.0 19.7 38.0 3125 3540 30.7
GMPHD Rd[32] 46.8 76.4 19.7 33.3 3865 8097 30.8
IOUtracker*[33] 45.5 76.9 15.7 40.5 5988 7404 1523
SORT[8] 43.1 77.8 12.5 42.3 4852 7127 473
E SORT 46.3 77.4 16.5 39.3 3966 4977 405|3608

MOT20
Tracktor++[15] 52.6 79.9 29.4 26.7 1648 4374 1.2
SORT[8] 42.7 78.5 16.7 26.2 4470 17798 92
GMPHD Rd[32] 44.7 77.5 23.6 22.1 7492 11153 25
E SORT 45.6 77.1 32.9 19.8 4838 6071 102|530

idea mentioned in Sec III-B. Besides, bij is followed the

definition in DeepSORT.

Due to the addition of visual information, the effectiveness

of other auxiliary judgments unrelated to image feature is

reduced. Therefore, the tracking process in DeepSORT is

remain unchanged instead of using Algo. 1.

IV. EXPERIMENTAL RESULTS

A. Experiment Setting

Dataset. Our experiments are conducted on MOT16[16],

MOT17 and MOT20[17] benchmarks. Those experimental

datasets contain challenging videos recorded with both static

and moving camera. MOT16 and MOT17 contain the same

video sequences but with different detections. In the imple-

mentation on MOT16, the detections provided by POI[27]

are applicated. Similarly to [11], we filter out objects with

confidence score less than 0.3. The bounding boxes in

MOT17 were generated by DPM[28], SDP[29], and Faster

R-CNN[30], and the detector used in MOT20 is a trained

Faster R-CNN.

Baseline. For a fair comparison, we rerun SORT[8] and

DeepSORT[11] on the same platform as our E SORT to test

the running speed. On MOT16, our methods are compared

with other approaches using the same detector, including

POI, DeepSORT, SmartSORT and SORT. On MOT17 and

MOT20, we provide a comparison of E SORT with the

state-of-the-art approaches without visual information[8],

[33], [31], the leading neural network based method[15] and

the leading GMPHD filter based method[32].

Evaluation Metrics. We assess the performance of track-
ers by multiple metrics including Multi-object track-

ing accuracy (MOTA)[34], Multi-object tracking precision

(MOTP), Mostly tracked (MT>80% recovered), Mostly lost

(ML<20% recovered), Identity switches (IDS), Fragmen-

tation (FM) and speed (FPS). We regard MOTA as the

main metric for its ability to measure overall tracking

performance, which is expressed as:

MOTA = 1−
∑

k mk +
∑

k fpk +
∑

k mmek∑
k gk

(10)

where gk, mk, fpk, and mmek are the number of present

objects, misses, false positives and mismatches in the k-
th frame, respectively. It combines three error sources:

the ratio of missed targets(
∑

k mk∑
k gk

), the ratio of false

positives(
∑

k fpk∑
k gk

) and identity switches(
∑

k mmek∑
k gk

). The

aforementioned evaluation metric IDS proposed by Li et.

al.[35] differs from this expression, which is the number of

times that a trajectory changes its matched GT identity.

Implementation Details. The parameters of Kalman filter

in Algo. 1 are set as SORT[8]. For the sake of simplicity,

we set σ in Algo. 1 equal to t(3) in Eq. 7. First, we

keep Lmin = Lmax = 1, and the remaining parameters

including t(1), t(2), t(3), and Lc are decided by grid search.

In turn, these parameters are utilized to determine Lmin and

Lmax. The specific settings are shown in Tab. I. Notice

that the parameters are varied according to dataset and

detection method. This is due to different trajectory number

and object size in those videos, which leads to unstable

performance of detectors. The annotations in MOT20 were

checked manually after FRCNN detection, so threshold t(3)

is set to 0, that is to say all detections have high reliability.

Besides, Lmin and Lmax in Algo. 1 were much longer than

videos without potential detection errors.

All experiments were run on 3.6GHz CPU. In order to

give full play to the performance of E SORT, we provides

both python and C++ implementations.

B. Evaluation on MOT dataset

The comparisons with other methods are list in Tab. II.

E SORT outperforms the baseline on all three datasets,

increases the MOTA of SORT by 1.3%, 3.2% and 4.7%

on MOT16, MOT17 and MOT20 respectively. In particular,

E SORT substantially reduces the percentage of fragments

by 20.2%, 30.1% and 65.9% in the three datasets.

On MOT16 and MOT20 datasets, E SORT achieves the

state-of-the-art performance in methods without visual infor-

mation, and is particularly suitable for industrial applications

for its extremely high running speed. Though the MOTA of

716

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 08,2023 at 14:39:57 UTC from IEEE Xplore. Restrictions apply.

Table III
COMPONENT COMPARISON BETWEEN OUR METHOD AND THE ORIGINAL

SORT ON MOT17 TRAIN SET. IN PARTICULAR, WE SHOW THE TREND

OF PERFORMANCE CHANGE UNDER DIFFERENT MATRIX WEIGHT

SETTINGS, GREEN AND RED STANDS NEGATIVE AND POSITIVE EFFECT

ON TRACKING RESULTS RESPECTIVELY(BEST VIEW IN COLOR).

Tracker Matching wij MOTA↑ MT↑ ML↓ IDS↓ FM↓

SORT

Eq. 1 Eq. 2 44.8 276 654 2681 3758

Eq. 6 Eq. 2
44.7 273 655 2737 3806
0.2%↓ 1.1%↓ 0.2%↓ 2.1%↓ 1.2%↓

Eq. 1 Eq. 7 45.2 288 641 2311 3479

Eq. 6 Eq. 7
45.2 289 640 2336 3496
0.0%- 0.3%↑ 0.2%↑ 1.1%↓ 0.5%↓

Algo.1 Eq. 6 Eq. 7 48.4 386 562 2306 2659

E SORT is slightly lower than that of GMPHD OGM[31]

on MOT17 datasets, the proposed method is 117 times faster

than GMPHD OGM. Compared with IOUtracker[33] which

has a delayed trajectory-filtering criterion, our online algo-

rithm outforms it on MOTA, and reduce identity switches by

33.8% and fragmentation by 32.8%. Tab. II also shows the

comparison between our approach and the state-of-the-art

CNN-based method[15]. The proposed method has higher

real-time performance (530 FPS vs. 1.2 FPS) with less

performance loss (45.6 vs. 52.6 on the MOTA score).

TbD paradigm divides MOT task into two independent

parts, and as demonstrated by the experimental results on

MOT16 and MOT17, it inevitably leads to tracking effect

relying heavily on the quality of detections. Moreover,

in real-time tracking, a direct consequence is the linear

superposition of running time in the two parts. Fast data

association ensures practical running speed and leaves more

room for detection. Take the efficient detection method

FastYOLO[36] (155 FPS) as an example: E SORT + FastY-

OLO is running at 149 FPS while GMPHD OGM + FastY-

OLO is running at 26 FPS.

E DeepSORT improves the matching speed while keeping

the efficiency of DeepSORT[11]. The experiment proves

that cascade matching can be replaced by one-step efficient

matching. According to the OBGM condition, the similar

performance of the two methods verifys the rationality of

the weight setting in DeepSORT.

C. Ablation Study

To validate the effects of the proposed theory and method,

we replace the components in the online tracking model,

including the tracking progress(Tracker), the matching way
of bipartite graph(Matching), and the weight matrix(wij).

The experimental results are shown in Tab. III.

OBGM Condition Validation: According to the definition
in Sec. III-A, we replace SORT matching(Eq. 1) with opti-

mal matching(Eq. 6) to verify the effectiveness of the weight

matrix. With Eq. 2 as the matching weight, replacing Eq. 1

results in the performance decline of all the metrics, which

shows Eq. 2 satisfys the OBGM condition and has room

for improvement. The same experiment conducted on Eq. 7

illustrates our matrix does not meet the condition, indicates

Eq. 7 has good similarity measurement capability, although

there is no visual information for guiding matching. In the

other hand, the improvement of tracking results can been

observed directly after replacing wij . Taking Eq. 6 as an

example, the promotion on (MOTA /MT /ML /IDS /FM) is

(1.1% /5.9% /2.3% /14.7% /8.1%) respectively. This proves

the correctness of the OBGM condition and the rationality

of our weight design method.
Notably, Using Algo. 1 significantly improved the track-

ing efficiency, and exceeds the SORT tracking progress by

33.6% and 23.9% on MT and FM respectively. Algo. 1

improves the overall performance by dynamically increasing

the existent time of mismatch trajectories and substantially

solved the frequent identity switch problem in SORT frame-

work.

V. CONCLUSION

In this paper, we propose a general bipartite graph match-

ing process in multi-target tracking task to make full use of

the solver of Integer Linear Program. Besides, we construct

two matching matrices for online multi-object tracking and

improve the tracking process of SORT by introducing a

novel handling algorithm. Sufficient experiments conducted

on MOT challenge benchmarks demonstrate that the optimal

solution of assignment problem can improve the efficiency

of data association according to the OBGM condition.

Moreover, our E SORT outperforms the baseline at high

speed and achieves the state-of-the-art performance in meth-

ods without visual information, and our one-step matching

process E DeepSORT can replace cascade matching with

high tracking efficiency.
Acknowledgements This work was supported in part by

the National Science and Technology Major Project from

Minister of Science and Technology under Grant No.

2018AAA0103100, the Guangdong Provincial Key Research

and Development Plan under Grant No. 2019B090917009,

the Strategic Priority Research Program of Chinese

Academy of Science under Grant No. XDB32070203, and

the National Key Research and Development Program of

China under Grant No. 2020AAA0105900.

REFERENCES

[1] W. Zong, C. Zhang, Z. Wang, J. Zhu, and Q. Chen, “Architec-
ture design and implementation of an autonomous vehicle,”
IEEE Access, vol. 6, pp. 21 956–21 970, 2018.

[2] S. Kuutti, R. Bowden, Y. Jin, P. Barber, and S. Fallah, “A
survey of deep learning applications to autonomous vehicle
control,” IEEE Transactions on Intelligent Transportation
Systems, vol. 22, no. 2, pp. 712–733, 2021.

[3] M. Zabłocki, K. Gościewska, D. Frejlichowski, and R. Hof-
man, “Intelligent video surveillance systems for public
spaces–a survey,” Journal of Theoretical and Applied Com-
puter Science, vol. 8, no. 4, pp. 13–27, 2014.

717

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 08,2023 at 14:39:57 UTC from IEEE Xplore. Restrictions apply.

[4] P. L. Venetianer and H. Deng, “Performance evaluation of an
intelligent video surveillance system a case study,” Computer
Vision and Image Understanding, vol. 114, no. 11, pp. 1292–
1302, 2010, special issue on Embedded Vision.

[5] N. Thakur and C. Y. Han, “An ambient intelligence-based
human behavior monitoring framework for ubiquitous envi-
ronments,” Information, vol. 12, no. 2, 2021.

[6] ——, “Multimodal approaches for indoor localization for
ambient assisted living in smart homes,” Information, vol. 12,
no. 3, 2021.

[7] W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu, and T.-K.
Kim, “Multiple object tracking: A literature review,” Artificial
Intelligence, vol. 293, p. 103448, 2021.

[8] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple
online and realtime tracking,” in ICIP. IEEE, 2016, pp.
3464–3468.

[9] S. Guo, J. Wang, X. Wang, and D. Tao, “Online multiple
object tracking with cross-task synergy,” in CVPR, June 2021.

[10] P. Chu, J. Wang, Q. You, H. Ling, and Z. Liu, “Transmot:
Spatial-temporal graph transformer for multiple object track-
ing,” 2021.

[11] N. Wojke, A. Bewley, and D. Paulus, “Simple online and
realtime tracking with a deep association metric,” in ICIP.
IEEE, 2017, pp. 3645–3649.

[12] S. Karthik, A. Prabhu, and V. Gandhi, “Simple unsupervised
multi-object tracking,” arXiv preprint arXiv:2006.02609,
2020.

[13] Y. Zhang, C. Wang, X. Wang, W. Zeng, and W. Liu, “Fairmot:
On the fairness of detection and re-identification in multiple
object tracking,” arXiv preprint arXiv:2004.01888, 2020.

[14] Z. Lu, V. Rathod, R. Votel, and J. Huang, “Retinatrack: Online
single stage joint detection and tracking,” in CVPR, 2020, pp.
14 668–14 678.

[15] P. Bergmann, T. Meinhardt, and L. Leal-Taixe, “Tracking
without bells and whistles,” in ICCV, 2019, pp. 941–951.

[16] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler,
“Mot16: A benchmark for multi-object tracking,” arXiv
preprint arXiv:1603.00831, 2016.

[17] P. Dendorfer, H. Rezatofighi, A. Milan, J. Shi, D. Cremers,
I. Reid, S. Roth, K. Schindler, and L. Leal-Taixé, “Mot20:
A benchmark for multi object tracking in crowded scenes,”
arXiv preprint arXiv:2003.09003, 2020.

[18] G. Brasó and L. Leal-Taixé, “Learning a neural solver for
multiple object tracking,” in CVPR, 2020, pp. 6247–6257.

[19] P. Lenz, A. Geiger, and R. Urtasun, “Followme: Efficient
online min-cost flow tracking with bounded memory and
computation,” in ICCV, 2015, pp. 4364–4372.

[20] C. Kim, F. Li, A. Ciptadi, and J. M. Rehg, “Multiple hypoth-
esis tracking revisited,” in ICCV, 2015, pp. 4696–4704.

[21] J. Chen, H. Sheng, Y. Zhang, and Z. Xiong, “Enhancing
detection model for multiple hypothesis tracking,” in CVPRw,
2017, pp. 18–27.

[22] M. Betke and Z. Wu, “Data association for multi-object visual
tracking,” Synthesis Lectures on Computer Vision, vol. 6,
no. 2, pp. 1–120, 2016.

[23] W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu, and T. Kim,
“Multiple object tracking: A literature review,” Artificial In-
telligence, p. 103448, 2020.

[24] M. Meneses, L. Matos, B. Prado, A. de Carvalho, and
H. Macedo, “Learning to associate detections for real-time
multiple object tracking,” arXiv preprint arXiv:2007.06041,
2020.

[25] H. W. Kuhn, “The hungarian method for the assignment
problem,” Naval research logistics quarterly, vol. 2, no. 1-
2, pp. 83–97, 1955.

[26] R. Jonker and A. Volgenant, “A shortest augmenting path
algorithm for dense and sparse linear assignment problems,”
Computing, vol. 38, no. 4, pp. 325–340, 1987.

[27] F. Yu, W. Li, Q. Li, Y. Liu, X. Shi, and J. Yan, “Poi:
Multiple object tracking with high performance detection and
appearance feature,” in ECCV. Springer, 2016, pp. 36–42.

[28] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and
D. Ramanan, “Object detection with discriminatively trained
part-based models,” T-PAMI, vol. 32, no. 9, pp. 1627–1645,
2009.

[29] F. Yang, W. Choi, and Y. Lin, “Exploit all the layers: Fast
and accurate cnn object detector with scale dependent pooling
and cascaded rejection classifiers,” in CVPR, 2016, pp. 2129–
2137.

[30] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards
real-time object detection with region proposal networks,” T-
PAMI, vol. 39, no. 6, pp. 1137–1149, 2016.

[31] Y. M. Song, K. Yoon, Y. C. Yoon, K. C. Yow, and M. Jeon,
“Online multi-object tracking framework with the gmphd
filter and occlusion group management,” arXiv preprint
arXiv:1907.13347, 2019.

[32] N. L. Baisa, “Occlusion-robust online multi-object vi-
sual tracking using a gm-phd filter with a cnn-based re-
identification,” arXiv preprint arXiv:1912.05949, 2019.

[33] E. Bochinski, V. Eiselein, and T. Sikora, “High-speed
tracking-by-detection without using image information,” in
AVSS. IEEE, 2017, pp. 1–6.

[34] K. Bernardin and R. Stiefelhagen, “Evaluating multiple ob-
ject tracking performance: the clear mot metrics,” EURASIP
Journal on Image and Video Processing, vol. 2008, pp. 1–10,
2008.

[35] Y. Li, C. Huang, and R. Nevatia, “Learning to associate:
Hybridboosted multi-target tracker for crowded scene,” in
CVPR, 2009, pp. 2953–2960.

[36] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You
only look once: Unified, real-time object detection,” in CVPR,
2016, pp. 779–788.

718

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on March 08,2023 at 14:39:57 UTC from IEEE Xplore. Restrictions apply.

